六年级数学平面图形的面积计算总复习题
- 格式:doc
- 大小:60.00 KB
- 文档页数:2
青岛版数学六年级下册《平面图形的面积整理复习》课标分析新课程标准要求,在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。
空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言描述画出图形等。
几何直观主要是指利用图形描述和分析数学问题。
借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。
几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,而且贯穿在整个数学学习过程中。
空间观念的培养:⑴强调内容的现实背景,联系学生的生活经验和活动经验,展示丰富多彩的几何世界,注重二维与三维的相互转换,教学内容要有现实的、有意义的、富有挑战性。
⑵灵活运用多元的学习方式,重视实践操作、测量,经历观察、实验、猜想、证明等数学活动,突出探究性活动,使学生亲历“做数学”的过程。
⑶加强几何建模以及探究过程,强调几何直觉,培养空间观念。
(注重学生经历从实际背景中抽象出数学模型、从现实的生活空间中抽象出几何图形的过程,注重探索图形性质及其变化规律的过程。
)⑷突出现代教育技术的作用,有效突破教学难点,丰富学生的直观体验,获得感性认识。
根据以上课程标准的要求特定本节课的学习目标如下:1.通过回顾平面图形面积计算公式的推导过程,体会转化的思想方法,沟通平面图形面积计算公式之间的联系。
2.在对知识、技能、方法的回顾与梳理中,掌握整理的方法,并使所学内容系统化、网络化,形成完整的认知结构。
3.通过回顾整理,加深对数学思想方法的认识,能综合运用所学知识与技能解决实际问题,形成一些解决问题的策略,积累数学活动经验。
六年级数学重点内容面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
二、精讲精练【例题1】已知如图,三角形ABC的面积为8平方厘米,AN ED BD=2/3BC 求阴影部分的面积。
■.【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。
由于AE=ED连接DF,可知S A AEF=S\EDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF 的面积。
因为BD=2/3BC 所以S A BDF= 2S A DCF 又因为AE= ED,所以S A ABF= S A BDF= 2S A DCF因此,S A ABC= 5 S △ DCF由于S A ABC= 8平方厘米,所以S A DCF= 8- 5二1.6 (平方厘米),则阴影部分的面积为1.6 X 2二3.2 (平方厘米)。
练习1 :1. 如图,AE= ED BC=3BD S A ABC= 30平方厘米。
求阴影部分的面积。
8形的面积,求另两个三角形的面积是多少?2. 如图所示,AE=ED DC= 1/3BD , S A ABG= 21平方厘米。
求阴影部分的面3 .如图所示,DE= 1/2AE , BD= 2DC S A EBB 5平方厘米。
求三角形 ABC 的面积。
【例题2】两条对角线把梯形ABCD^割成四个三角形, 如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S ^BOC 是 S ^DOC 勺2倍,且高相等,可知:BO= 2DO 从S A ABD 与 S A ACD 相等(等底等高) 可知:S A ABO 等于6,而厶ABM A AOD 勺高相等,底是△AOD 的2倍。
人教版六年级数学下册方法技能分类评价7.平面图形的周长与面积的计算技巧一、认真审题,填一填。
(每小题4分,共20分)1.工地上有一堆钢管,横截面是一个梯形,已知最上面一层有2根,最下面一层有12根,共堆了11层,这堆钢管共有()根。
2.一个闹钟的分针长5 cm,时针长4 cm,分针的尖端转一圈的长度是()cm,时针转一圈扫过的面积是()cm2。
3.一个等腰三角形的周长是30 cm,其中一条边是8 cm,和它不相等的另一条边的长度可能是() cm或() cm。
4.如图,直径是6 cm的圆中有一个等腰直角三角形,阴影部分的面积是() cm2。
5.在一个正方形中剪一个最大的圆,圆的周长是15.7 cm,正方形的周长是()cm,剪掉部分的面积是() cm2。
二、仔细推敲,选一选。
(每小题4分,共16分)1.把周长是18.84 cm的圆片剪成同样大小的两个半圆形,每个半圆形的周长是()cm。
A.9.42B.12.42C.15.422.下面四个图形中面积相等的是()。
A.①和②B.②和③C.③和④D.②和④3.有2根小棒的长度分别是6 cm、9 cm,再选1根小棒(长度是整厘米数)使它们能围成一个三角形,小棒最长是()。
A.15 cm B.14 cm C.3 cm D.12 cm 4.小圆的直径等于大圆的半径,小圆的面积是大圆面积的()。
A.12B.14C.18D.116三、按要求完成。
(每小题6分,共24分)1.求组合图形的面积。
(单位:cm)2.求阴影部分的周长和面积。
3.求阴影部分的周长和面积。
4.求阴影部分的面积。
四、聪明的你,答一答。
(共40分)1.一种共享单车的车轮半径约是30 cm,王叔叔骑这种共享单车通过长1884 m的大桥。
如果车轮每分钟转100圈,则通过这座大桥需要几分钟?(8分)2.某公司准备在新建办公楼大厅的主楼梯上面铺红地毯。
已知红地毯每平方米的售价为28元,主楼梯宽3米,其侧面如图。
专题六:平面图形的面积例1、如图,三角形ABC 中AE=EB ,BD=2DC 。
又知三角形ABC 的面积是18平方厘米,则四边形AEDC 的面积等于多少平方厘米?举一反三:1、如图,22,3,6cm S AF BF EC FE AEF ===∆,求三角形ABC 的面积。
2、三角形ABC 的面积是10c ㎡,AE=21AD,BD=3DC,求阴影部分的面积。
3、如图,ABCD 是平行四边形,DF 与BC 相交于E 点,三角形CEF 的面积是8平方厘米,三角形ABE 的面积是多少平方厘米?4、如图,在梯形ABCD 中,三角形AED 和三角形DEC 的面积分别是5平方厘米和20平方厘米,求梯形的面积。
例2、如图,长方形ABCD 中,AC 是10厘米,AB是8厘米,若把长方形绕C 点旋转90°,求AD 边所扫过的面积(阴影部分)练习:求下图中阴影部分的面积(单位:厘米)例3.求下图阴影部分的面积。
(单位:厘米)练习:例4.如图中BC是半圆的直径,阴影部分①的面积比②少5.12平方厘米.求AC长多少厘米?练习:1、如图,AB=20厘米,BC=15厘米,AB与BC互相垂直,图中阴影甲比阴影乙大多少?2、如图,长方形的长是5厘米,宽是4厘米,已知甲三角形的面积比乙三角形的面积大4平方厘米,求CE。
例5、如图,已知阴影部分的面积是40平方厘米。
求图中圆环的面积是多少平方厘米?练习:1.如图,已知阴影部分的面积为18平方厘米,求图中圆环的面积。
2.如图,三角形ABC是等腰三角形,面积为8平方分米,AB是圆的直径,求阴影甲与阴影乙的面积相差多少平方分米。
3、图中圆的周长是16.4厘米,,圆的面积与长方形的面积相等,阴影部分的周长是多少厘米?4、如图,已知r=3厘米,长方形宽是长的一半,求阴影部分的面积。
综合练习:1、把两个长方形叠放在一起,小长方形的宽是2米,A点是大长方形一边的中点。
那么,图中阴影部分的总面积等于多少平方米?乙甲O C B A2.如右图所示,∠AOB=90°,C 为AB 弧的中点。
(高频考点)新初一分班考专题4-平面图形的周长与面积(专项突破)-小学数学六年级下册人教版一.选择题(共8小题)1.一个三角形两条边分别长5厘米和9厘米,第三条边不可能是()厘米。
A.13B.9C.5D.42.一个直角三角形的三条边分别是5cm,4cm,3cm,这个三角形的面积是()cm2。
A.10B.7.5C.6D.以上答案都不对3.一个平行四边形,相邻的两条边长10厘米和7厘米,高是8厘米,这个平行四边形的面积是()平方厘米。
A.56B.80C.70D.56或804.关于平面图形,下列叙述中正确的有()句。
(1)射线只有一个端点;(2)三角形任意两边之和大于第三条边;(3)长方形是特殊的平行四边形;(4)直径是圆内最长的线段。
A.1B.2C.3D.45.在一个长10cm,宽为6cm的长方形中,画一个最大的半圆,这个半圆的周长是()A.31.4cm B.30.84cm C.25.7cm D.18.84cm6.小圆的半径是2cm,大圆的半径是3cm,小圆与大圆的面积之比是()A.1:2B.1:3C.2:3D.4:97.育才学校的操场一圈是400米,雷艳在操场上已经跑了两圈,她再跑()米就是1千米。
A.100B.200C.3008.一个圆,把它的半径扩大到原来的4倍,那么圆的面积()A.扩大到原来的16倍B.缩小到原来的16倍C.扩大到原来的4倍D.缩小到原来的4倍二.填空题(共8小题)9.一根长18厘米的铁丝围成一个等腰三角形。
其中底边长是8厘米,一个腰长厘米。
10.一个平行四边形的周长是36厘米,其中一条边的长度是12厘米,与它相邻的另一条边的长度是厘米。
11.一个平行四边形和一个三角形等底等高。
三角形的面积是60cm2,平行四边形的面积是cm2。
12.有一堆木头整齐叠放在地上,底层放了10根,每往上一层就少1根,顶层有5根,这堆木头有层,一共有根。
13.把一个长是10厘米,宽6厘米的长方形剪成一个最大的圆,这个圆的面积是平方厘米,剪下的边角料是平方厘米。
一、填空(每空1分,共13分)3.一个平行四边形的底是14厘米,高是9厘米,它的面积是();与它等底等高的三角形面积是().5.工地上有一堆钢管,横截面是一个梯形,已知最上面一层有2根,最下面一层有12根,共堆了11层,这堆钢管共有()根。
6.一个三角形比与它等底等高的平行四边的面积少30平方厘米,则这个三角形的面积是()。
7.一个三角形的面积是4.5平方分米,底是5分米,高是()分米。
8.一个等边三角形的周长是18厘米,高是3.6厘米,它的面积是()平方厘米。
二、判定题(每题2分,共10分)1.两个面积相等的三角形,一定能拼成一个平行四边形.()2.平行四边形的面积等于一个三角形面积的2倍.()3.两个完全一样的梯形,能拼成一个平行四边形.()4.把一个长方形的框架挤压成一个平行四边形,面积减少了.()5.两个三角形面积相等,底和高也一定相等。
()三、选择题(每题2分,共8分)1.等边三角形一定是 _______ 三角形.[ ]A.锐角; B.直角; C.钝角2.两个完全一样的锐角三角形,可以拼成一个 ________[ ]A.长方形; B.正方形; C.平行四边形; D.梯形3.把一个平行四边形任意分割成两个梯形,这两个梯形中 ________总是相等的.[ ]A.高; B.面积; C.上下两底的和、填空。
1.在推导平行四边形面积计算公式时,可把平行四边形通过割补平移转化为( )形去推导,推导三角形面积计算公式时,可把两个完全一样的三角形拼成一个( )形去推导,推导梯形面积计算公式时,可把两个完全一样的梯形拼成一个( )形进行推导。
4.直角三角形的两条直角边长分别为3厘米和4厘米,这个直角三角形面积是( )平方厘米。
7.一个三角形的底边长扩大2倍,高不变,扩大后的三角形面积比原来三角形面积扩大( )倍。
三、判断题。
1.平行四边形面积等于长方形面积。
( )2.等底等高的三角形可拼成一个平行四边形。
小升初阴影部分面积专题姓名:.................... 1.求如图阴影部分的面积.(单位:厘米)2.如图,求阴影部分的面积.(单位:厘米)3.计算如图阴影部分的面积.(单位:厘米)4.求出如图阴影部分的面积:单位:厘米.5.求如图阴影部分的面积.(单位:厘米)6.求如图阴影部分面积.(单位:厘米)7.计算如图中阴影部分的面积.单位:厘米.8.求阴影部分的面积.单位:厘米.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)10.求阴影部分的面积.(单位:厘米)11.求下图阴影部分的面积.(单位:厘米)12.求阴影部分图形的面积.(单位:厘米)13.计算阴影部分面积(单位:厘米).14.求阴影部分的面积.(单位:厘米)15.求下图阴影部分的面积:(单位:厘米)16.求阴影部分面积(单位:厘米).17.(2012•长泰县)求阴影部分的面积.(单位:厘米)参考答案与试题解析1.求如图阴影部分的面积.(单位:厘米)考点:组合图形的面积;梯形的面积;圆、圆环的面积.分析:阴影部分的面积等于梯形的面积减去直径为4厘米的半圆的面积,利用梯形和半圆的面积公式代入数据即可解答.解答:解:(4+6)×4÷2÷2﹣3.14×÷2,=10﹣3.14×4÷2,=10﹣6.28,=3.72(平方厘米);答:阴影部分的面积是3.72平方厘米.点评:组合图形的面积一般都是转化到已知的规则图形中利用公式计算,这里考查了梯形和圆的面积公式的灵活应用.2.如图,求阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:根据图形可以看出:阴影部分的面积等于正方形的面积减去4个扇形的面积.正方形的面积等于(10×10)100平方厘米,4个扇形的面积等于半径为(10÷2)5厘米的圆的面积,即:3.14×5×5=78.5(平方厘米).解答:解:扇形的半径是:10÷2,=5(厘米);10×10﹣3.14×5×5,100﹣78.5,=21.5(平方厘米);答:阴影部分的面积为21.5平方厘米.点评:解答此题的关键是求4个扇形的面积,即半径为5厘米的圆的面积.考点:组合图形的面积.分析:分析图后可知,10厘米不仅是半圆的直径,还是长方形的长,根据半径等于直径的一半,可以算出半圆的半径,也是长方形的宽,最后算出长方形和半圆的面积,用长方形的面积减去半圆的面积也就是阴影部分的面积.解答:解:10÷2=5(厘米),长方形的面积=长×宽=10×5=50(平方厘米),半圆的面积=πr2÷2=3.14×52÷2=39.25(平方厘米),阴影部分的面积=长方形的面积﹣半圆的面积,=50﹣39.25,=10.75(平方厘米);答:阴影部分的面积是10.75.点评:这道题重点考查学生求组合图形面积的能力,组合图形可以是两个图形拼凑在一起,也可以是从一个大图形中减去一个小图形得到;像这样的题首先要看属于哪一种类型的组合图形,再根据条件去进一步解答.4.求出如图阴影部分的面积:单位:厘米.考点:组合图形的面积.专题:平面图形的认识与计算.分析:由题意可知:阴影部分的面积=长方形的面积﹣以4厘米为半径的半圆的面积,代入数据即可求解.解答:解:8×4﹣3.14×42÷2,=32﹣25.12,=6.88(平方厘米);答:阴影部分的面积是6.88平方厘米.点评:解答此题的关键是:弄清楚阴影部分的面积可以由哪些图形的面积和或差求出.考点:圆、圆环的面积.分析:由图可知,正方形的边长也就是半圆的直径,阴影部分由4个直径为4厘米的半圆组成,也就是两个圆的面积,因此要求阴影部分的面积,首先要算1个圆的面积,然后根据“阴影部分的面积=2×圆的面积”算出答案.解答:解:S=πr2=3.14×(4÷2)2=12.56(平方厘米);阴影部分的面积=2个圆的面积,=2×12.56,=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.点评:解答这道题的关键是重点分析阴影部分是由什么图形组成的,再根据已知条件去计算.6.求如图阴影部分面积.(单位:厘米)考点:长方形、正方形的面积;平行四边形的面积;三角形的周长和面积.分析:图一中阴影部分的面积=大正方形面积的一半﹣与阴影部分相邻的小三角形的面积;图二中阴影部分的面积=梯形的面积﹣平四边形的面积,再将题目中的数据代入相应的公式进行计算.解答:解:图一中阴影部分的面积=6×6÷2﹣4×6÷2=6(平方厘米);图二中阴影部分的面积=(8+15)×(48÷8)÷2﹣48=21(平方厘米);答:图一中阴影部分的面积是6平方厘米,图二中阴影部分的面积是21平方厘米.点评:此题目是组合图形,需要把握好正方形、三角形、梯形及平行四边形的面积公式,再将题目中的数据代入相应的公式进行计算.考点:组合图形的面积.分析:由图意可知:阴影部分的面积=圆的面积,又因圆的半径为斜边上的高,利用同一个三角形的面积相等即可求出斜边上的高,也就等于知道了圆的半径,利用圆的面积公式即可求解.解答:解:圆的半径:15×20÷2×2÷25,=300÷25,=12(厘米);阴影部分的面积:×3.14×122,=×3.14×144,=0.785×144,=113.04(平方厘米);答:阴影部分的面积是113.04平方厘米.点评:此题考查了圆的面积公式及其应用,同时考查了学生观察图形的能力.8.求阴影部分的面积.单位:厘米.考点:组合图形的面积;三角形的周长和面积;圆、圆环的面积.分析:(1)圆环的面积等于大圆的面积减小圆的面积,大圆与小圆的直径已知,代入圆的面积公式,从而可以求出阴影部分的面积;(2)阴影部分的面积=圆的面积﹣三角形的面积,由图可知,此三角形是等腰直角三角形,则斜边上的高就等于圆的半径,依据圆的面积及三角形的面积公式即可求得三角形和圆的面积,从而求得阴影部分的面积.解答:解:(1)阴影部分面积:3.14×﹣3.14×,=28.26﹣3.14,=25.12(平方厘米);(2)阴影部分的面积:3.14×32﹣×(3+3)×3,=28.26﹣9,=19.26(平方厘米);答:圆环的面积是25.12平方厘米,阴影部分面积是19.26平方厘米.点评: 此题主要考查圆和三角形的面积公式,解答此题的关键是找准圆的半径.9.如图是三个半圆,求阴影部分的周长和面积.(单位:厘米)考点:组合图形的面积;圆、圆环的面积.专题:平面图形的认识与计算.分析:观察图形可知:图中的大半圆内的两个小半圆的弧长之和与大半圆的弧长相等,所以图中阴影部分的周长,就是直径为10+3=13厘米的圆的周长,由此利用圆的周长公式即可进行计算;阴影部分的面积=大半圆的面积﹣以10÷2=5厘米为半径的半圆的面积﹣以3÷2=1.5厘米为半径的半圆的面积,利用半圆的面积公式即可求解.解答: 解:周长:3.14×(10+3),=3.14×13,=40.82(厘米);面积:×3.14×[(10+3)÷2]2﹣×3.14×(10÷2)2﹣×3.14×(3÷2)2,=×3.14×(42.25﹣25﹣2.25),=×3.14×15,=23.55(平方厘米);答:阴影部分的周长是40.82厘米,面积是23.55平方厘米.点评: 此题主要考查半圆的周长及面积的计算方法,根据半圆的弧长=πr ,得出图中两个小半圆的弧长之和等于大半圆的弧长,是解决本题的关键.10.求阴影部分的面积.(单位:厘米)考点: 圆、圆环的面积.分析: 先用“3+3=6”求出大扇形的半径,然后根据“扇形的面积”分别计算出大扇形的面积和小扇形的面积,进而根据“大扇形的面积﹣小扇形的面积=阴影部分的面积”解答即可. 解答: 解:r=3,R=3+3=6,n=120,,=,=37.68﹣9.42,=28.26(平方厘米);答:阴影部分的面积是28.26平方厘米.点评: 此题主要考查的是扇形面积计算公式的掌握情况,应主要灵活运用.11.求下图阴影部分的面积.(单位:厘米)考点: 组合图形的面积.分析: 先求出半圆的面积3.14×(10÷2)2÷2=39.25平方厘米,再求出空白三角形的面积10×(10÷2)÷2=25平方厘米,相减即可求解.解答: 解:3.14×(10÷2)2÷2﹣10×(10÷2)÷2=39.25﹣25=14.25(平方厘米).答:阴影部分的面积为14.25平方厘米.点评: 考查了组合图形的面积,本题阴影部分的面积=半圆的面积﹣空白三角形的面积.12.求阴影部分图形的面积.(单位:厘米)考点:组合图形的面积.分析:求阴影部分的面积可用梯形面积减去圆面积的,列式计算即可.解答:解:(4+10)×4÷2﹣3.14×42÷4,=28﹣12.56,=15.44(平方厘米);答:阴影部分的面积是15.44平方厘米.点评:解答此题的方法是用阴影部分所在的图形(梯形)面积减去空白图形(扇形)的面积,即可列式解答.13.计算阴影部分面积(单位:厘米).考点:组合图形的面积.专题:平面图形的认识与计算.分析:如图所示,阴影部分的面积=平行四边形的面积﹣三角形①的面积,平行四边形的底和高分别为10厘米和15厘米,三角形①的底和高分别为10厘米和(15﹣7)厘米,利用平行四边形和三角形的面积公式即可求解.解答:解:10×15﹣10×(15﹣7)÷2,=150﹣40,=110(平方厘米);答:阴影部分的面积是110平方厘米.点评:解答此题的关键是明白:阴影部分的面积不能直接求出,可以用平行四边形和三角形的面积差求出.14.求阴影部分的面积.(单位:厘米)考点:梯形的面积.分析:如图所示,将扇形①平移到扇形②的位置,求阴影部分的面积就变成了求梯形的面积,梯形的上底和下底已知,高就等于梯形的上底,代入梯形的面积公式即可求解.解答:解:(6+10)×6÷2,=16×6÷2,=96÷2,=48(平方厘米);答:阴影部分的面积是48平方厘米.点评:此题主要考查梯形的面积的计算方法,关键是利用平移的办法变成求梯形的面积.15.求下图阴影部分的面积:(单位:厘米)考点:组合图形的面积.分析:根据三角形的面积公式:S=ah,找到图中阴影部分的底和高,代入计算即可求解.解答:解:2×3÷2=6÷2=3(平方厘米).答:阴影部分的面积是3平方厘米.点评:考查了组合图形的面积,本题组合图形是一个三角形,关键是得到三角形的底和高.16.求阴影部分面积(单位:厘米).考点:组合图形的面积.分析:由图意可知:阴影部分的面积=梯形的面积﹣圆的面积,梯形的上底和高都等于圆的半径,上底和下底已知,从而可以求出阴影部分的面积.解答:解:(4+9)×4÷2﹣3.14×42×,=13×4÷2﹣3.14×4,=26﹣12.56,=13.44(平方厘米);答:阴影部分的面积是13.44平方厘米.点评:解答此题的关键是明白:梯形的下底和高都等于圆的半径,且阴影部分的面积=梯形的面积﹣圆的面积.17.(2012•长泰县)求阴影部分的面积.(单位:厘米)考点:组合图形的面积.分析:由图可知,阴影部分的面积=梯形的面积﹣半圆的面积.梯形的面积=(a+b)h,半圆的面积=πr2,将数值代入从而求得阴影部分的面积.解答:解:×(6+8)×(6÷2)﹣×3.14×(6÷2)2=×14×3﹣×3.14×9,=21﹣14.13,=6.87(平方厘米);答:阴影部分的面积为6.87平方厘米.点评:考查了组合图形的面积,解题关键是看懂图示,把图示分解成梯形,半圆和阴影部分,再分别求出梯形和半圆的面积.。
六年级数学下册图形与几何练习题班级考号姓名总分一、填空题。
1. 3.5平方米=()平方分米2立方分米3立方厘米=()立方分米5.02升=()升()毫升公顷=()平方米2.在钟面上,6时的时候,分针和时针所夹的角的度数是(),是一个()角。
3.一个三角形中,∠1=∠2=35°,∠3=(),按边分是()三角形。
4.一个三角形与一个平行四边形等底等高,如果三角形的面积是3.6平方分米,那么平行四边形的面积是()平方分米。
5.一个圆柱的底面直径是8厘米,高是1分米,它的侧面积是()平方厘米。
把它沿着底面直径垂直切成两半,表面积会增加()平方厘米。
6.三个棱长为2厘米的正方体拼成一个长方体,这个长方体的体积是()立方厘米,表面积是()平方厘米。
7.一个长方体相交于同一个顶点的三条棱的长度之比是3∶2∶1,这个长方体的棱长总和是72厘米。
长方体的表面积是()平方厘米,体积是()立方厘米。
8.一个圆柱和一个圆锥等底等高,圆柱与圆锥的体积之和是60立方厘米,圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
二、判断题。
(对的画“√”,错的画“✕”)1.平角是一条直线。
()2.三角形具有稳定性,四边形不具有稳定性。
()3.两个面积相等的梯形,可以拼成一个平行四边形。
()4.一个玻璃容器的体积与容积相等。
()5.一个棱长是6厘米的正方体的表面积和体积相等。
()三、选择题。
(把正确答案的序号填在括号里)1.射线()端点。
A.没有B.有一个C.有两个2.下面图形中对称轴最少的是()。
A.长方形B.正方形C.等腰梯形3.下面的立体图形从左边看到的图形是()。
4.下图中,甲和乙两部分面积的关系是()。
A.甲>乙B.甲<乙C.甲=乙5.一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面半径的比值是()。
A.πB.2πC.r四、计算题。
1.计算下面图形中阴影部分的面积。
(单位:厘米)2.计算以红色直线为轴旋转形成的立体图形的体积。
小学六年级数学总复习(十)
班级_______姓名__________ 得分__________
复习内容:①平面图形的周长计算②平面图形的面积计算
一、填空
1. ()就是这个图形的周长,计算周长用()单位。
(),叫做它们的面积,计算面积用()单位。
2.填表:
①图形名称长宽周长面积
2.4米0.5米
长方形 1.8分米10分米
15厘米300平方厘米
边长4.5厘米
正方形18分米
②图形名称底(厘米)高(厘米)面积(平方厘米)
8.5 4
平行四边形7.6 30.2
三角形 2.7 1.4
7 21
上底24
梯形下底32 224
③图形名称半径直径周长面积
3厘米
圆
1分米
12.56米
3. 一个平行四边形的面积是18平方分米,与它等底等高的三角形面积是()平方厘米
4. 一张长10分米,宽6分米的长方形纸片,最多能剪()个直径为2分米的圆片。
5. 用3个边长是10厘米的正方形拼成一个长方形,长方形的面积是(),周长是
()。
6. 圆的半径扩大5倍,它的直径扩大()倍,周长扩大()倍,面积扩大()倍。
7. 一个半圆直径是4厘米,它的周长是()厘米,面积是()平方厘米。
8. 一张正方形纸上下对折,再左右对折,得到的图形是()形,它的面积是原正方形的
()
(),它的周长是原正方形的() ()。
9. 在右图1中,∠1 = 30°,∠2 =()。
10. 在右图2中,正方形的面积是9平方分米,
这个圆的周长是()厘米,面积是
()平方厘米。
1. 右图中长方形面积()平行四边形面积。
A、大于
B、小于
C、等于
D、不能确定
2. 用一条长16厘米的铁丝围成一个长方形,如果长和宽都是质数,它的面积是()平
方厘米。
A、6
B、10
C、15
D、21
3. 右图由六个边长为1厘米的正方形组成的
长方形,阴影部分的面积是()。
A、6平方厘米
B、3平方厘米
C、1.5平方厘米
D、1平方厘米
4. 在一个正方形中画一个最大的圆,它们的周长比较:()。
A、一样长
B、圆的周长长
C、正方形的周长长
D、无法确定
A
5. 如右图所示,AD = 1/2DC,AE = BE,那么
三角形ABC的面积是三角形ADE面积的 D
()倍。
E
A、6
B、5
C、4
D、3
B C
三、先测量计算下面图形周长和面积所需要的数据(精确到0.1厘米),再分别
计算出它们的周长和面积。