高考大题增分专项一 高考中的函数与导数 2021年高考数学复习优化一轮用书文数01
- 格式:pdf
- 大小:10.20 MB
- 文档页数:59
强化训练导数在函数中的应用1.函数f (x )=e x -e x ,x ∈R 的单调递增区间是()A.(0,+∞)B.(-∞,0)C.(-∞,1)D.(1,+∞)答案D解析由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,应选D.2.函数f (x )=1+x -sin x 在(0,2π)上是()A.增函数B.减函数C.在(0,π)上增,在(π,2π)上减D.在(0,π)上减,在(π,2π)上增答案A解析∵f ′(x )=1-cos x >0,∴f (x )在(0,2π)上是增函数.3.f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,那么以下式子成立的是()A.f (a )<e a f (0)B.f (a )>e a f (0)C.f (a )<f (0)e aD.f (a )>f (0)e a 答案B解析令g (x )=f (x )e x , ∴g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x >0. ∴g (x )在R 上为增函数,又∵a >0,∴g (a )>g (0),即f (a )e a >f (0)e 0,即f (a )>e a f (0). 4.函数y =x e x 在[0,2]上的最大值是() A.1e B.2e 2C.0D.12e答案A解析易知y ′=1-x e x ,x ∈[0,2],令y ′>0,得0≤x <1,令y ′<0,得1<x ≤2,所以函数y =x ex 在[0,1)上单调递增,在(1,2]上单调递减,所以y =x e x 在[0,2]上的最大值是1e,应选A.5.假设a >2,那么函数f (x )=13x 3-ax 2+1在区间(0,2)上恰好有() A .0个零点B .1个零点C .2个零点D .3个零点答案B解析∵f ′(x )=x 2-2ax ,且a >2,∴当x ∈(0,2)时,f ′(x )<0,即f (x )在(0,2)上是单调减函数,又∵f (0)=1>0,f (2)=113-4a <0, ∴f (x )在(0,2)上恰好有1个零点.应选B.6.定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,那么不等式f (x )-12e x <0的解集为() A.⎝⎛⎭⎫-∞,12B.(0,+∞) C.⎝⎛⎭⎫12,+∞D.(-∞,0)答案B解析构造函数g (x )=f (x )e x , 那么g ′(x )=f ′(x )-f (x )e x, 因为f ′(x )<f (x ),所以g ′(x )<0,故函数g (x )在R 上为减函数,又f (0)=12,所以g (0)=f (0)e 0=12, 那么不等式f (x )-12e x <0可化为f (x )e x <12, 即g (x )<12=g (0), 所以x >0,即所求不等式的解集为(0,+∞).7.假设函数f (x )=x 33-a 2x 2+x +1在区间⎝⎛⎭⎫12,3上单调递减,那么实数a 的取值范围是________.答案⎣⎡⎭⎫103,+∞ 解析f ′(x )=x 2-ax +1,因为函数f (x )在区间⎝⎛⎭⎫12,3上单调递减,所以f ′(x )≤0在区间⎝⎛⎭⎫12,3上恒成立,所以⎩⎪⎨⎪⎧ f ′⎝⎛⎭⎫12≤0,f ′(3)≤0,即⎩⎪⎨⎪⎧14-a 2+1≤0,9-3a +1≤0,解得a ≥103,所以实数a 的取值范围为⎣⎡⎭⎫103,+∞. 8.假设曲线y =ln x 的一条切线是直线y =12x +b ,那么实数b 的值为________. 答案-1+ln2解析由y =ln x ,可得y ′=1x ,设切点坐标为(x 0,y 0),由曲线y =ln x 的一条切线是直线y =12x +b ,可得1x 0=12,解得x 0=2,那么切点坐标为(2,ln2),所以ln2=1+b ,b =-1+ln2. 9.曲线y =e x 上的点到直线y =x -2的最短距离是________. 答案322解析设与y =x -2平行的直线和y =e x 相切,那么切线斜率为k =1,因为y =e x ,所以y ′=e x ,令e x =k =1,可得切点坐标为(0,1),那么点(0,1)到直线的距离就是曲线y =e x 上的点到直线y =x -2的最短距离,由点到直线的距离公式知d =|0-1-2|12+(-1)2=32=322. 10.函数f (x )=e x -2x +a 有零点,那么实数a 的取值范围是________________.答案(-∞,2ln2-2]解析由原函数有零点,可将问题转化为方程e x -2x +a =0有解问题,即方程a =2x -e x 有解. 令函数g (x )=2x -e x ,那么g ′(x )=2-e x ,令g ′(x )=0,得x =ln2,所以g (x )在(-∞,ln2)上是增函数,在(ln2,+∞)上是减函数,所以g (x )的最大值为g (ln2)=2ln2-2,因此,a 的取值范围就是函数g (x )的值域,所以a ∈(-∞,2ln2-2].11.函数f (x )=ln x +a (1-x )在(2,+∞)上为单调函数,求实数a 的取值范围.解方法一f (x )的定义域为(0,+∞),f ′(x )=1x-a . 假设a ≤0,那么f ′(x )>0,f (x )在(0,+∞)上单调递增;假设a >0,那么当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 所以当a ≤0时,f (x )在(0,+∞)上单调递增,符合要求;当a >0时,f (x )在⎝⎛⎭⎫1a ,+∞上单调递减,那么2≥1a ,即a ≥12.所以实数a 的取值范围是(-∞,0]∪⎣⎡⎭⎫12,+∞. 方法二f (x )的定义域为(0,+∞),f ′(x )=1x-a . 由题意得,当x ∈(2,+∞)时,f ′(x )≥0恒成立或f ′(x )≤0恒成立,即a ≤1x 恒成立或a ≥1x恒成立.∵x ∈(2,+∞),∴0<1x <12,∴a ≤0或a ≥12, ∴实数a 的取值范围是(-∞,0]∪⎣⎡⎭⎫12,+∞. 12.(2022·东北四校联考)f (x )=1x +e x e -3,F (x )=ln x +e x e-3x +2. (1)判断f (x )在(0,+∞)上的单调性;(2)判断函数F (x )在(0,+∞)上零点的个数.解(1)f ′(x )=-1x 2+e x e =x 2e x -e e x 2, 令g (x )=x 2e x -e ,x >0,那么g ′(x )=e x (x 2+2x )>0,即g (x )在(0,+∞)上单调递增,又g (1)=0,所以当0<x <1时,g (x )<g (1)=0,那么f ′(x )<0,当x >1时,g (x )>0,那么f ′(x )>0, 所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.(2)F ′(x )=f (x )=1x +e x e-3,且f (1)=-1<0, 由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0,即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增,而F (1)=0,x →0时,F (x )→-∞,x →+∞时,F (x )→+∞,画出函数F (x )图象的草图,如下列图.故F (x )在(0,+∞)上的零点有3个.13.函数f (x )=sin x -13x ,x ∈[0,π],cos x 0=13,x 0∈[0,π]. ①f (x )的最大值为f (x 0);②f (x )的最小值为f (x 0);③f (x )在[0,x 0]上是减函数;④f (x )在[x 0,π]上是减函数.那么上面命题中真命题的序号是________.答案①④解析f ′(x )=cos x -13,由f ′(x )=0,得cos x =13,即x =x 0,因为x 0∈[0,π],当0<x <x 0时,f ′(x )>0;当x 0<x <π时,f ′(x )<0,所以f (x )的最大值为f (x 0),f (x )在[x 0,π]上是减函数.14.(2022·邢台模拟)假设函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,那么实数a 的取值范围为________.答案⎣⎡⎭⎫32,+∞解析对函数求导得f ′(x )=x -1+a ⎝⎛⎭⎫1-1x =(x +a )(x -1)x,x >0,因为函数存在唯一的极值,所以导函数存在唯一的零点,且零点大于0,故x =1是唯一的极值点,此时-a ≤0,且f (1)=-12+a ≥1,所以a ≥32. 15.函数f (x )=(x -2)e x +e +1,g (x )=a x+x ln x ,对任意的m ∈⎣⎡⎦⎤1e ,3,总存在n ∈⎣⎡⎦⎤1e ,3使得g (m )≥f (n )成立,那么实数a 的取值范围为________.答案[1,+∞)解析对任意的m ∈⎣⎡⎦⎤1e ,3,总存在n ∈⎣⎡⎦⎤1e ,3使得g (m )≥f (n )成立,即当x ∈⎣⎡⎦⎤1e ,3时,g (x )≥f (x )min 恒成立,∵f (x )=(x -2)e x +e +1,∴f ′(x )=(x -1)e x ,∴当x ∈⎣⎡⎭⎫1e ,1时,f ′(x )<0,函数f (x )单调递减,∴当x ∈(1,3]时,f ′(x )>0,函数f (x )单调递增,∴f (x )min =f (1)=1,当x ∈⎣⎡⎦⎤1e ,3时,g (x )=a x+x ln x ≥1, 那么a ≥x -x 2ln x ,记h (x )=x -x 2ln x ,h ′(x )=1-2x ln x -x ,h ′(1)=0,令k (x )=h ′(x ),那么k ′(x )=-3-2ln x ,k ′(x )在⎣⎡⎦⎤1e ,3上单调递减,k ′(x )≤k ′⎝⎛⎭⎫1e =-1, ∴h ′(x )单调递减,∴当x ∈⎝⎛⎭⎫1e ,1时,h ′(x )>0,h (x )单调递增,当x ∈(1,3)时,h ′(x )<0,h (x )单调递减,∴h (x )max =h (1)=1,故当a ≥1时,g (x )≥1.故实数a 的取值范围为[1,+∞).16.f (x )=ax 2(a ∈R ),g (x )=2ln x .(1)讨论函数F (x )=f (x )-g (x )的单调性;(2)假设方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.解(1)F (x )=ax 2-2ln x ,其定义域为(0,+∞),所以F ′(x )=2ax -2x =2(ax 2-1)x(x >0).①当a >0时,由ax 2-1>0,得x >1a, 由ax 2-1<0,得0<x <1a , 故当a >0时,F (x )在区间⎝⎛⎭⎫1a ,+∞上单调递增,在区间⎝⎛⎭⎫0,1a 上单调递减. ②当a ≤0时,F ′(x )<0(x >0)恒成立.故当a ≤0时,F (x )在(0,+∞)上单调递减.综上,假设a ≤0,F (x )在(0,+∞)上单调递减;假设a >0,F (x )在⎝⎛⎭⎫0,1a 上单调递减,在⎝⎛⎭⎫1a ,+∞上单调递增. (2)方法一方程f (x )=g (x )在区间[2,e]上有两个不相等的根,等价于F (x )=f (x )-g (x )在区间[2,e]上有两个不等的零点.由(1)知,假设a ≤0,F (x )在(0,+∞)上单调递减,最多有一个零点,所以a >0,F (x )在⎝⎛⎭⎫0,1a 上单调递减,在⎝⎛⎭⎫1a ,+∞上单调递增,易知F (x )在其定义域上连续, 假设F (x )在区间[2,e]上有两个不等零点, 那么⎩⎪⎨⎪⎧ 2<1a <e ,F ⎝⎛⎭⎫1a <0,F (2)≥0,F (e )≥0,即⎩⎪⎨⎪⎧ 1e 2<a <12,1-122ln a -<0,2a -2ln 2≥0,e 2a -2lne ≥0,解得⎩⎪⎨⎪⎧ 1e 2<a <12,a <1e ,a ≥ln22,a ≥2e 2, 由2e 2-ln22=4-e 2ln22e 2=lne 4-2e ln 22e 2<ln81-ln272e 2<0,可知2e 2<ln22, 所以该不等式组的解集为⎩⎨⎧⎭⎬⎫a ⎪⎪ ln22≤a <1e , 即f (x )=g (x )在[2,e]上有两个不相等的解时,a 的取值范围为⎣⎡⎭⎫ln22,1e . 方法二原条件等价于方程a =2ln x x2在区间[2,e]上有两个不相等的实数解. 令φ(x )=2ln x x2,2≤x ≤e ,由φ′(x )=2x (1-2ln x )x 4易知,φ(x )在(2,e)上为增函数,在(e ,e)上为减函数, 那么φ(x )max =φ(e)=1e, 而φ(e)=2e 2,φ(2)=ln22. 又φ(e)-φ(2)=2e 2-ln22=4-e 2ln22e 2=lne 4-2e ln 22e 2<ln81-ln272e 2<0,所以φ(e)<φ(2). 所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln22≤a <1e. 即f (x )=g (x )在[2,e]上有两个不相等的解时,a 的取值范围为⎣⎡⎭⎫ln22,1e .。
2021年高考数学一轮复习第三章导数及其应用3.2导数的应用课时1导数与函数的单调性文题型一 不含参数的函数的单调性 例1 求函数f (x )=ln xx的单调区间.解 函数f (x )的定义域为(0,+∞). 因为f (x )=ln x x ,所以f ′(x )=1-ln x x2. 当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减. 故函数f (x )的单调递增区间为(0,e), 单调递减区间为(e ,+∞).思维升华 确定函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是________________.答案 ⎝ ⎛⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤0,π2解析 f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x ≥0,则其在区间(-π,π)上的解集为⎝ ⎛⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤0,π2,即f (x )的单调递增区间为⎝ ⎛⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤0,π2.题型二 含参数的函数的单调性 例2 已知函数f (x )=ln x +ax +a +1x-1.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当-12≤a ≤0时,讨论f (x )的单调性.解 (1)当a =1时,f (x )=ln x +x +2x-1,此时f ′(x )=1x +1-2x 2,f ′(2)=12+1-24=1.又因为f (2)=ln 2+2+22-1=ln 2+2,所以切线方程为y -(ln 2+2)=x -2, 整理得x -y +ln 2=0.(2)f ′(x )=1x +a -1+a x 2=ax 2+x -a -1x2=ax +a +1x -1x 2.当a =0时,f ′(x )=x -1x 2. 此时,在(0,1)上,f ′(x )<0,f (x )单调递减; 在(1,+∞)上,f ′(x )>0,f (x )单调递增.当-12≤a <0时,f ′(x )=a ⎝ ⎛⎭⎪⎫x +a +1a x -1x 2.当-1+a a =1,即a =-12时,f ′(x )=-x -122x 2≤0在(0,+∞)上恒成立,所以f (x )在(0,+∞)上单调递减.当-12<a <0时,-1+a a >1,此时在(0,1)或⎝ ⎛⎭⎪⎫-1+a a ,+∞上,f ′(x )<0,f (x )单调递减;在⎝ ⎛⎭⎪⎫1,-1+a a 上,f ′(x )>0,f (x )单调递增. 综上,当a =0时,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增;当-12<a <0时,f (x )在(0,1)或⎝ ⎛⎭⎪⎫-1+a a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫1,-1+a a 上单调递增; 当a =-12时,f (x )在(0,+∞)上单调递减.思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点. (3)个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性. 解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a2a,则当x ∈(0, 1-a2a)时,f ′(x )<0;当x ∈(1-a2a ,+∞)时,f ′(x )>0,故f (x )在(0, 1-a2a)上单调递减,在( 1-a2a,+∞)上单调递增.题型三 利用函数单调性求参数例3 设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解 (1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2, 依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时,a <(x +2x)max =-22,当且仅当x =2x即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22). 引申探究 在本例3(3)中,1.若g (x )在(-2,-1)内为减函数,如何求解?解 方法一 ∵g ′(x )=x 2-ax +2,且g (x )在(-2,-1)内为减函数, ∴g ′(x )≤0,即x 2-ax +2≤0在(-2,-1)内恒成立,∴⎩⎪⎨⎪⎧g ′-2≤0,g ′-1≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0,解之得a ≤-3,即实数a 的取值范围为(-∞,-3]. 方法二 ∵g ′(x )=x 2-ax +2,由题意可得g ′(x )≤0在(-2,-1)上恒成立, 即a ≤x +2x 在(-2,-1)上恒成立,又y =x +2x,x ∈(-2,-1)的值域为(-3,-2 2 ], ∴a ≤-3,∴实数a 的取值范围是(-∞,-3]. 2.若g (x )的单调减区间为(-2,-1),求a 的值. 解 ∵g (x )的单调减区间为(-2,-1), ∴x 1=-2,x 2=-1是g ′(x )=0的两个根, ∴(-2)+(-1)=a ,即a =-3.3.若g (x )在(-2,-1)上不单调,求a 的取值范围.解 由引申探究1知g (x )在(-2,-1)上为减函数,a 的范围是(-∞,-3],若g (x )在(-2,-1)上为增函数,可知a ≥x +2x 在(-2,-1)上恒成立,又y =x +2x的值域为(-3,-2 2 ],∴a 的范围是[-22,+∞),∴函数g (x )在(-2,-1)上单调时,a 的取值范围是(-∞,-3]∪[-22,+∞), 故g (x )在(-2,-1)上不单调,实数a 的取值范围是(-3,-22). 思维升华 已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.已知函数f (x )=e xln x -a e x(a ∈R ).(1)若f (x )在点(1,f (1))处的切线与直线y =1e x +1垂直,求a 的值;(2)若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围.解 (1)f ′(x )=e x ln x +e x ·1x -a e x =(1x-a +ln x )e x,f ′(1)=(1-a )e ,由(1-a )e·1e=-1,得a =2.(2)由(1)知f ′(x )=(1x-a +ln x )e x,若f (x )为单调递减函数,则f ′(x )≤0,在x >0时恒成立. 即1x-a +ln x ≤0,在x >0时恒成立.所以a ≥1x+ln x ,在x >0时恒成立.令g (x )=1x+ln x (x >0),则g ′(x )=-1x 2+1x =x -1x2(x >0),由g ′(x )>0,得x >1; 由g ′(x )<0,得0<x <1.故g (x )在(0,1)上为单调递减函数,在[1,+∞)上为单调递增函数,此时g (x )的最小值为g (x )=1,但g (x )无最大值(且无趋近值).故f (x )不可能是单调递减函数. 若f (x )为单调递增函数,则f ′(x )≥0,在x >0时恒成立,即1x-a +ln x ≥0,在x >0时恒成立,所以a ≤1x+ln x ,在x >0时恒成立,由上述推理可知此时a ≤1.故实数a 的取值范围是(-∞,1].5.分类讨论思想研究函数的单调性典例 (14分)已知函数f (x )=ln x ,g (x )=f (x )+ax 2+bx ,其中函数g (x )的图象在点(1,g (1))处的切线平行于x 轴.(1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性.思维点拨 依据g (x )的切线条件可得g ′(1)=0得a ,b 关系,代g (x )后消去b ,对a 进行分类讨论确定g ′(x )的符号. 规范解答解 (1)依题意得g (x )=ln x +ax 2+bx , 则g ′(x )=1x+2ax +b .[2分]由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴得:g ′(1)=1+2a +b =0,∴b =-2a -1.[4分](2)由(1)得g ′(x )=2ax 2-2a +1x +1x=2ax -1x -1x.∵函数g (x )的定义域为(0,+∞), ∴当a =0时,g ′(x )=-x -1x. 由g ′(x )>0,得0<x <1, 由g ′(x )<0,得x >1,[6分]当a >0时,令g ′(x )=0,得x =1或x =12a ,[7分]若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a <x <1;[9分]若12a >1,即0<a <12, 由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a,[11分]若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0.[12分] 综上可得:当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1)上单调递增,在(1,12a )上单调递减,在(12a ,+∞)上单调递增;当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在(0,12a)上单调递增,在(12a,1)上单调递减,在(1,+∞)上单调递增.[14分] 温馨提醒 (1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法. (2)本题求解先分a =0或a >0两种情况,再比较12a和1的大小.[方法与技巧]1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域. 2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性.3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题两种思路解决.[失误与防范]1.f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.讨论函数单调性要在定义域内进行,不要忽略函数的间断点.A 组 专项基础训练 (时间:40分钟)1.函数f (x )=(x -3)e x的单调递增区间是____________. 答案 (2,+∞)解析 函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=e x +(x -3)e x =(x -2)e x. 由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增, 此时由不等式f ′(x )=(x -2)e x>0,解得x >2.2.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为__________. 答案 (-∞,52]解析 ∵f ′(x )=6x 2-6mx +6, 当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52.3.设函数f (x )=x -2sin x 是区间⎣⎢⎡⎦⎥⎤t ,t +π2上的减函数,则实数t 的取值范围是______________________. 答案 ⎣⎢⎡⎦⎥⎤2k π-π3,2k π-π6,k ∈Z解析 由题意得f ′(x )=1-2cos x ≤0,即cos x ≥12,解得2k π-π3≤x ≤2k π+π3 (k ∈Z ),∵f (x )=x -2sin x 是区间⎣⎢⎡⎦⎥⎤t ,t +π2上的减函数,∴⎣⎢⎡⎦⎥⎤t ,t +π2⊆⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3,∴2k π-π3≤t ≤2k π-π6(k ∈Z ).4.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则的大小关系为________________. 答案解析 设g (x )=f xex,则g ′(x )=f ′x e x -f x e x ex2=f ′x -f xex,由题意g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f x 1<f x 2,所以.5.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f (12),c =f (3),则a ,b ,c 的大小关系为____________.答案 c <a <b解析 依题意得,当x <1时,f ′(x )>0,f (x )为增函数; 又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f (12),即有f (3)<f (0)<f (12),c <a <b .6.函数f (x )=x -ln x 的单调递减区间为________. 答案 (0,1)解析 函数的定义域是(0,+∞), 且f ′(x )=1-1x =x -1x,令f ′(x )<0,解得0<x <1,所以单调递减区间是(0,1).7.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是________. 答案 [34,+∞)解析 f ′(x )=(2x -2a )e x +(x 2-2ax )e x=[x 2+(2-2a )x -2a ]e x,由题意当x ∈[-1,1]时,f ′(x )≤0恒成立, 即x 2+(2-2a )x -2a ≤0在x ∈[-1,1]时恒成立. 令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧g -1≤0,g 1≤0,即⎩⎪⎨⎪⎧-12+2-2a ·-1-2a ≤0,12+2-2a -2a ≤0,解得a ≥34.8.函数f (x )=x 3+bx 2+cx +d 的图象如图,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为____________.答案 (-∞,-2)解析 ∵f (x )=x 3+bx 2+cx +d , ∴f ′(x )=3x 2+2bx +c .由题图可知f ′(-2)=f ′(3)=0,∴⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1. 由g (x )=x 2-x -6>0,解得x <-2或x >3. 当x <-2时,g ′(x )<0,∴g (x )=x 2-x -6在(-∞,-2)上为减函数.∴函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 10.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m x -1x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解 (1)由已知得f ′(x )=1x , ∴f ′(1)=1=12a ,a =2. 又∵g (1)=0=12a +b ,∴b =-1, ∴g (x )=x -1.(2)∵φ(x )=m x -1x +1-f (x )=m x -1x +1-ln x 在[1,+∞)上是减函数. ∴φ′(x )=-x 2+2m -2x -1x x +12≤0在[1,+∞)上恒成立. 即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立,则2m -2≤x +1x,x ∈[1,+∞), ∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2. 故实数m 的取值范围是(-∞,2].B 组 专项能力提升(时间:20分钟)11.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是__________.答案 1<a ≤2解析 ∵f (x )=12x 2-9ln x , ∴f ′(x )=x -9x(x >0), 当x -9x≤0时,有0<x ≤3, 即在(0,3]上原函数是减函数,∴a -1>0且a +1≤3,解得1<a ≤2.12. f (x ),g (x ) (g (x )≠0)分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )<f (x )g ′(x ),且f (-3)=0,则f x g x<0的解集为____________. 答案 (-3,0)∪(3,+∞)解析 f x g x是奇函数, ∵当x <0时,f ′(x )g (x )<f (x )g ′(x ),⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x g 2x <0,则f x g x 在(-∞,0)上为减函数,在(0,+∞)上也为减函数.又f (-3)=0,则有f -3g -3=0=f 3g 3,可知f x g x<0的解集为(-3,0)∪(3,+∞).13.若函数f (x )=-13x 3+12x 2+2ax 在[23,+∞)上存在单调递增区间,则a 的取值范围是________.答案 (-19,+∞) 解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-(x -12)2+14+2a . 当x ∈[23,+∞)时, f ′(x )的最大值为f ′(23)=29+2a .令29+2a >0,解得a >-19. 所以a 的取值范围是(-19,+∞). 14.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.答案 (0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x=-x -1x -3x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.15.函数f (x )=ax 3+3x 2+3x (a ≠0).(1)讨论函数f (x )的单调性;(2)若函数f (x )在区间(1,2)上是增函数,求a 的取值范围.解 (1)f ′(x )=3ax 2+6x +3,f ′(x )=3ax 2+6x +3=0的判别式Δ=36(1-a ).①若a ≥1,则f ′(x )≥0,且f ′(x )=0,当且仅当a =1,x =-1,故此时f (x )在R 上是增函数.②由于a ≠0,故当a <1时,f ′(x )=0有两个根,x 1=-1+1-aa ,x 2=-1-1-a a. 若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)上是减函数.若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)上是减函数;当x ∈(x 1,x 2)时,f ′(x )>0,故f (x )在(x 1,x 2)上是增函数.(2)当a >0,x >0时,f ′(x )>0,所以当a >0时,f (x )在区间(1,2)上是增函数.当a <0时,f (x )在区间(1,2)上是增函数,当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0. 综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,0∪(0,+∞).。
第2讲 导数与函数的单调性一、知识梳理函数的单调性与导数的关系条件结论函数y =f (x )在区间(a ,b )上可导f ′(x )>0 f (x )在(a ,b )内单调递增 f ′(x )<0 f (x )在(a ,b )内单调递减 f ′(x )=0f (x )在(a ,b )内是常数函数理清三组关系(1)“在某区间内f ′(x )>0(f ′(x )<0)”是“函数f (x )在此区间上为增(减)函数”的充分不必要条件.(2)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )任意子区间内都不恒为零.(3)对于可导函数f (x ),“f ′(x 0)=0”是“函数f (x )在x =x 0处有极值”的必要不充分条件. 二、教材衍化1.如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .当x =2时,f (x )取到极小值解析:选C .在(4,5)上f ′(x )>0恒成立, 所以f (x )是增函数.2.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞)B .(12,+∞)C .(-∞,-1)D .⎝⎛⎭⎫-∞,-12解析:选B .由y =4x 2+1x ,得y ′=8x -1x 2,令y ′>0,即8x -1x 2>0,解得x >12,所以函数y =4x 2+1x 的单调增区间为⎝⎛⎭⎫12,+∞. 故选B .3.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是________.解析:f ′(x )=sin x +x cos x -sin x =x cos x ,令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 答案:⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) 答案:(1)× (2)√ 二、易错纠偏常见误区| (1)判断导数值的正负时忽视函数值域这一隐含条件; (2)讨论函数单调性时,分类标准有误.1.函数f (x )=cos x -x 在(0,π)上的单调性是( ) A .先增后减 B .先减后增 C .增函数 D .减函数解析:选D .因为f ′(x )=-sin x -1<0. 所以f (x )在(0,π)上是减函数,故选D .2.已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性. 解:函数f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0恒成立, 所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,+∞时, f ′(x )<0,所以f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减.考点一 判断(证明)函数的单调性(基础型)复习指导| 借助图象探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性.核心素养:数学抽象、逻辑推理(1)已知函数f (x )=x ln x ,则f (x )( ) A .在(0,+∞)上单调递增 B .在(0,+∞)上单调递减 C .在⎝⎛⎭⎫0,1e 上单调递增 D .在⎝⎛⎭⎫0,1e 上单调递减 (2)(2019·高考全国卷Ⅲ节选)已知函数f (x )=2x 3-ax 2+2.讨论f (x )的单调性.【解】 (1)选D .因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0), 当f ′(x )>0时,解得x >1e,即函数f (x )的单调递增区间为⎝⎛⎭⎫1e ,+∞; 当f ′(x )<0时, 解得0<x <1e,即函数f (x )的单调递减区间为⎝⎛⎭⎫0,1e ,故选D . (2)f ′(x )=6x 2-2ax =2x (3x -a ). 令f ′(x )=0,得x =0或x =a3.若a >0,则当x ∈(-∞,0)∪⎝⎛⎭⎫a 3,+∞时,f ′(x )>0;当x ∈⎝⎛⎭⎫0,a3时,f ′(x )<0.故f (x )在(-∞,0),⎝⎛⎭⎫a3,+∞ 单调递增,在⎝⎛⎭⎫0,a3单调递减. 若a =0,则f (x )在(-∞,+∞)单调递增.若a <0,则当x ∈⎝⎛⎭⎫-∞,a 3∪(0,+∞)时,f ′(x )>0;当x ∈⎝⎛⎭⎫a3,0时,f ′(x )<0.故f (x )在⎝⎛⎭⎫-∞,a 3,(0,+∞)单调递增,在⎝⎛⎭⎫a3,0单调递减.导数法证明函数f (x )在(a ,b )内的单调性的步骤(1)求f ′(x ).(2)确认f ′(x )在(a ,b )内的符号.(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.已知函数f (x )=a2(x -1)2-x +ln x (a >0),讨论f (x )的单调性.解:函数f (x )的定义域为(0,+∞),f ′(x )=a (x -1)-1+1x =(x -1)(ax -1)x ,令f ′(x )=0,则x 1=1,x 2=1a,①若a =1,则f ′(x )≥0恒成立,所以f (x )在(0,+∞)上是增函数; ②若0<a <1,则1a>1,当x ∈(0,1)时,f ′(x )>0,f (x )是增函数, 当x ∈⎝⎛⎭⎫1,1a 时,f ′(x )<0,f (x )是减函数, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )>0,f (x )是增函数; ③若a >1,则0<1a<1,当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0,f (x )是增函数,当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0,f (x )是减函数, 当x ∈(1,+∞)时,f ′(x )>0,f (x )是增函数. 综上所述,当a =1时,f (x )在(0,+∞)上是增函数;当0<a <1时,f (x )在(0,1)上是增函数,在⎝⎛⎭⎫1,1a 上是减函数,在⎝⎛⎭⎫1a ,+∞上是增函数; 当a >1时,f (x )在⎝⎛⎭⎫0,1a 上是增函数,在⎝⎛⎭⎫1a ,1上是减函数,在(1,+∞)上是增函数. 考点二 求函数的单调区间(基础型)复习指导| 会利用导数求不超过三次的多项式函数的单调区间. 核心素养:数学运算已知函数f (x )=a ln x -x -a +1x(a ∈R ).求函数f (x )的单调区间.【解】 f (x )的定义域为(0,+∞),f ′(x )=ax -1+1+a x 2=-x 2+ax +1+a x 2=-(x +1)[x -(1+a )]x 2,①当a +1>0,即a >-1时,在(0,1+a )上f ′(x )>0,在(1+a ,+∞)上,f ′(x )<0, 所以f (x )的单调递增区间是(0,1+a ),单调递减区间是(1+a ,+∞); ②当1+a ≤0,即a ≤-1时,在(0,+∞)上,f ′(x )<0, 所以,函数f (x )的单调递减区间是(0,+∞),无单调递增区间.利用导数求函数单调区间的方法(1)当导函数不等式可解时,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,解出方程的实根,按实根把函数的定义域划分区间,确定各区间内f ′(x )的符号,从而确定单调区间.(3)当导函数的方程、不等式都不可解时,根据f ′(x )的结构特征,利用图象与性质确定f ′(x )的符号,从而确定单调区间.[提醒] 所求函数的单调区间不止一个时,这些区间之间不能用“∪”及“或”连接,只能用“,”及“和”隔开.1.当x >0时,f (x )=x +4x 的单调递减区间是( )A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2)解析:选B .令f ′(x )=1-4x 2=(x -2)(x +2)x 2<0,则-2<x <2,且x ≠0.因为x >0,所以x ∈(0,2),故选B .2.已知函数f (x )=x 4+54x -ln x -32,求函数f (x )的单调区间.解:f (x )=x 4+54x -ln x -32,x ∈(0,+∞),则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数. 故函数f (x )的单调递增区间为(5,+∞),单调递减区间为(0,5). 考点三 函数单调性的应用(综合型)复习指导| 利用导数与函数的单调性可以比较大小、求参数的范围等,其关键是明确函数的单调性.角度一 比较大小或解不等式已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e2的解集为( )A .(-∞,1)B .(1,+∞)C .(1,e)D .(e ,+∞)【解析】 F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, 所以F (x )在R 上单调递减. 由F (x )<1e2=F (1),得x >1,所以不等式F (x )<1e 2的解集为(1,+∞).【答案】 B利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.角度二 已知函数单调性求参数的取值范围已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x -ax -2<0有解.即a >1x 2-2x 有解,设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=⎝⎛⎭⎫1x -12-1,所以G (x )min =-1. 所以a >-1,即a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4), 所以a ≥-716,即a 的取值范围是⎣⎡⎭⎫-716,+∞. 【迁移探究1】 (变条件)本例条件变为:若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围.解:由h (x )在[1,4]上单调递增得,当x ∈[1,4]时,h ′(x )≥0恒成立, 所以当x ∈[1,4]时,a ≤1x 2-2x 恒成立,又当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min=-1(此时x =1),所以a ≤-1,即a 的取值范围是(-∞,-1].【迁移探究2】 (变问法)若函数h (x )=f (x )-g (x )在[1,4]上存在单调递减区间,求a 的取值范围.解:h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x 有解,又当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min=-1,所以a >-1,即a 的取值范围是(-1,+∞).(1)已知函数在某区间上的单调性求参数的取值范围的两种思路 ①转化为不等式恒成立问题若函数在某区间上单调递增⇒f ′(x )≥0在该区间上恒成立;若函数在某区间上单调递减⇒f ′(x )≤0在该区间上恒成立.[注意] 一般地,f (x )在区间(a ,b )上是增函数的充要条件是f ′(x )≥0在(a ,b )上恒成立,且在(a ,b )的任意子区间内f ′(x )不恒为0.其中不等式中等号不能省略,否则可能漏解!②利用区间之间的包含关系若已知y =f (x )在区间(a ,b )上单调,则区间(a ,b )应该是相应单调区间的子区间. (2)已知函数的单调区间求参数的值时,首先利用导数,求出函数的单调区间(含参),然后令该单调区间与已知区间相等,列方程求解.(3)已知函数在某区间内不单调求参数的取值范围时,通常利用极值点在该区间内,列不等式求解.1.已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 解析:选A .因为f (x )=x sin x , 所以f (-x )=(-x )sin(-x )=x sin x =f (x ). 所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3. 又x ∈⎝⎛⎭⎫0,π2时,得f ′(x )=sin x +x cos x >0, 所以f (x )在⎝⎛⎭⎫0,π2上是增函数. 所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3. 所以f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A . 2.已知函数f (x )=x 3-ax -1.(1)若f (x )在R 上为增函数,求实数a 的取值范围;(2)若函数f (x )在(-1,1)上为单调减函数,求实数a 的取值范围; (3)若函数f (x )的单调递减区间为(-1,1),求实数a 的值; (4)若函数f (x )在区间(-1,1)上不单调,求实数a 的取值范围. 解:(1)因为f (x )在(-∞,+∞)上是增函数,所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立. 因为3x 2≥0, 所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数,所以a ≤0,即实数a 的取值范围为(-∞,0]. (2)由题意知f ′(x )=3x 2-a ≤0在(-1,1)上恒成立, 所以a ≥3x 2在(-1,1)上恒成立,因为当-1<x <1时,3x 2<3,所以a ≥3,所以a 的取值范围为[3,+∞). (3)由题意知f ′(x )=3x 2-a ,则f (x )的单调递减区间为⎝⎛⎭⎫-3a 3,3a 3, 又f (x )的单调递减区间为(-1,1), 所以3a3=1,解得a =3. (4)由题意知:f ′(x )=3x 2-a ,当a ≤0时,f ′(x )≥0,此时f (x )在(-∞,+∞)上为增函数,不合题意,故a >0.令f ′(x )=0,解得x =±3a 3. 因为f (x )在区间(-1,1)上不单调,所以f ′(x )=0在(-1,1)上有解,需0<3a3<1,得0<a <3, 所以实数a 的取值范围为(0,3).[基础题组练]1.函数f (x )=e x -e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)解析:选D .由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D .2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析:选C .由题意得,当x ∈(-∞,c )时,f ′(x )>0,所以函数f (x )在(-∞,c )上是增函数,因为a <b <c ,所以f (c )>f (b )>f (a ),故选C . 3.函数f (x )=e xx的图象大致为( )解析:选B .函数f (x )=e xx 的定义域为{x |x ≠0,x ∈R },当x >0时,函数f ′(x )=x e x -e x x 2,可得函数的极值点为:x =1,当x ∈(0,1)时,函数是减函数,x >1时,函数是增函数,并且f (x )>0,选项B 、D 满足题意.当x <0时,函数f (x )=e xx <0,选项D 不正确,选项B 正确.4.已知f (x )=ln xx ,则( )A .f (2)>f (e)>f (3)B .f (3)>f (e)>f (2)C .f (3)>f (2)>f (e)D .f (e)>f (3)>f (2)解析:选D .f (x )的定义域是(0,+∞), f ′(x )=1-ln xx 2,令f ′(x )=0,得x =e.所以当x ∈(0,e)时,f ′(x )>0,f (x )单调递增,当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减,故当x =e 时,f (x )max =f (e)=1e ,而f (2)=ln 22=ln 86,f (3)=ln 33=ln 96,所以f (e)>f (3)>f (2),故选D .5.若函数f (x )=2x 3-3mx 2+6x 在区间(1,+∞)上为增函数,则实数m 的取值范围是( )A .(-∞,1]B .(-∞,1)C .(-∞,2]D .(-∞,2) 解析:选C .因为f ′(x )=6(x 2-mx +1),且函数f (x )在区间(1,+∞)上是增函数,所以f ′(x )=6(x 2-mx +1)≥0在(1,+∞)上恒成立,即x 2-mx +1≥0在(1,+∞)上恒成立,所以m ≤x 2+1x =x +1x 在(1,+∞)上恒成立,即m ≤⎝⎛⎭⎫x +1x min (x ∈(1,+∞)),因为当x ∈(1,+∞)时,x +1x>2,所以m ≤2.故选C . 6.函数f (x )=x 4+54x-ln x 的单调递减区间是________. 解析:因为f (x )=x 4+54x-ln x , 所以函数的定义域为(0,+∞),且f ′(x )=14-54x 2-1x =x 2-4x -54x 2, 令f ′(x )<0,解得0<x <5,所以函数f (x )的单调递减区间为(0,5).答案:(0,5) 7.已知函数f (x )=ln x +2x ,若f (x 2+2)<f (3x ),则实数x 的取值范围是________.解析:由题可得函数f (x )的定义域为(0,+∞),f ′(x )=1x+2x ln 2,所以在定义域内f ′(x )>0,函数单调递增,所以由f (x 2+2)<f (3x )得x 2+2<3x ,所以1<x <2.答案:(1,2)8.已知函数y =f (x )(x ∈R )的图象如图所示,则不等式xf ′(x )≥0的解集为________.解析:由f (x )图象特征可得,f ′(x )在⎝⎛⎦⎤-∞,12和[2,+∞)上大于0,在⎝⎛⎭⎫12,2上小于0, 所以xf ′(x )≥0⇔⎩⎪⎨⎪⎧x ≥0,f ′(x )≥0或⎩⎪⎨⎪⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2, 所以xf ′(x )≥0的解集为⎣⎡⎦⎤0,12∪[2,+∞). 答案:⎣⎡⎦⎤0,12∪[2,+∞) 9.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23.(1)求a 的值;(2)求函数f (x )的单调区间.解:(1)由f (x )=x 3+ax 2-x +c ,得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2a ×23-1,解得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝⎛⎭⎫x +13(x -1), 令f ′(x )>0,解得x >1或x <-13; 令f ′(x )<0,解得-13<x <1. 所以f (x )的单调递增区间是⎝⎛⎭⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝⎛⎭⎫-13,1. 10.已知函数f (x )=b e x -1(b ∈R ,e 为自然对数的底数)在点(0,f (0))处的切线经过点(2,-2).讨论函数F (x )=f (x )+ax (a ∈R )的单调性.解:因为f (0)=b -1,所以过点(0,b -1),(2,-2)的直线的斜率为k =b -1-(-2)0-2=-b +12, 而f ′(x )=-b e x ,由导数的几何意义可知, f ′(0)=-b =-b +12, 所以b =1,所以f (x )=1e x -1. 则F (x )=ax +1e x -1,F ′(x )=a -1e x , 当a ≤0时,F ′(x )<0恒成立;当a >0时,由F ′(x )<0,得x <-ln a ,由F ′(x )>0,得x >-ln a .故当a ≤0时,函数F (x )在R 上单调递减;当a >0时,函数F (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增.[综合题组练]1.(综合型)设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C .令F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,所以F (x )在R 上单调递减.又a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ).又f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ). 2.函数f (x )的定义域为R .f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)解析:选B .由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2. 因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,选B .3.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 解析:由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)4.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x=-(x -1)(x -3)x, 由f ′(x )=0,得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.答案:(0,1)∪(2,3)5.设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.故b =0,c =1.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).(3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立.则存在x ∈(-2,-1)使-a >-x -2x成立, 即-a >⎝⎛⎭⎫-x -2x min. 因为x ∈(-2,-1),所以-x ∈(1,2),则-x -2x ≥2(-x )·⎝⎛⎭⎫-2x =22, 当且仅当-x =-2x,即x =-2时等号成立, 所以-a >22,则a <-2 2.所以实数a 的取值范围为(-∞,-22).6.(2020·成都七中检测)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e ex ,其中a ∈R ,e =2.718…为自然对数的底数.(1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0.解:(1)由题意得f ′(x )=2ax -1x =2ax 2-1x(x >0). 当a ≤0时,f ′(x )<0,f (x )在(0,+∞)上单调递减.当a >0时,由f ′(x )=0有x =12a , 当x ∈⎝⎛⎭⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)证明:令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以s (x )>s (1),即e x-1>x ,从而g (x )=1x -e e x =e (e x -1-x )x e x>0.。