当前位置:文档之家› 【CN109961411A】非下采样剪切波变换医学CT图像去噪方法【专利】

【CN109961411A】非下采样剪切波变换医学CT图像去噪方法【专利】

【CN109961411A】非下采样剪切波变换医学CT图像去噪方法【专利】
【CN109961411A】非下采样剪切波变换医学CT图像去噪方法【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910186481.2

(22)申请日 2019.03.12

(71)申请人 浙江工业大学之江学院

地址 312030 浙江省绍兴市柯桥区柯华路

958号

(72)发明人 张聚 陈坚 周海林 吕金城 

(74)专利代理机构 杭州天正专利事务所有限公

司 33201

代理人 王兵 黄美娟

(51)Int.Cl.

G06T 5/00(2006.01)

G16H 50/20(2018.01)

(54)发明名称非下采样剪切波变换医学CT图像去噪方法(57)摘要非下采样剪切波医学CT图像去噪方法,包括如下步骤:步骤1)医学CT扫描图像模型建立;步骤2)对CT图像进行NSST多尺度分解和多方向分解得到一个低频子带和多个高频子带;步骤3)使用快速几何纹理分解将原图像分解为平滑的几何部分和包含噪声的纹理部分,并取几何部分分量和低频子带相融合;步骤4)采用三边滤波法降噪处理融合后的新低频分量,得到新的低频子带;步骤5)采用自适应阈值收缩法处理经剪切波变换后的高频子带系数;步骤6)结合处理后的低频分量和高频分量进行NSST重构,得到去噪后的医学CT图像。本发明通过实验分析与传统的去噪领域算法进行了对比,有效的应用在医学CT去噪领域,

能够更好的有利于医师的分析诊断。权利要求书3页 说明书8页 附图4页CN 109961411 A 2019.07.02

C N 109961411

A

1.非下采样剪切波变换医学CT图像去噪方法,包括以下步骤:

步骤1)医学CT扫描图像模型建立;

医学CT图像即计算机断层扫描,X射线从几个不同的方位和角度扫描人体固定部位交由计算机处理扫描得到的不同横断面建立图像,从而让医生和患者等看到特定检查区域的扫描对象,进而进行医学判断;但是强度过低的发射电流会产生大量的高斯噪声,使得图像质量降低,会影响观察判断结果;

可分两部分建立CT图像的模型,这两部分分别是医学观察所需的人体组织反射信号以及阻碍医学观察的噪声信号,其中噪声信号还可以分为乘性噪声和加性噪声,从影响观察的角度看来加性噪声相比与乘性噪声对CT图像的影响非常微小,所以在处理中一般忽略加性噪声;因此CT电信号的通用模型就表示为:

o(x ,y)=p(x ,y)q(x ,y) (1)

式中,x表示CT图像的横坐标,y表示图像的纵坐标,p(x ,y)表示无噪信号,q(x ,y)表示乘性噪声;

由于相加的噪声模型比相乘噪声的模型更容易分离,所以对以上式(1)的模型进行对数变换变换成相加的模型,表示为:

log(o(x ,y))=log(p(x ,y))+log(q(x ,y)) (2)

步骤2)对CT图像进行NSST多尺度分解和多方向分解;

首先把对数变换后的便于噪声分离的CT图像进行多尺度分解,多尺度分解后得到一张和原图等大小的低频CT图像分量和多张同样与原图等大小的高频CT图像分量;在这一步骤中不处理低频分量,对其处理将在步骤3)中进行,经尺度分解得到的各个高频分量子带使用剪切滤波器组处理,即使用剪切滤波器组对各个子带进行方向分解;

步骤3)使用快速几何纹理分解将原图像分解为平滑的几何部分和包含噪声的纹理部分;

快速几何纹理分解将原图像分解为平滑的几何部分以及包含噪声的纹理部分;快速几何纹理分解通过使用高通滤波器在保留图像的主要特征的基础上可以有效地提取纹理,通过建立一个包含局部指示器的非线性滤波器来确定图像的局部是属于纹理部分还是属于几何部分;其纹理部分和几何部分的主要区别是:纹理区域的主要特征是因为其振荡所造成的高度全变分差,相反几何局部区域的主要特点是其全变差不会受到低通滤波的影响;其局部全变分可以表示为如下式子:

LTV σ(f)(x):=L σ*|Df|(x) (3)

其中σ表示纹理尺度,|Df|表示为变分差,L σ*|Df|即为局部范围的变分差,在利用局部

全变分降噪的过程中其相对局部折减率可以表示为:

反映在图像上的意义可以理解为函数的局部振荡行为,

当折减率接近于0的时候就有:也就是说在折减率接近于0的时候低通滤波器对局部全变差的减小影响非常小,如果

权 利 要 求 书1/3页2CN 109961411 A

医学影像工作原理及图像获取方式

医学影像工作原理及图像获取方式 2.2医学超声影像工作原理 超声是指高于人耳听觉范围的声波,通常是指频率高于20 kHz的高频振动机检波,应用于医学诊断的超声频率一般在1MHz至几十MHz之间。自1958年商用超声成像产品问世以来,超声医学设备以其实时性、对人体无损伤、无痛苦、显示方法多样,尤其对人体软组织的探测和心血管脏器的血流动力学观察有其独到之处而成为在医学中应用最为广泛的成像设备之一。 超声在医学中的重要作用在于它不但可以穿透人体,而且可以与身体组织相互作用。超声波穿过人体时要经过折射和反射,这可发生在超声波经过的任何交界面上,其作用就如同光束经过一个非均匀物质一样。超声波的波长很短,从而易于窄脉冲波束的实现,因此超声换能器可以做得小而紧凑。 超声在临床应用中主要分为诊断与治疗两个方面:超声诊断采用的是较高频率(多在2MHz以上)与较低声强的超声波,高频可提高对组织的分辨率,用以获得清晰、细致的声像图,而低声强则可降低对组织损伤的副作用。超声治疗采用的是较低频率(通常<1MHz)与较高声强的超声波,低频超声增大对组织的穿透率,而高声强(特别是聚焦后)超声可对组织产生生物效应,用于选择性破坏局灶性病变。 2.2.1超声设备与种类 超声诊断主要应用超声良好的指向性和与光相似的反射、散射、衰减及多普勒(Doppler)效应等物理特性,采用不同的扫查方法,将超声发射到人体内,并在组织中传播,当正常组织或病理组织的声阻抗有一定差异时,它们组成的界面就会发生反射和散射,再将此回波信号接收,加以检波等处理后,显示为波形、曲线或图像等。由于各种组织的界面形态、组织器官的运动状况和对超声的吸收程度等不同,其回波有一定的共性和某些特性,结合生理、病理解剖知识与临床医学,观察、分析、总结这些不同的规律,可对患病的部位、性质或功能障碍程度做出概括性以至肯定性的判断。 超声诊断仪由主机和探头构成,均包括发射、扫查、接收、信号处理和显示等五个部分。超声诊断仪的种类很多,而且互有交叉,按照显示回波方式和空间的不同,主要包括以下几种: 1.A型(Amplitude Mode)超声 A型超声是最早出现的一维超声诊断技术,它将声束传播位置上的组织按距离分布的回波信息在显示器上以幅度调制的形式显示,并从回波的幅度大小、形状及位置进行诊断,回波强则波幅高,回波弱则波幅低。常用A型法测量界面距离、脏器径值以及鉴别病变的物理性质,它是现代各种超声成像的物理基础。 2.B型(Brightness Mode)超声 B超是把组织的一个断层面上的超声回波信息以二维分布形式显示出来,组织内的散射、反射回波信息以辉度调制方式显示,回波强则光点亮,回波弱则光点暗。光点随探头的移动或晶片的交替轮换而移动扫查,由于扫查连续,可以由点、线而扫描出脏器的解剖切面,它是二维空间显示,又称二维超声。 按其成像速度的不同,可分为慢速成像和快速成像,慢速成像只能显示脏器的静态解剖图像,由于每帧图像线数甚多,图像清晰,扫查的空间范围较大。快速成像能显示脏器的活动状态,也称为实时(ReaITime)显像诊断法,但所显示的面积较小,每幅图像线数与每秒显示的帧数相互约制,互为反比。按照扫描方式的不同,又可分为电子线性扫描、电子凸阵扫描、机械扇形扫描和相控阵扫描等。 3.M(Motion Mode)型超声

第二讲 文本素材的采集与处理

第二讲文本素材的采集与处理 本讲目标: 1.明确文本素材的五种获取方法。 2.掌握扫描仪的使用方法,会用扫描仪获取大量文本,并能利用文字识别软件对获取的文本进行修改编辑。 重点:获取文本素材的方法。 难点:大量文本的采集—扫描仪扫描文字识别法。 一、五种文本素材的获取方法 文本素材的获取有直接获取与间接获取两种方式,直接获取是指通过多媒体教学制作工具软件的文字工具或在文字编辑处理软件中用键盘直接输入或复制,一般在文本内容不多的场合下使用该方式。间接获取是指用扫描仪或其他输入设备输入文本素材,常用于大量文本的获取。 文本素材的获取方法如下: (1)键盘输入方法 键盘输入方法是文本输入的主要方法,使用计算机输入汉字,需要对汉字进行编码,根据汉字的某种规律将汉字用数字或英文字符编码,然后由计算机键盘输入。汉字有音、形、义三个要素,根据汉字读音的编码叫音码,根据汉字字形的编码叫形码,兼顾汉字读音和字形的编码叫音形码或形音码。在常用的多媒体教学制作软件中,都带有文字工具,在文本内容不多的情况下,可以直接输入文字,对输入的文字可进行直接编辑处理。 (2)手写输入方法 使用“输入笔”设备,在写字板上书写文字,来完成文本输入,利用手写输入法获取文本的方式,类似于平时我们在纸上写字,但对在写字板上书写的文字要经选择。手写输入方法使用的输入笔有两种:一种是与写字板相连的有线笔,另一种是无线笔。无线笔携带和使用均很方便,是手写输入笔的发展方向。写字板也有两种,一种是电阻式,另一种是感应式。 (3)语音输入方法 将要输入的文字内容用规范的语音朗读出来,通过麦克风等输入设备送到计算机中,计算机的语音识别系统对语音进行识别,将语音转换为相应的文字,完成文字的输入。 语音输入方法目前开始使用,但识别率还不是很高,对发音的准确性要求比较高。 (4)扫描仪输入法 将印刷品中的文字以图像的方式扫描到计算机中,再用光学识别器(OCR)软件将图像中的文字识别出来,并转换为文本格式的文件。目前,OCR的英文识别率可达90%以上,中文识别率可达85%以上。 (5)从互联网上获取文本 从互联网上可以搜索到许多有用的文本素材,在不侵犯版权的情况下,可以从互联网上获取有用的文字。从互联网的html页面上获取部分文本的方法是:首先拖动鼠标选取有用的文本,或单击鼠标右键,在弹出的快捷菜单中,选择“全选”命令,将整个页面上文字全部选中,然后选择“复制”命令,打开文字处理软件(如Word),选择“编辑”/“粘贴”命令,就可以将复制的文字在文字处理软件中进行编辑处理了。如果将互联网上其他格式的文本文件(如:.pdf,.caj)格式的文件进行保存,然后使用部分有用文本,常用的方法是:选择“文件”菜单中的“另存为”命令,将文本文件进行保存,

【CN109961411A】非下采样剪切波变换医学CT图像去噪方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910186481.2 (22)申请日 2019.03.12 (71)申请人 浙江工业大学之江学院 地址 312030 浙江省绍兴市柯桥区柯华路 958号 (72)发明人 张聚 陈坚 周海林 吕金城  (74)专利代理机构 杭州天正专利事务所有限公 司 33201 代理人 王兵 黄美娟 (51)Int.Cl. G06T 5/00(2006.01) G16H 50/20(2018.01) (54)发明名称非下采样剪切波变换医学CT图像去噪方法(57)摘要非下采样剪切波医学CT图像去噪方法,包括如下步骤:步骤1)医学CT扫描图像模型建立;步骤2)对CT图像进行NSST多尺度分解和多方向分解得到一个低频子带和多个高频子带;步骤3)使用快速几何纹理分解将原图像分解为平滑的几何部分和包含噪声的纹理部分,并取几何部分分量和低频子带相融合;步骤4)采用三边滤波法降噪处理融合后的新低频分量,得到新的低频子带;步骤5)采用自适应阈值收缩法处理经剪切波变换后的高频子带系数;步骤6)结合处理后的低频分量和高频分量进行NSST重构,得到去噪后的医学CT图像。本发明通过实验分析与传统的去噪领域算法进行了对比,有效的应用在医学CT去噪领域, 能够更好的有利于医师的分析诊断。权利要求书3页 说明书8页 附图4页CN 109961411 A 2019.07.02 C N 109961411 A

1.非下采样剪切波变换医学CT图像去噪方法,包括以下步骤: 步骤1)医学CT扫描图像模型建立; 医学CT图像即计算机断层扫描,X射线从几个不同的方位和角度扫描人体固定部位交由计算机处理扫描得到的不同横断面建立图像,从而让医生和患者等看到特定检查区域的扫描对象,进而进行医学判断;但是强度过低的发射电流会产生大量的高斯噪声,使得图像质量降低,会影响观察判断结果; 可分两部分建立CT图像的模型,这两部分分别是医学观察所需的人体组织反射信号以及阻碍医学观察的噪声信号,其中噪声信号还可以分为乘性噪声和加性噪声,从影响观察的角度看来加性噪声相比与乘性噪声对CT图像的影响非常微小,所以在处理中一般忽略加性噪声;因此CT电信号的通用模型就表示为: o(x ,y)=p(x ,y)q(x ,y) (1) 式中,x表示CT图像的横坐标,y表示图像的纵坐标,p(x ,y)表示无噪信号,q(x ,y)表示乘性噪声; 由于相加的噪声模型比相乘噪声的模型更容易分离,所以对以上式(1)的模型进行对数变换变换成相加的模型,表示为: log(o(x ,y))=log(p(x ,y))+log(q(x ,y)) (2) 步骤2)对CT图像进行NSST多尺度分解和多方向分解; 首先把对数变换后的便于噪声分离的CT图像进行多尺度分解,多尺度分解后得到一张和原图等大小的低频CT图像分量和多张同样与原图等大小的高频CT图像分量;在这一步骤中不处理低频分量,对其处理将在步骤3)中进行,经尺度分解得到的各个高频分量子带使用剪切滤波器组处理,即使用剪切滤波器组对各个子带进行方向分解; 步骤3)使用快速几何纹理分解将原图像分解为平滑的几何部分和包含噪声的纹理部分; 快速几何纹理分解将原图像分解为平滑的几何部分以及包含噪声的纹理部分;快速几何纹理分解通过使用高通滤波器在保留图像的主要特征的基础上可以有效地提取纹理,通过建立一个包含局部指示器的非线性滤波器来确定图像的局部是属于纹理部分还是属于几何部分;其纹理部分和几何部分的主要区别是:纹理区域的主要特征是因为其振荡所造成的高度全变分差,相反几何局部区域的主要特点是其全变差不会受到低通滤波的影响;其局部全变分可以表示为如下式子: LTV σ(f)(x):=L σ*|Df|(x) (3) 其中σ表示纹理尺度,|Df|表示为变分差,L σ*|Df|即为局部范围的变分差,在利用局部 全变分降噪的过程中其相对局部折减率可以表示为: 反映在图像上的意义可以理解为函数的局部振荡行为, 当折减率接近于0的时候就有:也就是说在折减率接近于0的时候低通滤波器对局部全变差的减小影响非常小,如果 权 利 要 求 书1/3页2CN 109961411 A

LabVIEW应用于实时图像采集及处理系统

LabVIEW应用于实时图像采集及处理系统 2008-7-29 9:35:00于子江娄洪伟于晓闫丰隋永新杨怀江供稿 摘要:本文在LabVIEW和NI-IMAQ Vision软件平台下,利用通用图像采集卡开发一种图像实时采集处理虚拟仪器系统。通过调用动态链接库驱动通用图像采集卡完成图像采集,采集图像的帧速率达到25帧每秒。利用NI-IMAQ Vision视频处理模块,进行图像处理,以完成光电探测器的标定。该系统具有灵活性强、可靠性高、性价比高等优点。 主题词:虚拟仪器;图像处理;LabVIEW;动态链接库 1.引言 美国国家仪器(NI)公司的虚拟仪器开发平台LabVIEW,使用图形化编程语言编程,界面友好,简单易学,配套的图像处理软件包能提供丰富的图像处理与分析算法函数,极大地方便了用户,使构建图像处理与分析系统容易、灵活、程序移植性好,大大缩短了系统开发周期。在推出应用软件的基础上,NI公司又推出了图像采集卡,对于NI公司的图像采集卡,可以直接使用采集卡自带的驱动以及LabVIEW中的DAQ库直接对端口进行操作。 但由于NI公司的图像采集卡成本很高,大多用户难以接受,因此硬件平台往往采用通用图像采集卡,软件方面的图像处理程序仍采用LabVIEW以及视频处理模块编写。本文正是基于这样的目的,提出了一种在LabVIEW环境下驱动通用图像采集卡的方案,在TDS642EVM高速DSP视频处理板卡的平台下,完成实时图像采集及处理。 在图象处理的工作中主要完成对CCD光电探测器的辐射标定。由于探测器在自然环境下获取图像时,会受到来自大气干扰,自身暗电流,热噪声等影响,使CCD像元所输出信号的数值量化值与实际探测目标辐射亮度之间存在差异,所以要得到目标的精确图像就必须对探测器进行辐射标定。 2.图像采集卡简介 闻亭公司TDS642EVM(简称642)多路实时视频处理板卡是基于DSP TMS320DM642芯片设计的评估开发板。计算能力可达到4Gips,板上的视频接口和视频编解码芯片Philips SAA7115H相连,实现实时多路视频图像采集功能,支持多种PAL,NTSC和SECAM视频标准。本系统通过642的PCI接口与主机进行数据交换。PCI支持“即插即用(PnP)”自动配置功能,使图像采集板的配置变得更加方便,其一切资源需求的设置工作在系统初启时交由BIOS处理,无需用户进行繁琐的开关与跳线操作。PCI接口的海量数据吞吐,为其完成实时图像采集和处理提供保证。 3.系统组成及工作原理

常见医学图像格式

附录C 图像格式 译者:Synge 发表时间:2012-05-03浏览量:1604评论数:0挑错数:0 翻译:xiaoqiao 在fMRI的早期,由于大多数据都用不同研究脉冲序列采集,然后离线大量重建,而且各研究中心文件格式各不相同、大多数的分析软件也都是各研究单位内部编写运用。如果这些数据不同其他中心交流,数据的格式不影响他们的使用。因此图像格式就像巴别塔似的多式多样。随着fMRI领域的不断发展,几种标准的文件格式逐渐得到了应用,数据分析软件包的使用促进了这些文件格式在不同研究中心和实验室的广泛运用,直到近期仍有多种形式的文件格式存在。这种境况在过去的10年里随着公认的NIfTI格式的发展和广泛认可而优化。该附录就fMRI资料存储的常见问题以及重要的文件格式做一概述, 3.1 数据存储 正如第2章所述,MRI数据的存储常采用二进制数据格式,如8位或16位。因此,磁盘上数据文件的大小就是数据图像的大小和维度,如保存维度128 ×128×96的16位图像需要25,165,824位(3 兆字节)。为了保存图像的更多信息,我们希望保存原始数据,即元数据。元数据包含了图像的各种信息,如图像维度及数据类型等。这点很重要,因为可以获得二进制数据所不知道的信息,例如,图像是128 ×128×96维度的16位图像采集还是128 ×128×192维度的8位图像采集。在这里我们主要讨论不同的图像格式保存不同的数量及种类的元数据。 MRI的结构图像通常保存为三维的资料格式。fMRI数据是一系列的图像采集,可以保存为三维格式,也可以保存为四维文件格式(第4维为时间)。通常,我们尽可能保存为四维数据格式,这样可以减少文件数量,但是有些数据分析软件包不能处理四维数据。3.2 文件格式

基于图像质量评价参数的非下采样剪切波域自适应图像融合

第44卷 第1期吉林大学学报(工学版) Vol.44 No.12014年1月Journal of Jilin University(Engineering and Technology Edition) Jan.2014基于图像质量评价参数的非下采样 剪切波域自适应图像融合 高印寒1,陈广秋2,3,刘妍妍2,3 (1.吉林大学汽车仿真与控制国家重点实验室,长春130022;2.吉林大学仪器科学与电气工程学院,长春 130061;3.长春理工大学电子信息工程学院,长春130022) 摘 要:为了提升多源图像融合精度,提出了一种基于图像质量评价参数的非下采样剪切波 (NSST)域图像自适应融合方法。利用非下采样剪切波变换对源图像进行多尺度、多方向分 解,低频子带图像采用结构相似度与空间频率两种图像评价参数作为系数权值,高频子带图像 应用绝对值与邻域平均能量一致性选择的融合策略。应用非下采样剪切波逆变换重构图像。 采用多组多源图像进行融合实验,并对融合结果进行了客观评价。实验结果表明:本文方法在 主观和客观评价上均优于其他多尺度融合方法,具有更好的融合效果。 关键词:信息处理技术;非下采样剪切波;融合策略;客观评价;平移不变性 中图分类号:TN911 文献标志码:A 文章编号:1671-5497(2014)01-0225-10 DOI:10.13229/j.cnki.jdxbgxb201401037 Adaptive image fusion based on image quality assessment parameter in NSST system GAO Yin-han1,CHEN Guang-qiu2,3,LIU Yan-yan2,3 (1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun130022,China;2.Collegeof Instrumentation &Electrical Engineering,Jilin University,Changchun130061,China;3.School of Electronic andInformation Engineering,Changchun University of Science and Technology,Changchun130022,China) Abstract:To enhance the multi-source image fusion accuracy,an adaptive fusion method based onimage quality assessment parameter in Nonsubsampled Shearlet Transform(NSST)domain isproposed.The Source images are decomposed to subband images with multi-scale and multi-directionin NSST.The low frequency subband fusion rule is based on the structural similarity index withspatial frequency as coefficient weights.For the high frequency subands,the fusion rule of coefficientabsolute value with neighborhood average energy consistency selection is adopted.The fused low andhigh frequency coefficients are reconstructed to image by nonsubsampled shearlet inverse transform.Fusion experiments are conducted with several sets of different modality images,and the objectiveassessment of fused results is done.The experiment results show that the proposed algorithmperforms better in subjective and objective assessments than a few existing multi-scale fusion 收稿日期:2012-12-12. 基金项目:高等学校博士学科点专项科研基金项目(20110061110059);吉林省科技发展计划重点项目(20110326).作者简介:高印寒(1951-),男,教授,博士生导师.研究方向:车辆测试技术及机器视觉.E-mail:yinhan@jlu.edu.cn通信作者:陈广秋(1977-),男,讲师,博士研究生.研究方向:图像配准与融合.E-mail:guangqiu_chen@126.com

数字图像处理在医学上的应用

数字图像处理在医学上的应用 1 引言 自伦琴1895年发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理, 医学图像在临床诊断、教学科研等方面有重要的作用。目前的医学图像主要包括CT (计算机断层扫描) 图像、MRI( 核磁共振)图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子窥镜图像、显微镜下病理切片图像等。但是由于医学成像设备的成像机理、获取条件和显示设备等因素的限制, 使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度, 突出重要的容,抑制不重要的容,以适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。 数字图像处理的基本方法就是图像复原与图像增强。图像复原就是尽可能恢复原始图像的信息量,尽量保真。数字化的一个基本特征是它所固有的噪声。噪声可视为围绕真实值的随机波动, 是降低图像质量的主要因素。图像复原的一个基本问题就是消除噪声。图像增强就是通过利用人的视觉系统的生理特性更好地分辨图像细节。 与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。医学图像处理跨计算机、数学、图形学、医学等多学科研究领域,医学图像处理技术包括图像变换、图像压缩、图像增强、图像平滑、边缘锐化、图像分割、图像识别、图像融合等等。在此联系数字图像处理的相关理论知识和步骤设计规划系统采集和处理的具体流程同时充分考虑到图像采集设备的拍摄效果以及最终处理结果的准确性,例举了基于图像处理技术的人体手指甲襞处微血管管袢直径的测量方法。 2人体微血管显微图像的采集 人体微血管显微图像的采集采用了如图1所示的显微光学系统和图像采集系统主要由透镜模组滤镜模组光源系统电荷耦合器件以及图像采集卡等构成。 图1显微光学系统与图像采集系统示意图

PCB图像采集系统研究背景意义及国内外现状

PCB图像采集系统研究背景意义及国内外现状 1 研究背景 2 AOI系统的研究和国内现状 3 研究意义 1 研究背景 印刷电路板(Printed Circuit Board,PCB)又称为印刷线路板或印制电路板。印刷电路板是各种电子产品的主要部件,有“电子产品之母”之称,它是任何电子设备及产品均需配备的,其性能的好坏在很大程度上影响到电子产品的质量。几乎每一种电子设备都离不开PCB,小到电子手表、计算器,大到航空航天、军用武器系统等,都包含各式各样,大小各异的PCB板。近年来,随着生产工艺的不断提高,PCB正在向超薄型、小元件、高密度、细间距方向快速发展。这种趋势必然给质量检测工作带来了很多挑战和困难。因此PCB故障的检测已经成为PCB制造过程中的一个核心问题,是电子产品制造厂商非常关注的问题。在生产线上,厂家为保证PCB板的质量,就得要求100%的合格率,对所有的部件、子过程和成品都是如此。在过去靠人工对其进行检测的过程中,存在以下几个不可避免的缺点: (1)容易漏检。由于是人眼检测,眼睛容易疲劳,会造成故障不能被发现的问题。并且人工检测主观性大,判断标准不统一,使检测质量变得不稳定。 (2)检测速度慢,检测时间长。比如对于图形复杂的印刷电路板,人工很难实现快速高效的检测,因此人工检测不能满足高速的生产效率。 (3)随着技术的发展,设备的成本降低,人工费用增加,仍然由人工进行产品质量控制,将难于实现优质高效,而且还会增加生产成本。 (4)在信息技术如此发达的今天人工检测有不可克服的劣势,例如:对检测结果实时地保存和远距离传输,对原始图像的保存和远距离传输等。 (5)有些在线检测系统是接触式检测,需要与产品进行接触测量,因此,有可能会损伤产品。 因此,人工检测的精确性和可靠性大打折扣,传统意义上的检测方法不再能适应现代电路板检测的要求。如果漏检的有错误的电路板进入下一道工序,随着每一项工艺步骤的增加,到最终经过贴装阶段后,仍然会被检测出来是有故障的,那时,制造厂商与其花费大量的人力和成本来检测、返修这块电路板,还不如选

基于Labview的图像采集与处理

目前工作成果: 一、USB图像获取 USB设备在正常工作以前,第一件要做的事就是枚举,所以在USB摄像头进行初始化之前,需要先枚举系统中的USB设备。 (1)基于USB的Snap采集图像 程序运行结果: 此程序只能采集一帧图像,不能连续采集。将采集图像函数放入循环中就可连续采集。

循环中的可以计算循环一次所用的时间,运行发现用Snap采集图像时它的采集速率比较低。运行程序时移动摄像头可以清楚的看到所采集的图像有时比较模糊。 (2)基于USB的Grab采集图像 运行程序之后发现摄像头采集图像的速率明显提高。

二、图像处理 1、图像灰度处理 (1)基本原理 将彩色图像转化成为灰度图像的过程成为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。图像的灰度化处理可用两种方法来实现。 第一种方法使求出每个像素点的R、G、B三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量。 第二种方法是根据YUV的颜色空间中,Y的分量的物理意义是点的亮度,由该值反映亮度等级,根据RGB和YUV颜色空间的变化关系可建立亮度Y与R、G、B三个颜色分量的对应:Y=0.3R+0.59G+0.11B,以这个亮度值表达图像的灰度值。 (2)labview中图像灰度处理程序框图 处理结果:

基于摄像头的图像采集与处理应用

基于摄像头得图像采集与处理应用 1、摄像头工作原理 图像传感器,就是组成数字摄像头得重要组成部分。根据元件得材料不同,可分为 CCD(Charge Coupled Device,电荷耦合元件)与CMOS(plementary MetalOxide Semiconductor,金属氧化物半导体元件)两大类。 电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度得半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部得闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机得处理手段,根据需要与想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有得感光单位所产生得信号加在一起,就构成了一幅完整得画面。 互补性氧化金属半导体CMOS(plementary MetalOxide Semiconductor)与CCD一样同为在图像传感器中可记录光线变化得半导体。CMOS主要就是利用硅与锗这两种元素所做成得半导体,使其在CMOS上共存着带N(带–电)与P(带+电)级得半导体,这两个互补效应所产生得电流即可被处理芯片纪录与解读成影像。然而,CMOS得缺点就就是太容易出现杂点, 这主要就是因为早期得设计使CMOS在处理快速变化得影像时,由于电流变化过于频繁而会产生过热得现象。 CCD与CMOS在制造上得主要区别就是CCD就是集成在半导体单晶材料上,而CMOS就是集成在被称做金属氧化物得半导体材料上,工作原理没有本质得区别。CCD制造工艺较复杂,采用CCD得摄像头价格都会相对比较贵。事实上经过技术改造,目前CCD与CMOS得实际效果得差距已经减小了不少。而且CMOS得制造成本与功耗都要低于CCD不少,所以很多摄像头生产厂商采用得CMOS感光元件。成像方面:在相同像素下CCD得成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。而CMOS得产品往往通透性一般,对实物得色彩还原能力偏弱,曝光也都不太好,由于自身物理特性得原因,CMOS得成像质量与CCD还就是有一定距离得。但由于低廉得价格以及高度得整合性,因此在摄像头领域还就是得到了广泛得应用 工作原理:为了方便大家理解,我们拿人得眼睛来打个比方。当光线照射景物,景物上得光线反射通过人得晶状体聚焦,在视网膜上就可以形成图像,然后视网膜得神经感知到图像将信息传到大脑,我们就能瞧见东西了。摄像头成像得原理与这个过程非常相似,光线照射景物,景物上得光线反射通过镜头聚焦,图像传感器就会感知到图像。 具体部分就是这样得,摄像头按一定得分辨率,以隔行扫描得方式采集图像上得点,当扫描到某点时,就通过图像传感芯片将该点处图像得灰度转换成与灰度一一对应得电压值,然后将此电压值通过视频信号端输出。如图1所示,摄像头连续地扫描图像上得一行,则输出就就是

医学图像处理综述

医学图像处理综述 墨南-初夏2010-07-24 23:51:56 医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。 (1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。对x射线的吸收衰减不同形成x射线影像。(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。 (2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。MRI 受到世人的广泛重视,其技术尚在迅速发展

过程中。 (3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。NMI不仅可以提供静态图像,而且可提供动态图像。 (4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。但是,它的动态实时成像能力是别的成像模式不可代替的 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。至于准确地确定病变体的空间位置、大小、几何形状及与周围 生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图像处理技术对二维切片图象进行分析和处理。实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分

基于摄像头的图像采集与处理应用

基于摄像头的图像采集与处理应用 1、摄像头工作原理 图像传感器,是组成数字摄像头的重要组成部分。根据元件的材料不同,可分为CCD (Charge Coupled Device,电荷耦合元件)和CMOS(Complementary Metal-Oxide Semiconductor,金属氧化物半导体元件)两大类。 电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。 互补性氧化金属半导体CMOS(Complementary Metal-Oxide Semiconductor)和CCD一样同为在图像传感器中可记录光线变化的半导体。CMOS主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电)和P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。然而,CMOS的缺点就是太容易出现杂点, 这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。 CCD和CMOS在制造上的主要区别是CCD是集成在半导体单晶材料上,而CMOS是集成在被称做金属氧化物的半导体材料上,工作原理没有本质的区别。CCD制造工艺较复杂,采用CCD的摄像头价格都会相对比较贵。事实上经过技术改造,目前CCD和CMOS的实际效果的差距已经减小了不少。而且CMOS的制造成本和功耗都要低于CCD不少,所以很多摄像头生产厂商采用的CMOS感光元件。成像方面:在相同像素下CCD的成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。而CMOS的产品往往通透性一般,对实物的色彩还原能力偏弱,曝光也都不太好,由于自身物理特性的原因,CMOS的成像质量和CCD还是有一定距离的。但由于低廉的价格以及高度的整合性,因此在摄像头领域还是得到了广泛的应用 工作原理:为了方便大家理解,我们拿人的眼睛来打个比方。当光线照射景物,景物上的光线反射通过人的晶状体聚焦,在视网膜上就可以形成图像,然后视网膜的神经感知到图像将信息传到大脑,我们就能看见东西了。摄像头成像的原理和这个过程非常相似,光线照射景物,景物上的光线反射通过镜头聚焦,图像传感器就会感知到图像。 具体部分是这样的,摄像头按一定的分辨率,以隔行扫描的方式采集图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度一一对应的电压值,然后将此电压值通过视频信号端输出。如图1所示,摄像头连续地扫描图像上的一行,则输出

基于单片机的图像处理采集系统

( 二 〇 一 二 年 六 月 本科毕业设计说明书 题 目:基于单片机的图像处理采集系统设 计与实现 学生姓名: 学 院: 系 别: 专 业: 班 级: 指导教师:

摘要 传统的工业级图像处理采集系统大多是由CCD摄像头、图像采集卡和PC机组成,虽已得到了广泛的应用,但是它具有结构复杂,成本高,体积大,功耗大等缺点。随着单片机的迅速发展,开发一种智能控制及智能处理功能的微型图像处理采集系统成为可能,并且也克服了传统图像处理采集系统的诸多缺点。 本设计提出了基于单片机的图像采集系统,该系统主要由四大模块组成:第一个是单片机控制模块,对摄像头进行控制;第二个是摄像头模块,即进行图像拍摄和取图;第三个是Zigbee无线传输模块,功能是将图像传送到上位机;最后是上位机,实现图像显示功能。其优点是硬件电路简单,软件功能完善,控制系统可靠,性价比较高,使用环境广泛及成本低等。利用Proteus和Keil进行仿真调试,可以看到设计内容的运行结果,验证系统运的行正确及稳定性,并且实现了图像处理采集功能,所以具有一定的实用和参考价值。 关键词:单片机;Proteus;图像采集

Abstract The traditional industrial image processing collection system by CCD camera, mostly image collection card and PC unit into, although already a wide range of applications, but it has the structure is complex, high cost, big volume and shortcomings, such as big power consumption. With the rapid development of the single chip microcomputer, the development of a kind of intelligent control and intelligent processing function of micro image processing collection system possible, and also overcome traditional image processing collection system of many of the faults. This design is put forward based on SCM image acquisition system, the system consists of four modules: the first one is the single chip microcomputer control module, the camera to control; The second is a camera module, the image shoot and take diagram; The third is Zigbee wireless transmission module, the function is will images to PC; Finally the PC, realize image display function. Its advantage is hardware circuit is simple, software perfect function, control system and reliable, high cost performance, use extensive and environment cost low status. Use Proteus and Keil simulation commissioning, can see the operation of the design content, as demonstrated the correct and do the system stability, and realize the image processing collection function, so has certain practical and reference value. Keywords:Single-Chip Microcomputer;Proteus; Image Capture

谈医学影像的融合

科技的进步带动了现代医学的发展,计算机技术的广泛应用,又进一步推动了影像医学向前迈进。各类检查仪器的性能不断地提高,功能不断地完善,并且随着图像存档和传输系统(PACS)的应用,更建立了图像信息存储及传输的新的模式。而医学影像的融合,作为图像后处理技术的完善和更新,将会成为影像学领域新的研究热点,同时也将是医学影像学新的发展方向。所谓医学影像的融合,就是影像信息的融合,是信息融合技术在医学影像学领域的应用;即利用计算机技术,将各种影像学检查所得到的图像信息进行数字化综合处理,将多源数据协同应用,进行空间配准后,产生一种全新的信息影像,以获得研究对象的一致性描述,同时融合了各种检查的优势,从而达到计算机辅助诊断的目的[1,2]。本文将从医学影像融合的必要性、可行性、关键技术、临床价值及应用前景5个方面进行探讨。 1医学影像融合的必要性 1.1影像的融合是技术更新的需要随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和PACS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。 1.2影像的融合弥补了单项检查成像的不足目前,影像学检查手段从B超、传统X线到DSA、CR、CT、MRI、PET、SPECT等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:CT检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;MRI检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。 1.3影像的融合是临床的需要影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。2医学影像融合的可行性 2.1影像学各项检查存在着共性和互补性为影像的融合奠定了基础尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、CT检查可以弥补对骨质成像的不足;MRI检查可以弥补对软组织和脊髓成像的不足;PET、SPECT检查则可以弥补功能测定的不足。 2.2医学影像的数字化技术的应用为影像的融合提供了方法和手段现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。 [!--empirenews.page--] 3医学影像融合的关键技术信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织脏器在空间描述上的一致性。它是影像融合的基本。(2)影像融合首先要实现相关图像的对位,也就是点到点的一一对应。而图像分辨率越高,图像细节越多,实现对位就越困难。因而,在进行高分辨率图像(如CT图像和MRI图像)的对位时,目前借助于外标记。(3)建立图像数据库用以完成典型病例、典型图像数据的存档和管理以及信息的提取。它是融合的数据支持。(4)数据理解在于综合处理和应用各种成像设备所得信息,以获得新的有助于临床诊断的信息[1]。图像融合的方法主要有4种:(1)界标配对:界标作为两种图像相对应的融合点且决定融合的

相关主题
文本预览
相关文档 最新文档