近场光学原理简介(转载)
- 格式:doc
- 大小:87.50 KB
- 文档页数:6
第十九章光学显微镜、近场光学显微镜与近场光学第三节近场光学一、超分辨与近场光学概论(一)细光束的极值1、海森伯不确定性原理2、传输光束中光子的空间不确定性极值(二)突破分辨极限成像的关键(三)近场光学的定义二、近场光学显微镜(NOM)(一)NOM的发展历史1、早期NOM的设想与研究2、扫描隧道显微镜(STM)的发明促进A-SNOM发展3、尖散射型扫描近场光学显微镜(S-SNOM )4、隧道结光发射扫描近场光学显微镜(TE-SNOM)5、光子扫描隧道显微镜(PSTM)(1)早期的光子扫描隧道显微镜(PSTM)(2)原子力与光子扫描隧道组合显微镜(AF/PSTM)(二)NOM综述1、NOM基本类型(1)基本类型(2)基本结构(3)有代表性的研究成果(4)NOM的适用范围2、NOM超分辨成像的基本条件(1)隐失光成像(2)超分辨尺度的光探测尖(3)光探测尖与样品表面间距的精确反馈控制(4)三维超衍射极限精度的扫描机构和高灵敏度记录系统3、NOM的产业化现状三、近场光学理论模拟方法(一)理论基础与方法1、近场、远场和隐失波、传输波概念的数学表述2、理论基础与其早期的研究3、近场光学理论方法(二)时域有限差分法1、时域有限差分法特点2、叶(Yee)氏网格3、麦克斯韦(Maxwell)方程的差分形式4、数值稳定性问题5、数值色散问题6、吸收边界条件(1)莫尔(Mur)二阶吸收边界(2)PML理想匹配层吸收边界7、散射场计算方法(1)总场和散射场方法(2)分离场公式8、色散介质中的时域有限差分方程(FD)2TD9、举例(1)A-SNOM实验结果(2)S-SNOM模拟结果(3)PSTM模拟演示(三)格林并矢方法1、李普曼-施温格(Lippmann-Schwinger)积分方程2、求解李普曼-施温格积分方程(1)介质样品“OPTICS”字符的PSTM 等高光场分布模拟(2)金属银膜样品“OPTICS”字符的PSTM等高光场分布模拟(四)高频电磁场有限元方法1、有限元方法解麦克斯韦方程2、伽略金方法3、总场方法4、举例(五)多重多极子方法1、多重多极子原理2、举例四、等离子体激元光学(Plasmonic Optics)(一)引言(二)表面等离子体激元(三)表面等离子体极化激元(SPP)1、SPP定义与产生机理2、SPP银膜最佳厚度与退相位效应(defaceing)3、SPP光环实验(四)表面等离子体激元应用与前景1、SPP化学、生物分子传感器2、光纤SPR 传感器3、近场超衍射极限透镜4、表面等离子体极化激元光子晶体5、SPP开拓微纳集成光子学技术(五)SP的传输长度和SP波导五、金属光学常数(一)铜、银、金的光学常数(二)金属自由电子理论概要与复介电常数1、杜鲁德(Drude)的自由电子理论概要2、金属的复介电常数参考文献第三节近场光学一、超分辨与近场光学概论(一)细光束的极值1、海森伯不确定性原理传统(透镜式、传输光)光学显微镜的有效放大倍率是有限的,它取决于成像的衍射极限。
近场光学显微镜的原理与应用近场光学显微镜是一种高分辨率的显微镜,其分辨率比传统的光学显微镜高出数倍,由于其具有显著的优势,被广泛的应用于生物学、化学以及物理学领域。
近场光学显微镜的原理是利用阴影和高斯分布的原理,在极短距离内记录样品,从而实现高分辨率成像。
与传统的光学显微镜不同,近场光学显微镜使用的是非球形的探针,其可以显著的提高成像的分辨率。
探针可以通过针尖控制光的传播和聚焦,从而取代传统光学系统中的透镜。
近场光学显微镜有两种类型:激光扫描近场光学显微镜(SNOM)和原子力显微镜(AFM)。
SNOM利用了光的境界效应,在激光束射到探头和样品之间形成了一个非常小的空气隙,光束在这里发生折射、反射和散射。
探头测量位于芯片的表面上的交变光强度。
这种技术允许使用单个探头高效提取光信号并增强局部场,进而得到非常高分辨率的成像结果。
在AFM中,探针不是扫描光束,而是通过机械力与样品表面相互作用,记录样品表面的形态和物理各向异性特性,通过扫描电镜的探头与样品的亲密接触生成形态和力学特性的映像。
在这种情况下,由于电磁力的交互,探头会受到样品表面的微小变形和反弹,探针的垂直与样品表面的距离可以被计算。
近场光学显微镜的应用非常广泛,例如在纳米电子学领域中,通过这种技术可以对晶体结构进行分析,从而更好地理解其物理和电学特性。
在化学领域中,近场光学显微镜可以增加化学计量成像的分辨率,并通过分析分子跳变和化学反应来研究它们的反应和组成。
在生物医学领域中,这种方法可以精确地研究肿瘤细胞、细胞器、脂质体和分子间相互作用的等。
此外,近场光学显微镜还可以用于制备仿生材料、制备高分辨率传感器等。
近场光学显微镜的出现大大扩展了显微镜的应用范围,为各个领域的研究提供了极有价值的工具和方法。
地球上的很多领域都可以应用这种技术,相信这种技术将有不同层面的突破。
光学远场和近场光学是研究光的传播、产生和控制的学科。
在光学中,远场和近场是两个重要的概念。
我们来了解一下光学远场。
光学远场是指光源到接收器之间的距离远大于波长的情况下的光场分布。
在远场中,光的传播可以用几何光学的方法进行描述,即光线的传播遵循直线传播的规律。
这意味着光线在远离光源的地方基本上是平行的,可以用光线的角度来描述光的传播方向。
此外,光线在远场中的传播路径和传播速度与介质的折射率有关。
在光学远场中,我们可以利用几何光学的原理来设计和分析光学系统。
例如,光学远场的成像系统可以通过透镜、反射镜等光学元件将光线聚焦到特定的位置上,实现物体的放大或缩小。
光学远场还可以用于光通信系统中的光纤传输、激光雷达的测距等应用。
接下来,我们转向光学近场。
光学近场是指光源到接收器之间的距离与波长相当或远小于波长的情况下的光场分布。
在近场中,光的传播不能简单地用几何光学的方法来描述,而需要考虑光的波动性。
近场中的光场分布可以用波动光学的方法进行描述,即光的传播需要考虑波动方程的解。
在光学近场中,光的传播路径和传播速度与介质的折射率以及光的波长有关。
此外,近场中的光场分布还受到光源和接收器之间的距离、光源的大小和形状等因素的影响。
近场中的光场分布可以通过数值模拟和实验方法进行研究。
光学近场在纳米光学、超分辨显微镜、光存储等领域有重要应用。
例如,近场光学显微镜可以实现超分辨成像,突破传统光学显微镜的分辨极限。
近场光学还可以用于纳米加工和纳米光子学等领域,实现对纳米结构和纳米材料的探测和操控。
总结起来,光学远场和近场是光学中两个重要的概念。
远场是指光源到接收器之间的距离远大于波长的情况下的光场分布,可以用几何光学的方法进行描述。
近场是指光源到接收器之间距离与波长相当或远小于波长的情况下的光场分布,需要考虑光的波动性。
光学远场和近场在光学系统的设计和分析、光通信、超分辨显微镜等领域有广泛的应用前景。
通过深入研究和理解光学远场和近场,我们能够更好地掌握光的传播规律,推动光学技术的发展和应用。
近场光学原理简介(转载)2011-05-08 16:05:48| 分类:SEM基础 | 标签:精密测试纳米光学衍射极限分辨率远场光学|字号订阅作者:王佳教授(转载请注明)清华大学精密测试技术及仪器国家重点实验室纳米光学/近场光学实验室所谓近场光学,是相对于远场光学而言。
传统的光学理论,如几何光学、物理光学等,通常只研究远离光源或者远离物体的光场分布,一般统称为远场光学。
远场光学在原理上存在着一个远场衍射极限,限制了利用远场光学原理进行显微和其它光学应用时的最小分辨尺寸和最小标记尺寸。
而近场光学则研究距离光源或物体一个波长范围内的光场分布。
在近场光学研究领域,远场衍射极限被打破,分辨率极限在原理上不再受到任何限制,可以无限地小,从而基于近场光学原理可以提高显微成像与其它光学应用时的光学分辨率。
1.远场光学的衍射分辨极限远场光学的分辨率受到衍射效应的限制。
1873年,德国科学家阿贝(Abbe)根据衍射理论首次推导出衍射分辨极限,即能够被光学分辨的两点间的距离总是大于波长的一半。
后来,瑞利(Rayleigh)将阿贝衍射理论归纳为一个公式:(1-1)这就是人们所熟知的瑞利判据。
该判据表明,当且仅当物体上两点之间的距离d大于或等于不等式右边所规定的量时,才被看作是分开的两点。
这个量与入射光在真空中的波长l、物方折射率n以及显微物镜在物方的半孔径角q有关。
nsin(q)通常也被称作数值孔径(Numerical Aperture,N.A.)。
由瑞利判据可知,提高分辨率包括两种方法:其一,尽可能选择短的辐射波长,如利用蓝光、紫外光、x射线、电子等;其二,提高数值孔径,但若不考虑较少和较难使用的油浸物镜(N.A. = 1.5左右)与固体浸没透镜,数值孔径的最大值不超过1,因此远场光学的分辨极限最高只能达到波长的l/2。
2.近场光学的超衍射极限分辨率当光和物体发生相互作用后,在物体表面(xy面)形成携带物体信息的光场分布,可以使用该场(即z= 0平面上的场)的复振幅的分布特性来表示样品。
近场光学显微镜的工作原理近场光学显微镜(Near-field optical microscope, NSOM)是一种非常重要的显微镜技术,它可以突破传统光学显微镜的分辨率极限,实现纳米尺度下的超高分辨率成像。
它常被用于研究纳米结构材料、生物分子和量子器件等领域,有着广泛的应用前景。
近场光学显微镜的工作原理可以简单地描述为通过置于样品表面附近的微小探针实现的。
这个探针被称为光纤探针或是光纤尖端探针,它具有非常尖锐的末端,并且在末端附近可以发生近场增强效应。
当激光光束从光纤探针传输到样品表面时,近场增强效应使得光场能够显著缩小,并且得到了比传统光学微镜更高的分辨率。
在近场光学显微镜的成像过程中,有两种主要的成像模式,即透射式和反射式。
在透射式近场光学显微镜中,探针位于样品上方,激光在探针的末端聚焦。
样品被置于玻璃基片上,玻璃的透明度可以提高可见光的传播效率。
当激光透过探针聚焦在样品表面上时,通过激发样品表面的等离子体共振效应,可以获得显著增强的光场。
反射式近场光学显微镜与透射式不同,探针位于样品的侧面,激光从侧面照射样品,并通过探针进行观测。
在反射式近场光学显微镜中,探针末端附近的近场增强效应可以显著提高反射信号的强度,并且可以实现更高的分辨率。
这种模式常被用于研究金属纳米结构和光子器件等。
近场光学显微镜的关键在于控制和操纵光纤探针的末端。
一种常用的技术是通过金刚石刀将探针制备成尖锐的形状。
另一种常用的技术是通过电化学腐蚀来制备探针,可以得到更加均匀且尖锐的探针。
利用这些探针,可以实现纳米尺度的分辨率,并观察到一些传统显微镜无法看到的微观结构和现象。
近场光学显微镜的应用非常广泛。
在生物医学方面,它可以用于观察细胞的亚细胞结构和巨分子间的相互作用。
在材料科学领域,它可以用于研究纳米材料的光学性质和表面增强拉曼散射效应。
在半导体行业,近场光学显微镜被广泛应用于碳纳米管和纳米线的研究。
此外,近场光学显微镜还可以用于制备纳米器件和光子学元件等领域。
研究生课程纳米光学(Nano-Optics)第14讲:近场光学(I)董国艳中国科学院大学材料科学与光电技术学院本讲内容1.什么是近场光学?2.为什么要用近场光学?-突破衍射极限-不确定性原理-关于近场光学3.如何进行近场光学检测?-牛顿实验-大小限制的对象-光与物质的相互作用-关键问题4. 扫描近场光学显微镜-SNOM-发展-框架和组件-探针-间距控制-工作模式-整个系统2Separation control:间距控制3近场光(表面波)近场:从物体表面到一个波长以内的距离。
远场:从近场以外一直延伸到无穷远的区域。
1、什么是近场光学?4光源探测器AB>>λ1、什么是近场光学?远场光学AB<λ近场光学Evanescent fieldEvanescent field: 倏逝场5Δx2.为什么是近场光学?0.61λ0n sin αΔx ≥~λ02物镜的数值孔径瑞利判据(Rayleigh Criterion)刚可分辨不可分辨衍射极限艾里斑6Δx测不准原理Δr Δp ≥hp =k•最佳分辨率:Δx min•Δk x =k 1-k 2=2k x =2k sin αsin α=1,Δk x ,max = 2k•根据测不准原理:Δx Δk x ≥2π,Δx min Δk x,max ≥2πΔx min 2k ≥2πΔx min ≥λ/2瑞利判据:h =2πOk 1k 2k 1=k 2=k2αAk xk xB2.为什么用近场光学?7Δx打破衍射极限Δk x →∞,Δx →0•无分辨率极限•如果k x >kΔx min <λ/2打破极限Δx min ≥λ/2•分辨率极限•最佳分辨率:Δx mink 1k 22αOk 1=k 2=kAk x k xB2.为什么用近场光学?k x ≤k•Δk x =k 1-k 2=2k x =2k sin αsin α=1,Δk x ,max = 2k•根据测不准原理:Δx Δk x ≥2π,Δx min Δk x,max ≥2πΔx min 2k ≥2πΔx min ≥λ/28k =k +k +k k z =i |k z |k x >k•k x > k 意味着什么?22x y 2zk z =i |k z |•波矢为复数zxy倏逝场(隐失场)倏逝场仅存在于近场区中!是近场光学研究的主要对象之一打破衍射极限2.为什么用近场光学?222zy x kk k k --=要k k x >必须k y 或k z 为虚数时,可突破衍射极限k x >kk z 强烈的约束场倏逝波又被称为光子隧穿效应9λ关于近场光学打破分辨率极限检测倏逝场在近场光学检测Illuminationλ倏逝场•更大的波矢(k x >k )•打破了衍射极限•精细的结构信息•局限在近场传播场•较小的波矢(k x <k )•更大的空间尺度•粗略的结构信息•远场辐射2.为什么用近场光学?10牛顿实验3.如何进行光学近场检测?d >λd <λ•适当的物体浸在光学近场中可以将倏逝场转换成传播场。
近场光学显微镜原理是使用由熔拉或腐蚀光纤波导所制成之探针,在外表镀上金属薄膜已形成末端具有15nm至100nm直径尺寸之光学孔径的近场光学探针,再以可作精密位移与扫描探测之压电陶瓷材料配合原子力显微技术所提供精确的高度回馈控制,将近场光学探针非常精确地控制在被测样品表面上1nm至100nm的高度,进行三维空间可回馈控制的近场扫描,而具有奈米光学孔径之光纤探针即可做接收或发射光学讯息之用,由此获得一真实空间之三维近场光学影像,因其与样品表面距离远小于一般光波波长,测得的信息皆属近场光学作用的信息,无平常常见的远场光学中绕射极限的光学解析度限制。
近场光学实验技术的使用方法与成像优化近场光学是研究和应用光学现象在纳米尺度下的科学与技术领域。
与传统的远场光学相比,近场光学在成像分辨率和光学探测灵敏度方面有着明显的优势,广泛应用于纳米材料、生物医学、信息存储与通信等领域。
在本文中,将介绍近场光学实验技术的基本原理、常见的使用方法以及如何优化成像效果。
一、近场光学实验技术的基本原理近场光学实验技术是利用探针与样品之间的微观距离,通过局域电磁场的相互作用来实现高分辨成像和光学探测的一种方法。
其基本原理主要包括两个方面:近场效应和探测技术。
1. 近场效应:近场效应是指当光与样品相互作用时,电磁场的强度和分布与样品形状、介电性质等有关。
在近场区域内,光的电磁场具有非均匀性和极化效应,可以实现超分辨成像。
2. 探测技术:实现近场光学成像和探测的关键是选择合适的探测技术。
常见的近场探测技术包括原子力显微镜(AFM)、光纤探针、金属探针等。
这些探测技术可以通过感知局域电磁场的变化来实现高分辨成像和探测。
二、近场光学实验技术的常见使用方法近场光学实验技术的常见使用方法包括近场光学显微镜、近场光学拉曼光谱仪和近场光学操纵等。
1. 近场光学显微镜:近场光学显微镜是近场光学实验技术的常见应用之一。
它可以通过将探测探针置于样品表面附近,实时观察和测量样品表面的形貌和光学性质。
近场光学显微镜具有高分辨率、高灵敏度和非接触测量等优点,适用于纳米材料、生物医学和材料科学等领域的研究。
2. 近场光学拉曼光谱仪:近场光学拉曼光谱是将近场光学技术与拉曼光谱相结合的一种方法。
通过将探测探针置于样品表面附近,可以实现对样品的拉曼光谱分析。
近场光学拉曼光谱仪具有高成像分辨率和高灵敏度的特点,对于研究纳米材料的结构和表面增强拉曼散射效应具有重要意义。
3. 近场光学操纵:近场光学操纵是利用近场光学技术实现对微观物体的操纵和搬运。
通过控制近场光场的强度和分布,可以实现对微观粒子的加速、聚集和操纵。
近场光学显微镜的原理与应用近场光学显微镜是一种利用近场光学原理进行显微观察的仪器。
它的原理是通过将探测器置于样品表面附近,利用样品表面产生的近场光信号来获取高分辨率的显微图像。
近场光学显微镜具有高分辨率、高灵敏度和非破坏性等特点,已广泛应用于生物学、材料科学和纳米技术领域。
近场光学显微镜的原理基于近场光学效应。
传统的光学显微镜的分辨率受到光的衍射极限的限制,无法观察到更小尺寸的细节。
而近场光学显微镜通过将光源与探测器之间的距离缩短到波长的几个或几十个纳米,使得光的衍射极限被打破,从而实现了超分辨率的显微观察。
近场光学显微镜的应用非常广泛。
在生物学领域,它可以用于观察细胞和组织的微观结构,研究细胞的生物过程和病理变化。
通过近场光学显微镜,科学家可以观察到细胞膜的形态变化、蛋白质的分布以及细胞器的运动等细节,为生命科学研究提供了重要的工具。
在材料科学领域,近场光学显微镜可以用于研究材料的表面形貌和物理性质。
传统的光学显微镜无法观察到纳米尺度的表面结构,而近场光学显微镜可以实现纳米级的分辨率。
科学家可以利用近场光学显微镜观察材料的表面形貌、颗粒的分布和材料的光学性质等,为材料科学研究和应用提供了重要的手段。
在纳米技术领域,近场光学显微镜是不可或缺的工具之一。
纳米技术研究和制备的对象通常具有纳米尺度的特征,传统的显微镜无法观察到这些细节。
而近场光学显微镜可以实现纳米级的分辨率,可以观察到纳米颗粒的形态、大小和分布等细节。
这对于纳米材料的研究和纳米器件的制备具有重要意义。
近场光学显微镜的发展离不开技术的进步。
近年来,随着光学器件和探测器的不断改进,近场光学显微镜的分辨率和灵敏度得到了大幅提升。
同时,近场光学显微镜的成本也逐渐降低,使得更多的科研机构和实验室可以采用这一技术进行研究。
总之,近场光学显微镜是一种重要的显微观察工具,具有高分辨率、高灵敏度和非破坏性等特点。
它在生物学、材料科学和纳米技术等领域的应用已经取得了显著的成果,并为相关领域的研究和应用提供了重要的支持。
近场光学和纳米光学分析近场光学和纳米光学是近年来发展迅猛的前沿研究领域,它们利用光的近场效应以及与纳米尺度物质相互作用的光学现象来实现对细微结构的分析和操控。
近场光学与传统的光学相比,可以突破传统光学的分辨率极限,有效地研究纳米尺度的物质特性。
近场光学的基本原理是利用探针和样品的相互作用,通过探针的高分辨率、高增强效果以及样品对探针的敏感响应,实现对样品表面和局部特征的显微分析。
其中,最常用的技术是近场光学显微镜(SNOM)。
SNOM通过在样品表面附近放置一个特殊的光学探针,利用探针的高分辨率和表面增强效应,可以直接观察和操控样品的纳米结构。
同时,SNOM还可以通过调节光探针的位置以及利用光的散射、吸收、荧光等性质,实现对样品的化学成分、表面电荷、生物分子等的分析。
近年来,SNOM已经被广泛应用于材料科学、生物医学、纳米电子等领域。
而纳米光学则更加注重对纳米结构中的光与物质相互作用的研究。
纳米尺度的物体在与光相互作用时,由于尺寸大小接近光波长,表现出与大尺度物体不同的光学特性。
纳米结构可以通过调控其光学性质来实现对光的强化、控制与操控,尤其在纳米光子学领域有着重要的应用。
纳米光学的研究主要集中在材料的表界面和结构上。
通过调控纳米结构的形状、组成和排列方式,可以控制其对光的吸收、散射、透射等性质。
例如,金属纳米颗粒具有表面等离激元共振现象,通过调整纳米颗粒的尺寸和形状,可以调控其吸收和散射光的波长和强度。
这种效应在光传感、光电子器件等领域有着广泛的应用。
此外,通过在纳米结构材料表面引入掺杂物或微观结构,还可以实现光学响应的非线性和增强,例如拉曼散射、谐振光学穿孔等。
这些纳米结构与光的相互作用的研究,也为制备高性能的光电材料和光子学器件提供了新的途径。
近场光学和纳米光学的研究不仅有助于理解材料在纳米尺度上的光学性质,而且为其在能源、光电子、生物医学等领域的应用提供了基础。
例如,近场光学和纳米光学的应用可以实现对太阳能电池、光催化材料以及光传感器等能源材料的表征和调控,进一步提高其能量转化效率和性能稳定性。
近场光学显微镜的原理及其应用近场光学显微镜(Near-field Optical Microscope, NSOM)是一种基于光的非接触性成像技术。
它采用了近场光学原理,可以实现对纳米尺度下样品表面的高分辨率成像和操控。
本文将介绍近场光学显微镜的原理以及其在纳米科学研究和生物医学领域的应用。
一、近场光学显微镜的原理近场光学显微镜通过在探针和样品之间形成极小的光学探测区域,利用近场效应获取高分辨率图像。
其原理可以简要归纳为以下几点:1. 近场效应:光波在探针与样品之间经过狭缝或圆形孔径时,会产生出衍射和散射,形成近场光子的光场分布。
近场光子的范围仅限于光源和样品表面之间一个很小的区域,可以实现高分辨率成像。
2. 接近距离探测:近场光学显微镜中的光学探测器与样品之间的距离非常接近,通常为纳米尺度。
通过控制探针与样品的距离,可以实时监测到样品表面的拓扑和特征。
3. 光学信号检测:近场光学显微镜可以检测和记录样品表面传输、反射或荧光等光学信号。
通过分析这些信号,可以获取有关样品表面特性的详细信息。
二、近场光学显微镜的应用近场光学显微镜作为一种高分辨率成像技术,广泛应用于纳米科学研究和生物医学领域。
以下是该技术在这些领域中的主要应用:1. 离子束曝光控制:近场光学显微镜结合离子束曝光技术,可以实现对纳米尺度下材料表面进行精确操控。
通过控制离子束的位置和强度,可以在纳米尺度上刻写出高精度的纹理和图案。
2. 纳米材料研究:近场光学显微镜可以在纳米尺度下观察材料的物理和化学性质。
例如,可以研究纳米颗粒的形态、大小分布以及光学特性,对纳米材料的合成和性能进行表征和优化。
3. 生物分子成像:近场光学显微镜结合荧光标记技术,可以实现对生物分子的高分辨率成像。
通过观察生物分子在细胞或组织中的分布和相互作用,可以深入研究生物分子的功能和机制。
4. 表面等离子体共振成像:近场光学显微镜可以利用表面等离子体共振效应,实现对材料表面等离子体波的激发和探测。
近场光学的原理及应用1. 简介近场光学是在纳米尺度下研究光与物质相互作用的一种技术。
它利用光的近场效应和表面等离子体共振来实现超分辨率成像、光操控和光谱分析等应用。
近场光学通过提高光的局域性,突破了传统光学的分辨极限,成为纳米尺度下重要的研究领域。
2. 近场光学的原理近场光学原理涉及光波与物质在纳米尺度下的相互作用,主要包括光的散射、透射和反射等过程。
下面介绍近场光学的三种常见原理:2.1. 界面散射原理当光通过介质界面时,会发生散射现象,其中包括弹性和非弹性散射。
近场光学利用非弹性散射实现成像和操控,可以获得高分辨率的表面形貌信息。
2.2. 表面等离子体共振原理表面等离子体共振是指当电磁波与介质表面的自由电子耦合时,形成表面等离子体波。
这种波在介质表面附近存在强烈的电磁场增强效应,可以用于增强光的信号和局域化现象。
2.3. 近场成像原理近场光学成像原理是通过在纳米尺度下探测物体的光信号,获取超分辨率成像。
利用光的电场和磁场的局域性,可以将光场限制在纳米尺度范围内,实现超分辨率成像。
3. 近场光学的应用近场光学的应用涵盖了多个领域,包括生物医学、纳米材料、光存储和信息技术等。
以下列举了近场光学的几个主要应用:3.1. 超分辨率显微镜近场光学通过提高光的分辨极限,实现了超分辨率显微镜的发展。
它可以突破传统光学显微镜的衍射极限,获得更高的空间分辨率,并可观察到纳米尺度下的细胞和分子结构。
3.2. 纳米材料光学性质研究近场光学可以用于研究纳米材料的光学性质。
通过探测纳米材料的光谱和散射特性,可以了解其结构和性质。
这对于纳米技术的发展和应用具有重要意义。
3.3. 光数据存储近场光学可以实现超高密度的光数据存储。
通过利用光的近场效应和表面等离子体共振,可以实现局域化的光操控,将信息储存在纳米尺度下的介质中。
3.4. 光子器件和传感器近场光学在光子器件和传感器方面有广泛应用。
利用表面等离子体共振和局域化光效应,可以实现高灵敏度的化学和生物传感器,为光电子器件的设计和制造提供了新思路。
近场光学显微镜的工作原理商业计划书一、概述近场光学显微镜(Near-field Optical Microscope,简称NSOM)是一种重要的纳米尺度显微技术,其工作原理基于近场光学效应。
本商业计划书旨在介绍NSOM的工作原理,以及通过开展相关业务来推动该技术的商业化应用。
二、技术背景近场光学显微镜是一种基于光学原理的显微镜,可以实现纳米尺度的高分辨率成像。
与传统光学显微镜不同,NSOM利用近场光学效应,即光场与样品的极近距离相互作用,从而突破了传统显微镜的分辨率限制。
三、工作原理NSOM的工作原理可以分为两种方式:透射式和反射式。
1. 透射式NSOM透射式NSOM将样品放置在一个透明的探测器尖端下方,通过控制探测器与样品之间的距离,使其处于近场光学作用范围内。
然后,通过探测器尖端的极小孔径,只有几十纳米大小,将光束聚焦到样品表面,使得光场与样品的极近距离相互作用。
最后,通过检测光场的变化,可以获得样品表面的高分辨率图像。
2. 反射式NSOM反射式NSOM则是将样品放置在一个金属薄膜下方,通过探测器尖端的极小孔径,将光束聚焦在样品表面上。
与透射式NSOM不同的是,反射式NSOM通过探测器尖端侧面的金属反射,将样品表面的光场信息传递到探测器上。
通过探测器的移动和扫描,可以获得样品表面的高分辨率图像。
四、商业化应用NSOM作为一种高分辨率成像技术,具有广泛的商业化应用前景。
1. 纳米材料研究NSOM可以用于纳米材料的表征和分析,例如纳米颗粒、纳米线等。
通过NSOM的高分辨率成像,可以观察到纳米材料的形貌、尺寸和表面结构,为纳米材料研究提供重要的实验手段。
2. 生物医学研究NSOM在生物医学领域的应用也具有巨大潜力。
通过NSOM的高分辨率成像,可以观察到生物样品的细胞结构、蛋白质分布等细节信息,为生物医学研究提供宝贵的数据支持。
3. 纳米器件制造NSOM还可以应用于纳米器件的制造过程中。
通过NSOM的高分辨率成像和控制能力,可以实现对纳米器件的精确加工和调控,为纳米器件制造提供重要的工艺技术。
近场光学原理简介(转载)
2011-05-08 16:05:48| 分类:SEM基础 | 标签:精密测试纳米光学衍射极限分辨率远场光学|字号订阅
作者:王佳教授(转载请注明)
清华大学精密测试技术及仪器国家重点实验室纳米光学/近场光学实验室
所谓近场光学,是相对于远场光学而言。
传统的光学理论,如几何光学、物理光学等,通常只研究远离光源或者远离物体的光场分布,一般统称为远场光学。
远场光学在原理上存在着一个远场衍射极限,限制了利用远场光学原理进行显微和其它光学应用时的最小分辨尺寸和最小标记尺寸。
而近场光学则研究距离光源或物体一个波长范围内的光场分布。
在近场光学研究领域,远场衍射极限被打破,分辨率极限在原理上不再受到任何限制,可以无限地小,从而基于近场光学原理可以提高显微成像与其它光学应用时的光学分辨率。
1.远场光学的衍射分辨极限
远场光学的分辨率受到衍射效应的限制。
1873年,德国科学家阿贝(Abbe)根据衍射理论首次推导出衍射分辨极限,即能够被光学分辨的两点间的距离总是大于波长的一半。
后来,瑞利(Rayleigh)将阿贝衍射理论归纳为一个公式:
(1-1)
这就是人们所熟知的瑞利判据。
该判据表明,当且仅当物体上两点之间的距离d大于或等于不等式右边所规定的量时,才被看作是分开的两点。
这个量与入射光在真空中的波长l、物方折射率n以及显微物镜在物方的半孔径角q有关。
nsin(q)通常也被称作数值孔径(Numerical Aperture,N.A.)。
由瑞利判据可知,提高分辨率包括两种方法:其一,尽可能选择短的辐射波长,如利用蓝光、紫外光、x射线、电子等;其二,提高数值孔径,但若不考虑较少和较难使用的油浸物镜(N.A. = 1.5左右)与固体浸没透镜,数值孔径的最大值不超过1,因此远场光学的分辨极限最高只能达到波长的l/2。
2.近场光学的超衍射极限分辨率
当光和物体发生相互作用后,在物体表面(xy面)形成携带物体信息的光场分布,可以使用该场(即z= 0平面上的场)的复振幅的分布特性来表示样品。
与空间频谱的关系由傅立叶变换确定:
(1-2)fx、fy分别为沿x、y方向的空间频率分量,反比于物体的结构尺寸。
当光传播到探测平面z时,复振幅和空间频谱满足同样的关系:
(1-3)光场分布满足标量亥姆霍兹方程:
(1-4)
其中,为总空间频率。
将式1-3代入式1-4得:
(1-5)为待定系数,由初始条件确定。
z= 0处为物平面,其空间频谱
为,因此有:
(1-6)将上式代入式1-3得:
(1-7)
可见,探测面z上的光场分布是z= 0平面上的平面波乘以传播因子后的线性叠加,波的性质和传播方向取决于fx、fy的大小。
当时,式1-6的指数部分为虚宗量,此时在z= 0平面上形成空间频率满足的平面波,即空间频率的每一分量都可以向前传播形成辐射波或传播波,为波的相位变化因子。
当时,对应于光场分布的高空间频率fx、fy,即物体上的小尺寸结构,式1-6变成:
(1-8)指数部分的宗量为实数,表明振幅随z的增加呈指数规律衰减,即该波只局域在物体表面而不能向远处传播,形成局域在物体表面的近场隐失波。
而式1-7则表示以光波频率振荡的波在x、y方向可以传播,沿z方向衰减。
从以上分析可以看到,在物体表面的近场光包含两种成分,一种是可以向远
处传播的传播场;另一种是被局域在物体表面,在物体之外迅速衰减的非辐射隐失场。
隐失场是非均匀场,其性质与样品的性质和结构有密切关系。
这种场因物质的存在而存在,不能在自由空间独立地存在。
物体亚波长结构的信息隐藏在隐失场中。
隐失场的强度随着离物体距离的增大而迅速衰减,衰减的速度与空间频率成正比,所以结构越是精细,场就越被强烈地束缚在物体表面。
而远场只有传播波,仅包含电磁场的低空间频率部分,不包含样品的亚波长结构信息。
瑞利判剧建立在远场探测传播场的基础之上,仅在远场成立,而近场的隐失场并不受它的约束。
因而,若想获得超衍射极限的分辨率,必须利用近场隐失场。
3.隐失波场的探测
近场探测的原理是:(1)无论用传播场还是隐失场照明,高频物体均产生隐失场;(2)所产生的隐失场不服从瑞利判据,它们能够在远小于波长的距离上显示局部的强烈变化;(3)通过采用一个小的有限物体(如孔径或者无孔径探针)将隐失场转换成传播场和隐失场的方法,这种不可探测的高频局部场可以反过来转换成传播场;(4)将后者导向合适的远端探测器。
注意,隐失场—传播场的转换是线性的:被探测到的场正比于给定点的隐失场的坡印廷矢量。
那么传播场将忠实地复制隐失场局域的剧烈变化。
因此,用探测器探测到的传播场中包含物体的高频信息。
为了产生二维图象,使这个小的有限物体沿物体表面进行扫描,由所得到的探测数据重构图象。
近场探测原理镀金属膜纳米光纤探针截面4.近场光学/纳米光学的应用
基于近场光学技术的光学分辨率可以达到纳米量级,突破了传统光学的分辨
率衍射极限,这将为科学研究的诸多领域,尤其是纳米科技的发展提供有力的操
作、测量方法和仪器系统。
目前,基于隐失场探测的近场扫描光学显微镜、纳米
局域测量表征的近场拉曼光谱仪已经成为纳米物理、纳米生物学、纳米化学、纳
米材料科学等领域中的重要工具,并且应用范围正在不断地扩大。
而基于近场光
学/纳米光学的其它应用,如纳米光刻和超高密度近场光存储、纳米结构表面等
离子光学元器件、纳米尺度粒子的捕获与操纵等等,也吸引了众多科学工作者的
注意。
参考文献:
1、 D Courjon, C Bainier. Near Field Microscopy and Near Field
Optics. Rep. Prog. Phys. 57 (1994) 989-1028.
2、张树霖,《近场光学显微镜及其应用》,科学出版社,2000
3、朱星,“近场光学与近场光学显微镜”,《北京大学学报》(自然科学版),第33卷,第3期,1997年5月
4、王佳,"近场扫描光学显微镜和光子扫描隧道显微镜"《仪器仪表学报》Vol.17, No.5, P558-560, 1996。