上海初一下册数学知识点整理(沪教版)
- 格式:docx
- 大小:229.64 KB
- 文档页数:16
第九章整式第一节整式的概念9.1.2.3、字母表示数代数式:用括号和运算符号把数或表示数的字母连接而成的式子叫代数式。
单独的数或字母也是代数式。
代数式的书写:1、代数式中出现乘号通常写作“* ”或省略不写,但数与数相乘不遵循此原则。
2、数字与字母相乘,数字写在字母前面,而有理数要写在无理数的前面。
3、带分数应写成假分数的形式,除法运算写成分数形式。
4、相同字母相乘通常不把每个因式写出来,而写成幂的形式。
5、代数式不能含有“ =、≠、 <、>、≥、≤”符号。
代数式的值:用数值代替代数式中的字母,按照代数式的运算关系计算出的结果,叫代数式的值。
注意: 1、代数式中省略了乘号,带入数值后应添加3。
2、若带入的值是负数时,应添上括号。
3、注意解题格式规范,应写“当⋯..时,原式=⋯⋯..”.4、在实际问题中代数式所取的值应使实际问题有意义。
9.4 整式1、由数与字母的乘积组成的代数式称为单项式。
单独一个数或字母也是单项式。
2、系数:单项式中的数字因数叫做这个单项式的系数。
3、单项式的次数:一个单项式中所有字母的指数的和叫做这个单项式的次数。
4、多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
5、多项式的次数:多项式里次数最高的项的次数叫做这个多项式的次数6、整式:单项式和多项式统称为整式。
9.5 合并同类项1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
2、合并同类项:把多项式中的同类项合并成一项叫做合并同类项。
一个多项式合并后含有几项,这个多项式就叫做几项式。
3、合并同类项的法则是:把同类项的系数相加的结果作为合并后的系数,字母和字母的指数不变。
第二节 9.6 整式的加减:去括号法则:(1)括号前面是 " +" 号,去掉 " +" 号和括号,括号里各项的不变号;(2)括号前面是 " -" 号,去掉 " -" 号和括号,括号里的各项都变号。
—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式沪科版七年级数学下册知识点数学是一门研究数量、结构、变化以及空间模型等概念的学科;数学解题的关键就是知识和方法;知识是锁眼,方法是钥匙。
缺少哪个都不能打开题目这把锁;那么我们的数学学习也要针对这两点进行。
一、掌握课本知识内容及内涵数学知识是数学解题的基石。
只有掌握了课本知识的内容,理解知识的内涵,才能更好地运用它来解决问题。
二、多看例题数学有的概念、定理较抽象,我们可以通过例题,将已有的概念具体化,使自己对知识的理解更加深刻,更加透彻!看例题时,还要注意以下几点:1、看一道例题,解决一类问题。
不能只看皮毛,不看内涵。
我们看例题,要注意总结并掌握其解题方法,建立起更宽的解题思路。
不能看一道题就只会一道题,只记题目答案不记方法,这样看例题也就失去了它本来的意义。
每看一道题目,就应理清解题思路,掌握解题方法,再遇到同类型的题目,我们就不在难了。
既然有“授人以鱼,不如授人以渔”,那么我们是不是也可以说“要鱼不如要渔”呢!2、我们不仅要看例题还要会总结,总结题型、解题思路和方法。
运用了哪些数学思想。
最好把总结的写出来。
以后复习时再看,就事半功倍了。
3、会模仿,也要创新。
在看例题的解题时,首先想自己遇到这个题怎么做,然后看例题怎么解答的,之后我们还要思考还有没有其它方法和思路。
我们最后看哪种方法更简便。
三、多做练习“多”讲的是题型多,不是题目数量多。
不怕难题,就怕生题。
题海战术不一定好,但是接触的题型多了,总结的解题方法多了。
以后遇到相同类型的题目也就不怕了。
四、心细,多思,善问,勤总结数学是严谨的,做题目时要细心,一个符号之差,题目的解就可能完全不一样了,遇到问题要多思考,培养自己的数学思维,思考实在不会的,我们就要问,去弄懂。
一、实数的分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数 二、有理数的性质:⑴有理数的定义:可以写成两个整数p 与q (0q ≠)的比值的数.故所有的有理数都可以化成分数pq(0q ≠)的形式.⑵有理数进行加、减、乘、除四则运算的结果仍是有理数.即有理数集对于加减乘除四则运算具有封闭性.三、平方根和开平方:如果一个数的平方等于a ,那么这个数叫做a 的平方根. 求一个数a 的平方根的运算叫做开平方,a 叫做被开方数. 开平方与平方互为逆运算.在实数范围内,一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.正数a 的两个平方根可以用“a 的正平方根(又叫算术平方根),读作“根号a ”;a 的负平方根,读作“负根号a ”.=.,00,0,0a a a a a a >⎧⎪===⎨⎪-<⎩四、立方根和开立方:如果一个数的立方等于a,那么这个数叫做a a ”,其中a 叫做被开方数,“3”叫做根指数.2”第九讲实数的概念及运算a ”a ”. 求一个数a 的立方根的运算叫做开立方.在实数范围内,任何一个数都有且只有一个立方根.正数的立方根为正数,负数的立方根为负数,0的立方根为0.实数的概念【例题1】 将下列各数填入适当的括号内:220,0.23,,0.37377377737π∙∙---⑴整 数:{ };⑵非负数:{ }; ⑶有理数:{ };⑷无理数:{ } ⑸正实数:{ };⑹负实数:{ }【例题2】 平方根等于它本身的数是 ,算术平方根等于它本身的数是 ,立方根等于它本身的数是 ;平方根与立方根相等的数是 .①196的平方根是_____;②2( 2.5)-的平方根是 ;③2(的平方根是 ;______的相反数是 ;⑥的立方根是 .【例题3】 求下列各式的值:(1_______= (2)________=(3)________= (4________=(5)________= (6)________=【例题4】 求下列各式的值:(1_______= (2)________=(3)________= (4________=(5________= (6________=实数的性质【例题5】 (1)已知a ,b ,c ,d 是有理数,a c +=+a c =,b d =.(2)已知x ,y 是有理数,且11()()402332x y πππ+++--=,求x y -的值.(3)已知x ,y 是有理数,且11 2.25034x y ⎛⎛+--- ⎝⎭⎝⎭,求x ,y 的值.【例题6】 (1)若a 为自然数,b 为整数,且满足2()7a =-a = ,b = .(2,求a ,b 的值.【例题7】 (12(2)0ab -=,求111(1)(1)(2009)(2009)ab a b a b +++++++的值.(2)已知x ,y ,z 满足24402x y z z -+-++=,求()x y z +的值.【例题8】 (1)已知关于x 1a =有三个整数解,求a 的值.(2)若m =试确定m 的值.【例题9】 (1a ,小数部分是b ,求22a b a b-+的值.(2b ,求4321237620b b b b +++-的值.【例题10】 (1)求最小的正整数m 是一个自然数。
沪教版初中数学知识点整理一、代数与函数:1.代数式:包含数、字母和运算符的表达式。
2.代数式的加法与减法运算:合并同类项,整理同类项系数。
3.代数式的乘法运算:使用分配律,合并同类项。
4.代数式的除法运算:使用消去律,合并同类项。
5.一元一次方程与一元一次方程的解:利用解方程的逆运算求解一元一次方程。
6.实际问题与一元一次方程:将实际问题转化为一元一次方程求解。
7.不等式与不等式的解:了解不等式的意义与性质,求解不等式。
8.线性函数与线性函数图象:了解线性函数的特征与图象特点,根据函数式绘制图象。
9.斜率与线性函数:求解线性函数的斜率,根据斜率绘制图象。
10.一次函数与实际问题:应用一次函数解决实际问题。
二、图形与空间:1.空间图形:了解点、线、面、体的概念及性质。
2.空间图形的投影:了解投影的概念及性质,计算点、线、面在不同平面上的投影。
3.空间图形的视图与夹角:了解视图的概念及性质,计算视图,计算夹角。
4.空间图形的旋转:了解旋转的概念及性质,计算旋转角度。
5.平面图形的性质:了解平面图形的基本性质,解决平面图形的相关问题。
6.平面图形的相似:了解相似的概念及性质,计算相似比例,求解相似三角形的边与角度关系。
7.平面图形的运算:了解平面图形的加法、减法、逆运算,简化复杂图形。
三、数据与统计:1.统计调查与数据整理:设计调查表,整理调查数据,绘制统计图表。
2.平均数与极差:计算平均数与极差,比较数据的集中程度。
3.枚举与排列:了解枚举与排列的概念,计算排列组合的个数。
4.概率与事件:了解概率的概念及性质,计算事件的概率。
5.抽样与估计:了解抽样与估计的方法,利用抽样方法进行估计。
6.数据图形的解读:分析统计图表,了解不同类型的统计图表的特点和应用。
四、几何:1.直角三角形:了解直角三角形的基本性质,计算直角三角形的边与角度关系。
2.平行线与等角线:了解平行线与等角线的性质,利用平行线性质证明线段比例问题。
沪教版初一数学知识点整理初一下册数学《三角形》知识点一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。
三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;用三角形三边不等关系判定三条线段可否组成三角形。
四、知识框架五、知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°推论1直角三角形的两个锐角互余;推论2三角形的一个外角等于和它不相邻的两个内角和;推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11.三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。
上海七年级下册数学知识点上海七年级下册的数学知识点,主要涵盖了一些基础的数学概念,如正负数、分数、小数、几何与测量等,同时也会逐步引入一些初步的代数知识。
以下是该部分的详细内容:1.正负数与绝对值在数轴上表示正数时,是以0为起点向右延伸;而表示负数时,则是以0为起点向左延伸;数轴上的0代表着自然数、零和负整数集合的交集。
绝对值是一个与数轴上到0点距离的非负数;任何实数的绝对值都是其与0之间的距离,例如|-7|=7,|8|=8。
2.分数的运算分数是用来表示一个数在一个整体中所占份额的算术表示法。
要想进行分数的加、减、乘、除等运算,首先要将所有的分数转换成同分异构形式,也就是将它们的分母统一为一个数。
3.小数的概念和运算小数是用带有小数点的数字表示分数的数;每个小数都可以写成分数的形式,并且它们也可以进行加、减、乘、除等数学运算。
4.几何图形的性质与分类在七年级下册数学内容中,还会有关于几何图形的学习。
这个部分主要涵盖了对几何图形的一些基本定义,以及对不同几何图形的性质和分类的学习。
具体可以包括平行四边形、三角形、四边形、圆形等几何图形。
5.单位与测量单位是用来衡量某物品的特定量的条目或度量标准。
在本部分,学习者会学习不同的计量单位,以及如何利用这些计量单位进行测量。
常见的测量单位有重量、长度、时间等。
6.初步代数知识在七年级下册数学内容的最后几章,会引入一些初步的代数知识,如代数式、代数元、同类项、同项式、分配律、合并同类项等。
这些基础代数知识,是进一步学习代数、函数等数学知识的必要基础。
总结:上海七年级下册数学知识点,主要分为几个模块,包括正负数与绝对值、分数运算、小数的概念和运算、几何图形的性质与分类、单位与测量、初步代数知识。
这些知识点对于学习中学数学、以及日常生活中的计算都有着至关重要的意义。
学生们应该认真学习并掌握这些基础数学知识,为今后的数学学习打下坚实的基础。
第十二章实数第一节实数的概念12.1 实数的概念A.无限不循环小数叫做无理数。
B.只有符号不同的两个无理数,它们互为相反数。
C.有理数和无理数统称为实数。
正有理数有理数零—有限小数或无限循环小数负有理数实数正无理数无理数—无限不循环小数负无理数(1).自然数(小学):数出物体个数的这样的数,如1、2、3、4、5......叫做自然数。
(2).整数(小学):0和自然数叫做整数。
(3)整数(中学):正整数、负整数和0统称为整数。
(4)正数:大于0的数叫做正数。
(5)负数:小于0的数叫做负数。
(6)分数(小学):形如1/2、5/3、7(3/5)这样的数叫做分数。
(7)分数(中学):有限小数和无限循环小数统称为分数。
(8)有理数:整数和分数统称为有理数。
(9)无理数:无限不循环小数叫做无理数,具体表示方法为√2、√3这样的数。
(10)实数:有理数与无理数统称为实数。
第二节数的开方12.2 平方根和开平方A .如果一个的平方等于a ,那么这个数叫做a 的平方根。
求一个数a 的平方根的运算叫做开平方,a 叫做被开方数。
(定义:如果√a=a ,则√a 叫做a 的平方根,记作“√a ”(a 称为被开方数)。
B .正数a 的两个平方根可以用“a ±”表示,期中a 表示a 的正平方根(又叫算术平方根),读作“根号a ”;a -表示a 的负平方根,读作“负根号a ”。
开平方和平方互为逆运算: 当 a >0时 ( a )2= a (- a )2= a(平方根等于本身的只有0 ) 当 a ≥0时a 2 = a (-a)2 = a当 a <0时 a 2 = -a 零的平方根记作0,0=0注:一个正数的平方根的平方等于这个数。
一个正(负)数的平方的正平方根等于这个数(这个数的相反数)。
性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作“√a ”。
七年级数学沪教版知识点天才就是勤奋曾经有⼈这样说过。
如果这话不完全正确,那⾄少在很⼤程度上是正确的。
学习,就算是天才,也是需要不断练习与记忆的。
下⾯是⼩编给⼤家整理的⼀些七年级数学的知识点,希望对⼤家有所帮助。
七年级数学知识点整理变量之间的关系⼀理论理解1、若Y随X的变化⽽变化,则X是⾃变量Y是因变量。
⾃变量是主动发⽣变化的量,因变量是随着⾃变量的变化⽽发⽣变化的量,数值保持不变的量叫做常量。
3、若等腰三⾓形顶⾓是y,底⾓是x,那么y与x的关系式为y=180-2x.2、能确定变量之间的关系式:相关公式①路程=速度×时间②长⽅形周长=2×(长+宽)③梯形⾯积=(上底+下底)×⾼÷2④本息和=本⾦+利率×本⾦×时间。
⑤总价=单价×总量。
⑥平均速度=总路程÷总时间⼆、列表法:采⽤数表相结合的形式,运⽤表格可以表⽰两个变量之间的关系。
列表时要选取能代表⾃变量的⼀些数据,并按从⼩到⼤的顺序列出,再分别求出因变量的对应值。
列表法的特点是直观,可以直接从表中找出⾃变量与因变量的对应值,但缺点是具有局限性,只能表⽰因变量的⼀部分。
三.关系式法:关系式是利⽤数学式⼦来表⽰变量之间关系的等式,利⽤关系式,可以根据任何⼀个⾃变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的⾃变量的值。
四、图像注意:a.认真理解图象的含义,注意选择⼀个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点⼋、事物变化趋势的描述:对事物变化趋势的描述⼀般有两种:1.随着⾃变量x的逐渐增加(⼤),因变量y逐渐增加(⼤)(或者⽤函数语⾔描述也可:因变量y随着⾃变量x的增加(⼤)⽽增加(⼤));2.随着⾃变量x的逐渐增加(⼤),因变量y逐渐减⼩(或者⽤函数语⾔描述也可:因变量y随着⾃变量x的增加(⼤)⽽减⼩).注意:如果在整个过程中事物的变化趋势不⼀样,可以采⽤分段描述.例如在什么范围内随着⾃变量x的逐渐增加(⼤),因变量y逐渐增加(⼤)等等.九、估计(或者估算)对事物的估计(或者估算)有三种:1.利⽤事物的变化规律进⾏估计(或者估算).例如:⾃变量x每增加⼀定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-⾸数)/次数或相差年数)等等;2.利⽤图象:⾸先根据若⼲个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利⽤关系式:⾸先求出关系式,然后直接代⼊求值即可.苏教版初⼀数学知识点总结代数1.代数式:⽤运算符号“+-×÷……”连接数及表⽰数的字母的式⼦称为代数式.注意:⽤字母表⽰数有⼀定的限制,⾸先字母所取得数应保证它所在的式⼦有意义,其次字母所取得数还应使实际⽣活或⽣产有意义;单独⼀个数或⼀个字母也是代数式.2.列代数式的⼏个注意事项(数学规范):(1)数与字母相乘,或字母与字母相乘通常使⽤“·”乘,或省略不写;(2)数与数相乘,仍应使⽤“×”乘,不⽤“·”乘,也不能省略乘号;(3)数与字母相乘时,⼀般在结果中把数写在字母前⾯,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,⼀般⽤分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b 和b-a.3.⼏个重要的代数式:(m、n表⽰整数)(1)a与b的平⽅差是:a2-b2;a与b差的平⽅是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b>0,则正数是:a2+b,负数是:-a2-b,⾮负数是:a2,⾮正数是:-a2.有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不⼀定是负数,+a也不⼀定是正数;p不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有⾃⼰的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有⾃⼰的特性;(4)⾃然数?0和正整数;a>0?a是正数;a<0?a是负数;a≥0?a是正数或0?a是⾮负数;a≤0?a是负数或0?a是⾮正数.2.数轴:数轴是规定了原点、正⽅向、单位长度的⼀条直线.3.相反数:(1)只有符号不同的两个数,我们说其中⼀个是另⼀个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0?a+b=0?a、b互为相反数.初⼀下册数学辅导复习资料1.⼏何图形:点、线、⾯、体这些可帮助⼈们有效的刻画错综复杂的世界,它们都称为⼏何图形。
实数的概念WORD格式第十二章实数第一节实数的概念12.1A.无限不循环小数叫做无理数。
B.只有符号不同的两个无理数,它们互为相反数。
C.有理数和无理数统称为实数。
正有理数有理数零—有限小数或无限循环小数负有理数实数正无理数无理数—无限不循环小数负无理数(1).自然数(小学):数出物体个数的这样的数,如1、2、3、4、5......叫做自然数。
(2).整数(小学):0和自然数叫做整数。
(3)整数(中学):正整数、负整数和0统称为整数。
(4)正数:大于0的数叫做正数。
(5)负数:小于0的数叫做负数。
(6)分数(小学):形如1/2、5/3、7(3/5)这样的数叫做分数。
(7)分数(中学):有限小数和无限循环小数统称为分数。
(8)有理数:整数和分数统称为有理数。
(9)无理数:无限不循环小数叫做无理数,具体表示方法为√2、√3这样的数。
(10)实数:有理数与无理数统称为实数。
第二节数的开方专业资料整理a aa a 3WORD 格式12.2平方根和开平方A .如果一个的平方等于 a ,那么这个数叫做 a 的平方根。
求一个数 a 的平方根的运算叫做开平方,a 叫做被开方 数。
(定义:如果√a=a ,则√叫做 a 的平方根,记作“√ 称为被开方数)。
B .正数 a 的两个平方根可以用“a ”表示,期中 a 表示 a 的正平方根(又叫算术平方根),读作“根号 a”;a根,读作“负根号 a”。
开平方和平方互为逆运算:当 a >0 时(a )2=a (-a )2=a(平方根等于本身的只有 0)当 a≥0 时 a2=a(-a)2=a当 a <0 时 a2=-a零的平方根记作 0,0=0注:一个正数的平方根的平方等于这个数。
一个正(负)数的平方的正平方根等于这个数(这个数的相反数)。
性质:正数的平方根有两个,它们互为相反数;0 的平方根是 0 ;负数没有平方根。
算术平方根:正数 a 的正的平方根叫做 a 的算术平方根,记作“√”。
表示 a 的 负平方12.3立方根和开立方3 aA .如果一个数的立方等于 a ,那么这个数叫做 a 的立方根,用“”表示,读作“三次根号 a”,a 叫做被开方数,“3”叫做根指数。
求一个数3aaa 的立方根的运算叫做开立方。
(定义:如果=a ,则 x 叫做 a 的立方根, 记作“”(a 称为被开方数)。
B .任意一个实数都有立方根,而且只有一个立方根。
3330=0(a)3=aa 3=a⑵、性质:正数有一个正的立方根;0 的立方根是 0;负数有一个负的立方根。
12.4n 次方根A .如果一个数的 n 次方(n 是大于 1 的整数)等于 a ,那么这个数叫做 a 的 n 次方根,当 n 为奇数时,这个数为 a 的奇次方根;当 n 为偶数时,这个数叫做 a 的偶次方根。
求一个数 a 的 n 次方根的运算叫做开 n 次方,a 叫做被开方数,n 叫做根指数。
n aB .实数 a 的奇次方根有且只有一个,用“”表示。
其中被开方数 a 是任意一个实数,根指数 n 是大于 1 的奇数。
正数 a 的偶次方根有两个, 它们互为相反数,正 n n a n a n a 次方根用“ ”表示,负 n 次方根用“-”表示。
其中被开方数 a>0 ,根指数 n 是正偶数(当 n=2 时,在中省略 n )。
负数的偶次方根不存在。
零的n 次方根等于零。
第三节数的运算用数轴上的点表示实数12.5A.一个实数在数轴上所对应的点到原点的距离叫做这个数的绝对值。
实数a的绝对值记作a。
绝对值相等、符号相反的两零的相反数是零,非零实数a的相反数是-a。
B.负数小于零,零小于正数。
两个正数,绝对值大的数比较大;两个负数,绝对值大的数较小。
从数轴上看,右边的点所表示的数总左的点所表示的数大。
实数的运算12.6专业资料整理别是 aWORD 格式实数轴:数轴上的每一个点都对应唯一的实数。
数轴上两点 A 、B 对应的数分a 、b ,那么两点距离:AB=|a -b|(11 )实数的运算性质:设>0,b >0 则ab=a·ba ab= b专业资料整理1nam WORD格式第四节分数指数幂12.7分数指数幂ma0m),A.我们规定分数指数幂:aanma0nna),其中m、n为正整数,n>1。
B.整数指数幂和分数指数幂统称为有理数指数幂。
C.有理数指数幂的运算性质:设a>0,b>0,p、q为有理数,那么pqpqpqpq()a*aa,aaa.qppq()aa.ppp (abab,)abp ppab第十三章相交线平行线第一节相交线13.1 13.2邻补角、对顶角垂线A.如果两条直线的夹角为直角,那么就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
B.在平面内经过直线上或直线外的一点作已知直线的垂线可以作一条,并且只能作一条。
C.联结直线外一点与直线上各点的所有线段中,垂线段最短。
D.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离。
13.3同位角、内错角、同旁内角第二节平行线13.4平行线的判定A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
B.经过直线外的一点,有且只有一条直线与已知直线平行。
C.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
D.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
平行线的性质13.5A.两条平行线被第三条直线所截,同位角相等。
B.两条平行线被第三条直线所截,内错角相等。
C.两条平行线被第三条直线所截,同旁内角互补。
D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
E.两条平行线中,任意一条直线上的所有点到另一条直线的距离都是一个定值,这个定值叫做这两条平行线间的距离。
专业资料整理相交线:邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
WORD 格式10.1对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
专业资料整理WORD格式垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
对顶角的性质:对顶角相等。
补充;垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的判定:12.8判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
平行线的性质:性质1:两直线平行,同位角相等。
12.9性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
12.10对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
平行线的判定:1同位角相等,两直线平行2内错角相等,两直线平行3同旁内角互补,两直线平行平行线的性质:专业资料整理平面直角坐标系WORD格式1两直线平行,同位角相等2两直线平行;内错角相等3两直线平行,同旁内角互补(平行的传递性)∵a∥bb∥c∴a∥c第十四章三角形第一节三角形的有关概念与性质12.11三角形的有关概念A.三角形任意两边的和大于第三边。
B.三角形的高、中线、角平分线。
C、三角形的分类:锐角三角形、直角三角形、钝角三角形。
D、三边互不相等的三角形叫做不等边三角形;有两边相等的三角形叫做等腰三角形;三遍都相等的三角形叫做等边三角形。
12.12三角形的内角和A.三角形的内角和等于180°。
B.三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。
C.三角形的外角和等于360°。
第二节全等三角形12.13全等三角形的概念与性质A.能够重合的两个图形叫做全等形。
B.全等三角形的对应边相等,对应角相等。
12.14全等三角形的判定A.在两个三角形中,如果有两条边及它们的夹角对应相等,那么这两个三角形全等(SAS)。
B.在两个三角形中,如果有两个角及其中一个角的对边对应相等,那么这两个三角形全等(AAS)。
C.在两个三角形中,如果有三条边对应相等,那么这两个三角形全等(SSS)。
第三节等腰三角形12.15等腰三角形的性质A.等腰三角形的两个底角相等,简称等边对等角。
B.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,简称三线合一。
C.等腰三角形是轴对称图形,它的对称轴是顶角平分线所在的直线。
12.16等腰三角形的判定A.如果一个三角形有两个角相等,那么这两个角所对的边也相等,这个三角形是等腰三角形,简称等角对等边。
12.17等边三角形A.有一个内角等于60°的等腰三角形是等边三角形。
第十五章平面直角坐标系第一节平面直角坐标系13.6A.经过点A(a,b)且垂直于x轴的直线可以表示为直线x=a,经过点A(a,b)且垂直于y轴的直线可以表示为直线y=b。
第二节直角坐标平面内点的运动13.7A.在直角坐标平面内,平行于x轴的直线上的两点A(x1,y)、B(x2,y)的距离AB=XX。
1平行于y轴的直线上的两点C(x,y1)、D(x,y2)的距离CD=yy122;B.一般地,如果点M(x,y)沿着与x轴或y轴平行的方向平移m(m>0)个单位,那么专业资料整理WORD格式向右平移所对应的点的坐标为(x+m,y);向左平移所对应的点的坐标为(x-m,y);向上平移所对应的点的坐标为(x,y+m);向下平移所对应的点的坐标为(x,y-m)。
C.一般地,在直角坐标平面内,与点M(x,y)关于x轴对称的点的坐标为(x,-y);与点M(x,y)关于y轴对称的点的坐标为(-x,y)。
D.一般地,在直角坐标平面内,与点M(x,y)关于原点对称的点的坐标为(-x,-y)。
专业资料整理。