江苏省2022年专转本高等数学考试题和答案
- 格式:docx
- 大小:321.22 KB
- 文档页数:5
江苏省专转本⾼数真题及答案⾼等数学试题卷(⼆年级)注意事项:出卷⼈:江苏建筑⼤学-张源教授1、考⽣务必将密封线内的各项⽬及第 2页右下⾓的座位号填写清楚. 3、本试卷共8页,五⼤题24⼩题,满分150分,考试时间120分钟. ⼀、选择题(本⼤题共6⼩题,每⼩题4分,满分24分) 1、极限 lim(2xsin 1 Sin 3x )=()x xA. 0B.2C.3D.52、设f (x)⼆2)sinx ,则函数f (x )的第⼀类间断点的个数为()|x|(x -4)'A. 0B.1C.2D.3133、设 f(x) =2x 2 -5x 2,则函数 f(x)()A.只有⼀个最⼤值B.只有⼀个极⼩值C.既有极⼤值⼜有极⼩值D.没有极值34、设z =ln(2x)-在点(1,1)处的全微分为()y1 1A. dx - 3dyB. dx 3dyC. ⼀ dx 3dyD. - dx - 3dy2 21 15、⼆次积分pdy.y f (x, y )dx 在极坐标系下可化为()sec'— 'sec jA. —4d ⼨ o f (「cos 〒,「sin ⼨)d 「B. —4d 丁 ? f (「cos 〒,「sin ⼨)「d 「&下列级数中条件收敛的是()⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分)7要使函数f(x)=(1-2x )x 在点x=0处连续,则需补充定义f(0)= _________________ . 8、设函数 y = x (x 2 +2x +1)2 +e 2x ,贝⼙ y ⑺(0) = _______ .江苏省 2 0 12 年普通⾼校专转本选拔考试2、考⽣须⽤钢笔或圆珠笔将答案直接答在试卷上, 答在草稿纸上⽆效. sec ? iC. o f (「cosd 「sin Jd 「D.4sec ?2d 丁 ? f (「cos ⼨,「sin ⼨):?d "「TVXTnW ?、n9、设y =x x (x >0),则函数y 的微分dy =.(1)函数f (x)的表达式;11、设反常积分[_e 」dx=q ,则常数a= ______________ . 12、幕级数£上律(x -3)n 的收敛域为 __________________ :“⼆ n3 三、计算题(本⼤题共8⼩题,每⼩题8分,共64 分)2x +2cosx —2 lim ⼚x 0x ln(1 x)2116、计算定积分",-严.17、已知平⾯⼆通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平⾯⼆平⾏,⼜与x 轴垂直的直线⽅程.18、设函数 “ f(x,xyr (x 2 y 2),其中函数f 具有⼆阶连续偏导数,函数具有⼆阶连-2续导数,求⼀Zc^cy19、已知函数f(x)的⼀个原函数为xe x ,求微分⽅程丫 4/ 4^ f (x)的通解. 20、计算⼆重积分..ydxdy ,其中D 是由曲线y 「x-1,D四、综合题(本⼤题共2⼩题,每⼩题10分,共20分)21、在抛物线y =x 2(x 0)上求⼀点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平⾯图形的⾯积为2,并求该平⾯图形绕x 轴旋转⼀周所形成的旋转体的体积.3x322、已知定义在(⽫,畑)上的可导函数f(x)满⾜⽅程xf(x)-4( f(t)dt=x 3-3,试求:10、设向量a,b 互相垂直,且= 3,^=2,,贝 U ^+2b13、求极限 14、设函数 y = y(x)由参数⽅程 xdty = t 2 2lnt所确定, 求鱼dx dx 2 °15、求不定积分 2x 1 J 2~cos x1直线T 及x 轴所围成的平⾯(2)函数f(x)的单调区间与极值;(3)曲线y= f(x)的凹凸区间与拐点.五、证明题(本⼤题共2⼩题,每⼩题9分,共18分)123、证明:当0 : x :: 1 时,arcsinx x x3.6⼗x0 g(t)dt g(x)24、设f(x)⼀2—XHO,其中函数g(x)在(⽫,母)上连续,且lim g(x⼃=3证x T1—COSX卫(0) x = 01明:函数f (x)在X = 0处可导,且f (0)⼔.⼀. 选择题1-5BCCABD⼆. 填空题7-12e°128x n(1 ln x)dx5ln 2 (0,6]13求极限x m0 2x 2 cos x - 216、计算定积分 ----------- dx .1x ? 2x T13 t -^dt ⼆21 1 :; t2 1 t2dt =2arctant 1 t2原式=x叫x2 2 cos x -2 2x—2si nx=limx_0x—sin x3= lim4x3 x刃2x314、设函数y = y(x)由参数⽅程所确定,求2』=t +21 nt dydxd2ydx2原式号dx dydtdx2t -t12td2y_d燈)dtdx2t2 dt t2dx2dxdtt2115、求不定积分2x 12dx. cos x2x 1原式=i'2■ dx ' cosx ⼆(2x 1)d tanx ⼆(2x 1) tanx - tanxd(2x 1) 原式=令.2x -1 “,则原式=.?? 32(1)函数f (x)的表达式;17、已知平⾯⼆通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平⾯⼆平⾏,⼜与x 轴垂直的直线⽅程.解:平⾯⼆的法向量n -OM 「=(0,3,⼀2),直线⽅向向量为S = n "「= (0,-2,-3),直线⽅程:x -1 y -1 z -10 ⼀ -2 ⼀ -3 18、设函数z ⼆f(x,xy^ (x 2 y 2),其中函数f 具有⼆阶连续偏导数,函数具有⼆阶连Z =f i f 2 y 2x ' zf i2 x f 2 xyf 22 2x 2y : .x :x.y19、已知函数f (x)的⼀个原函数为xe x ,求微分⽅程y” ? 4y ' 4y = f (x)的通解. 解:f (x) = (xe x ^ = (x 1)e x ,先求 y ” ? 4y ' 4y =0 的通解,特征⽅程:r 2 ? 4r *4 = 0,h 、2 = -2,齐次⽅程的通解为Y =(G C 2X )e'x .令特解为y =(Ax B)e x ,代⼊原⽅程9Ax 6A 9^x 1,有待定系数法得:__ 120、计算⼆重积分i iydxdy ,其中D 是由曲线y = :x-1,直线y= —x 及x 轴所围成的平⾯D 2闭区域.原式=ydy 丫 dx 1.j 0'2y12四. 综合题21、在抛物线y =x 2(x 0)上求⼀点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平⾯图形的⾯积为2,并求该平⾯图形绕x 轴旋转⼀周所形成的旋转体的体积. 3 解:设 P 点(x 0,x ° )(x 0 0),则 k 切=2x °,切线:,y - x ° = 2x 0(x- x °)续导数,求;2z解:9A=1QA+9B =1解得* A 」9 -1,所以通解为丫"6)⼧(討?2x/即,y +x ° =2x °x ,由题意((y x^ 2x 0s y)dy =⼻,得 X0 = 2,P(2,4)(2)函数f(x)的单调区间与极值;(3)曲线—f(x)的凹凸区间与拐点.x解:(1)已知 xf(x)-4 4 f (t)dt =X 3 -3两边同时对 x 求导得:f (X )? x 「(x)-4f(x) =3x 2 3即.y" — -y=3x 则 y = —3x 2+cx 3 由题意得:f(1)=—2, c=1,贝U f(x)=—3x 2 + x 3 ■ x ' (2) f (x) =3x 2 -6x = 0,论=0,x 2 = 2 列表讨论得在(-⼆,0) (2,::)单调递增,在(0,2)单调递减。
江苏专升本数学2024真题一、单项选择题(共8小题,每小题4分,总计32分)1.设1)(,11)(,1cos )(2-=-+=-=xe x x x x x γβα,则当0→x 时()A.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的高阶无穷小B.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的同阶无穷小C.)(x α是)(x β的同阶无穷小,)(x β是)(x γ的同阶无穷小D.)(x α是)(x β的高阶无穷小,)(x β是)(x γ的高阶无穷小2.若函数)(lim 22sin )(0x f xxx f x →+=则=→)(lim 0x f x ()A.4-B.2-C.2D.43.若xe2-是函数)(x f 的一个原函数,则='')(x f ()A.xe 24- B.e4- C.xe 28- D.xe28--4.若)12ln()(+=x x f ,则=)()(x f n ()A.n n x n )12()!1(2)1(1+-⋅⋅-- B.n n n x n )12()!1(2)1(11+-⋅⋅---C.nn n x n )12()!1(2)1(1+-⋅⋅-- D.nn n x n )12()!1(2)1(+-⋅⋅-5.下列级数收敛的是()A.∑∞=++1211n n n B.∑∞=++-122)1(n n n C.∑∞=11sinn n n D.∑∞=-11sin)1(n n n6.设y y x x y x f 232),(223-+-=,则函数),(y x f ()A.在点)1,0(处不取极值,在点)1,1(处取极大值B.在点)1,0(处不取极值,在点)1,1(处取极小值C.在点)1,0(处取极大值,在点)1,1(处取极小值D.在点)1,0(处取极小值,在点)1,1(处取极大值7.矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----278811944113221111111的秩为()A.1B.2C.3D.48.设向量组321,,ααα线性无关,则一定线性相关的向量组为()A.313221,αααααα+++,B.131221,αααααα---,C.321211,αααααα+++, D.321211,αααααα---,二、填空题(共6小题,每小题4分,总计24分)9.若1=x 是函数xx axx x f --=23)(的第一类间断点,则=→)(lim 0x f x 10.设)(x y y =是由参数方程⎪⎩⎪⎨⎧-=+=tt y tt x 3232所确定的函数,若23|0-==t t dx dy ,则=0t 11.设⎪⎩⎪⎨⎧=≠+=0,00,)1ln()(2x x xx x f ,)(sin x f y =,则==0|x dx dy 12.若⎰⎰∞--∞-=az ax dx e dx e 1,则常数=a 13.幂级数∑∞=-1)1(!3n nn n x n n 的收敛半径为14.行列式=4003043002102001三、计算题(共8小题,每小题8分,总计64分)15.求极限2(arctan lim 22π-∞→x x x 16.求不定积分dxx x x ⎰++-+2)3(1217.计算定积分⎰-+1211dx x x x18.已知x xx x x e ey e e y e y 3233,,+=+==是某二阶常系数齐次线性微分方程的三个特解,求该微分方程19.设),(y x z z =是由方程0)32arctan(=-++xyz z y x 所确定的函数,求全微分)0,0(|dz 20.计算二次积分⎰⎰-111cos x dyyy dx 21.设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛541431,100110111,2111C B A ,求矩阵X ,使C AXB =22.求方程组⎪⎩⎪⎨⎧=--+=+-+=-+852725243214321321x x x x x x x x x x x 的通解四、证明题(本题10分)23.设函数)(x f 在闭区间]1,0[上连续,在开区间)1,0(内可导,且0)1(,1)0(==f f ,证明:(1)在开区间)1,0(内至少存在一点η,使得ηη=)(f (2)在开区间)1,0(内至少存在一点ξ,使得ξξξξ2)()(=+'f f 五、综合题(本题共2小题,每小题20分,总计20分)24.设函数)(x f 满足)42()()(-=-'x e x f x f x,且5)0(=f ,求:(1)函数)(x f 的解析式(2)曲线)(x f y =的凹凸区间与拐点25.设函数)(x f 在闭区间),1[+∞上单调增加,且0)1(=f .曲线)(x f y =与直线)1(>=t t x 及x 轴所围成的曲边三角形记为t D .已知t D 的面积为1ln +-t t t ,求当e t =时,t D 绕x 轴旋转一周所形成的旋转体的体积答案选择题1-5AADCD 6-8BDB填空题9.110.011.112.2113.e 314.4计算题15.1-16.Cx x ++-+2arctan 2)3ln(17.41π-18.xe y y y 3223=+'-''19.dy dx dz 3231|)0,0(--=20.231cos 1sin -+21.⎪⎪⎭⎫ ⎝⎛01011122.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛003210110131114321C C x x x x 证明题23.(1)x x f x F -=)()(零点定理;(2)2)()(x x xf x g -=罗尔定理24.(1))54()(2+-=x x e x f x;(2)拐点)2,1(),8,1(1e e --,凹区间),1(),1,(+∞--∞凸区间)1,1(-25.)2(-e π。
江苏省专转本高数真题及答案高等数学试题卷(二年级)注意事项:出卷人:江苏建筑大学-张源教授1、考生务必将密封线内的各项目及第 2页右下角的座位号填写清楚. 3、本试卷共8页,五大题24小题,满分150分,考试时间120分钟. 一、选择题(本大题共6小题,每小题4分,满分24分) 1、极限 lim(2xsin 1 Sin 3x )=()x xA. 0B.2C.3D.52、设f (x)二2)sinx ,则函数f (x )的第一类间断点的个数为()|x|(x -4)'A. 0B.1C.2D.3133、设 f(x) =2x 2 -5x 2,则函数 f(x)()A.只有一个最大值B.只有一个极小值C.既有极大值又有极小值D.没有极值34、设z =ln(2x)-在点(1,1)处的全微分为()y1 1A. dx - 3dyB. dx 3dyC. 一 dx 3dyD. - dx - 3dy2 21 15、二次积分pdy.y f (x, y )dx 在极坐标系下可化为()sec'— 'sec jA. —4d 寸 o f (「cos 〒,「sin 寸)d 「B. —4d 丁 ? f (「cos 〒,「sin 寸)「d 「&下列级数中条件收敛的是()二、填空题(本大题共6小题,每小题4分,共24分)7要使函数f(x)=(1-2x )x 在点x=0处连续,则需补充定义f(0)= _________________ . 8、设函数 y = x (x 2 +2x +1)2 +e 2x ,贝卩 y ⑺(0) = _______ .江苏省 2 0 12 年普通高校专转本选拔考试2、考生须用钢笔或圆珠笔将答案直接答在试卷上, 答在草稿纸上无效. sec ? iC. o f (「cosd 「sin Jd 「D.4sec ?2d 丁 ? f (「cos 寸,「sin 寸):?d "「TVXTnW ?、n9、设y =x x (x >0),则函数y 的微分dy =.(1)函数f (x)的表达式;11、设反常积分[_e 」dx=q ,则常数a= ______________ . 12、幕级数£上律(x -3)n 的收敛域为 __________________ :“二 n3 三、计算题(本大题共8小题,每小题8分,共64 分)2x +2cosx —2 lim 厂x 0x ln(1 x)2116、计算定积分",-严.17、已知平面二通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平面二平行,又与x 轴垂直的直线方程.18、设函数“ f(x,xyr (x 2 y 2),其中函数f 具有二阶连续偏导数,函数具有二阶连-2续导数,求一Zc^cy19、已知函数f(x)的一个原函数为xe x ,求微分方程丫4/ 4^ f (x)的通解. 20、计算二重积分..ydxdy ,其中D 是由曲线y 「x-1,D闭区域.四、综合题(本大题共2小题,每小题10分,共20分)21、在抛物线y =x 2(x 0)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为2,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积.3x322、已知定义在(皿,畑)上的可导函数f(x)满足方程xf(x)-4( f(t)dt=x 3-3,试求:10、设向量a,b 互相垂直,且= 3,^=2,,贝 U ^+2b13、求极限 14、设函数 y = y(x)由参数方程 xdty = t 2 2lnt所确定, 求鱼dx dx 2 °15、求不定积分 2x 1 J 2~cos x1直线T 及x 轴所围成的平面(2)函数f(x)的单调区间与极值;(3)曲线y= f(x)的凹凸区间与拐点.五、证明题(本大题共2小题,每小题9分,共18分)123、证明:当0 : x :: 1 时,arcsinx x x3.6十x0 g(t)dt g(x)24、设f(x)一2—XHO,其中函数g(x)在(皿,母)上连续,且lim g(x丿=3证x T1—COSX卫(0) x = 01明:函数f (x)在X = 0处可导,且f (0)匕.一. 选择题1-5BCCABD二. 填空题7-12e°128x n(1 ln x)dx5ln 2 (0,6]三. 计算题13求极限x m0 2x 2 cos x - 216、计算定积分 ----------- dx .1x ? 2x T13 t -^dt 二21 1 :; t2 1 t2dt =2arctant 1 t2原式=x叫x2 2 cos x -2 2x—2si nx=limx_0x—sin x3= lim4x3 x刃2x314、设函数y = y(x)由参数方程所确定,求2』=t +21 nt dydxd2ydx2原式号dx dydtdx2t -t12td2y_d燈)dtdx2t2 dt t2dx2dxdtt2115、求不定积分2x 12dx. cos x2x 1原式=i'2■ dx ' cosx 二(2x 1)d tanx 二(2x 1) tanx - tanxd(2x 1) 原式=令.2x -1 “,则原式=.?? 32(1)函数f (x)的表达式;17、已知平面二通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平面二平行,又与x 轴垂直的直线方程.解:平面二的法向量n -OM 「=(0,3,一2),直线方向向量为S = n "「= (0,-2,-3),直线方程:x -1 y -1 z -10 一 -2 一 -3 18、设函数z 二f(x,xy^ (x 2 y 2),其中函数f 具有二阶连续偏导数,函数具有二阶连Z =f i f 2 y 2x ' zf i2 x f 2 xyf 22 2x 2y : .x :x.y19、已知函数f (x)的一个原函数为xe x ,求微分方程y” ? 4y ' 4y = f (x)的通解. 解:f (x) = (xe x ^ = (x 1)e x ,先求y ” ? 4y ' 4y = 0 的通解,特征方程:r 2 ? 4r *4 = 0,h 、2 = -2,齐次方程的通解为Y =(G C 2X )e'x .令特解为y =(Ax B)e x ,代入原方程9Ax 6A 9^x 1,有待定系数法得:__ 120、计算二重积分i iydxdy ,其中D 是由曲线y = :x-1,直线y= —x 及x 轴所围成的平面D 2闭区域.原式=ydy 丫 dx 1.j 0'2y12四. 综合题21、在抛物线y =x 2(x 0)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为2,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积. 3 解:设 P 点(x 0,x ° )(x 0 0),则 k 切=2x °,切线:,y - x ° = 2x 0(x- x °)续导数,求;2z解:9A=1QA+9B =1解得* A 」9 -1,所以通解为丫"6)宀(討?2x/即,y +x ° =2x °x ,由题意((y x^ 2x 0s y)dy =彳,得 X0 = 2,P(2,4)(2)函数f(x)的单调区间与极值;(3)曲线—f(x)的凹凸区间与拐点.x解:(1)已知 xf(x)-4 4 f (t)dt =X 3 -3两边同时对 x 求导得:f (X )? x 「(x)-4f(x) =3x 2 3即.y" — -y=3x 则 y = —3x 2+cx 3 由题意得:f(1)=—2, c=1,贝U f(x)=—3x 2 + x 3 ■ x ' (2) f (x) =3x 2 -6x = 0,论=0,x 2 = 2 列表讨论得在(-二,0) (2,::)单调递增,在(0,2)单调递减。
X 省 202X 年一般高校专转本选拔考试高数 真题卷一、单项选择题〔本大题共 6 小题,没小题 4 分,共 24 分。
在以下每题中选出一个正确答案,请在答题卡上将所选项的字母标号涂黑〕1.设)(x f 为连续函数,则0)(0='x f 是)(x f 在点0x 处取得极值的( ) A.充分条件 B.必要条件C.充分必要条件D.非充分非必要条件 2.当0→x 时,以下无穷小中与x 等价的是( )A.x x sin tan -B.x x --+11C.11-+xD.x cos 1-3.0=x 为函数)(x f =000,1sin ,2,1>=<⎪⎪⎩⎪⎪⎨⎧-x x x x x e x的〔 〕A.可去间断点B.跳跃间断点C.无穷间断点D.连续点4.曲线xx x x y 48622++-=的渐近线共有〔 〕A.1 条B.2 条C.3 条D.4 条 5.设函数)(x f 在 点0=x 处可导,则有〔 〕A.)0(')()(lim0f x x f x f x =--→ B.)0(')3()2(lim 0f xx f x f x =-→C.)0(')0()(lim 0f x f x f x =--→D.)0(')()2(lim 0f xx f x f x =-→ 6.假设级数∑∞-1-n n 1pn )(条件收敛,则常数P 的取值范围〔 〕 A. [)∞+,1 B.()∞+,1 C.(]1,0 D.()1,0二、填空题〔本大题共 6 小题,每题 4 分,共 24 分〕7.设dx e xx a x xx ⎰∞-∞→=-)1(lim ,则常数a= .8.设函数)(x f y =的微分为dx e dy x2=,则='')(x f .9.设)(x f y =是由参数方程 {13sin 13++=+=t t x t y 确定的函数,则)1,1(dxdy = .10.设x x cos )(F =是函数)(x f 的一个原函数,则⎰dx x xf )(= .11.设 →a 与 →b 均为单位向量, →a 与→b 的夹角为3π,则→a +→b = .12.幂级数 的收敛半径为 .三、计算题〔本大题共 8 小题,每题 8 分,共 64 分〕13.求极限xx dte xt x --⎰→tan )1(lim2.14.设),(y x z z =是由方程0ln =-+xy z z 确定的二元函数,求22zx∂∂ .15.求不定积分dx x x ⎰+32. 16.计算定积分⎰210arcsin xdx x .17.设),(2xy y yf z =,其中函数f 具有二阶连续偏导数,求yx ∂∂∂z218.求通过点〔1,1,1〕且与直线112111-+=-=-+z y x 及直线{12z 3y 4x 05=+++=-+-z y x 都垂直的直线方程.19.求微分方程x y y y 332=+'-''是通解. 20.计算二重积分dxdy y x⎰⎰D 2,其中 D 是由曲线 1-=y x 与两直线1,3==+y y x 围成的平面闭地域.四.证明题〔本大题共 2 小题,每题 9 分,共 18 分〕 21.证明:当π≤<x 0时,2cos 2sin <+x x x .22.设函数)(x f 在闭区间[]a a ,-上连续,且)(x f 为奇函数,证明: 五、综合题〔本大题共 2 题,每题 10 分,共 20 分〕23.设平面图形 D 由曲线 xe y = 与其过原点的切线及 y 轴所围成,试求; (1)平面图形D 的面积;(2)平面图形 D 绕 x 轴旋转一周所形成的旋转体的体积.24.已知曲线)(x f y =通过点〔-1,5〕,且)(x f 满足方程3512)(8)(3x x f x f x =-',试求: (1)函数)(x f 的表达式;(2)曲线)(x f y =的凹凸区间与拐点.X 省 202X 年一般高校专转本选拔考试高数 真题卷答案一、单项选择题 1-6 DBACD 解析: 二、填空题 7.-1 8.4三、计算题 13.1四、证明题21.证:令2cos 1sin )(-+=x x x x f则x x x x x f sin 2cos sin )(-+=' 因为 π≤<x 0 所以 0)(<''x f因为 ↓')(x f 所以 0)0()(='<'f x f 所以 ↓)(x f因为 0)0()(=<f x f 所以得出 22.证〔1〕 〔2〕dx x f dx x f dx x f aaaa⎰⎰⎰+=--00)()()(= 0 五、综合题23.〔1〕⎰⎰⎰-=-=10210102)(S x e e dx ex e xx 〔2〕ππ21612-e24.〔1〕35384)(x x x f -= 〔2〕拐点:〔0,0〕〔1,3〕 凹 :〔-∞,0〕,〔1,+∞〕 凸 :〔0,1〕t x -=。
江苏省一般高校“专转本”选拔考试 高等数学 试题卷(二年级)注意事项:出卷人:江苏建筑大学-张源专家1、考生务必将密封线内旳各项目及第2页右下角旳座位号填写清晰.2、考生须用钢笔或圆珠笔将答案直接答在试卷上,答在草稿纸上无效.3、本试卷共8页,五大题24小题,满分150分,考试时间120分钟. 一、 选择题(本大题共6小题,每题4分,满分24分) 1、极限=+∞→)3sin 1sin2(lim xxx x x ( )A. 0B. 2C. 3D. 52、设)4(sin )2()(2--=x x xx x f ,则函数)(x f 旳第一类间断点旳个数为( )A. 0B. 1C. 2D. 3 3、设232152)(x x x f -=,则函数)(x f ( ) A.只有一种最大值 B. 只有一种极小值 C.既有极大值又有极小值 D. 没有极值 4、设yx z 3)2ln(+=在点)1,1(处旳全微分为 ( ) A. dy dx 3- B. dy dx 3+ C. dy dx 321+ D. dy dx 321- 5、二次积分dx y x f dy y),(11⎰⎰ 在极坐标系下可化为( )A. ρθρθρθπθd f d )sin ,cos (40sec 0⎰⎰ B. ρρθρθρθπθd f d )sin ,cos (40sec 0⎰⎰C.ρθρθρθππθd f d )sin ,cos (24sec 0⎰⎰ D. ρρθρθρθππθd f d )sin ,cos (24sec 0⎰⎰6、下列级数中条件收敛旳是( )A. 12)1(1+-∑∞=n n n nB. ∑∞=-1)23()1(n nn C. ∑∞=-12)1(n n n D. ∑∞=-1)1(n n n 二、填空题(本大题共6小题,每题4分,共24分)7要使函数xx x f 1)21()(-=在点0=x 处持续,则需补充定义=)0(f _________.8、设函数xe x x x y 22212(+++=),则=)0()7(y____________.9、设)0(>=x x y x,则函数y 旳微分=dy ___________.10、设向量→→b a ,互相垂直,且,,23==→→b a ,则=+→→b a 2___________.11、设反常积分21=⎰+∞-dx e ax ,则常数=a __________. 12、幂级数nn nn x n )3(3)1(1--∑∞=旳收敛域为____________. 三、计算题(本大题共8小题,每题8分,共64分)13、求极限)1ln(2cos 2lim 320x x x x x +-+→.14、设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所拟定,求22,dx y d dx dy .15、求不定积分⎰+dx x x 2cos 12.16、计算定积分dx x x ⎰-21121 .17、已知平面∏通过)3,2,1(M 与x 轴,求通过)1,1,1(N 且与平面∏平行,又与x 轴垂直旳直线方程.18、设函数)(),(22y x xy x f z ++=ϕ,其中函数f 具有二阶持续偏导数,函数ϕ具有二阶持续导数,求yx z∂∂∂2.19、已知函数)(x f 旳一种原函数为xxe ,求微分方程)(44x f y y y =+'+''旳通解.20、计算二重积分⎰⎰Dydxdy ,其中D 是由曲线1-x y =,直线x y 21=及x 轴所围成旳平面闭区域.四、综合题(本大题共2小题,每题10分,共20分)21、在抛物线)0(2>=x x y 上求一点P ,使该抛物线与其在点P 处旳切线及x 轴所围成旳平面图形旳面积为32,并求该平面图形绕x 轴旋转一周所形成旳旋转体旳体积.22、已知定义在),(+∞-∞上旳可导函数)(x f 满足方程3)(4)(31-=-⎰x dt t f x xf x,试求:(1)函数)(x f 旳体现式; (2)函数)(x f 旳单调区间与极值; (3)曲线)(x f y =旳凹凸区间与拐点.五、证明题(本大题共2小题,每题9分,共18分)23、证明:当10<<x 时,361arcsin x x x +>.24、设⎪⎩⎪⎨⎧≠=⎰0)0(0)()(2= x g x x dt t g x f x ,其中函数)(x g 在),(+∞-∞上持续,且3cos 1)(lim0=-→x x g x 证明:函数)(x f 在0=x 处可导,且21)0(='f .一.选择题 1-5 B C C A B D 二.填空题7-12 2-e 128 dx x x n)ln 1(+ 5 2ln ]6,0(三.计算题13、求极限)1ln(2cos 2lim 320x x x x x +-+→.原式=30304202sin lim 4sin 22lim 2cos 2lim xxx x x x x x x x x x -=-=-+→→→ 121621lim 6cos 1lim 22020==-=→→x xx x x x14、设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所拟定,求22,dx y d dx dy . 原式=t tt t dt dx dt dy dx dy 211222=++==12112)()(22222+=+===t t tdt dx dt dx dy d dx dx dy d dx y d15、求不定积分⎰+dx x x 2cos 12.原式=⎰⎰⎰+-+=+=+)12(tan tan )12(tan )12(cos 122x xd x x x d x dx x xC x x x xdx x x +++=-+=⎰cos ln 2tan )12(tan 2tan )12(16、计算定积分dx x x ⎰-21121 . 原式=令t x =-12,则原式=613arctan 211221312312π==+=+⎰⎰t dt t dt t t t 17、已知平面∏通过)3,2,1(M 与x 轴,求通过)1,1,1(N 且与平面∏平行,又与x 轴垂直旳直线方程.解:平面∏旳法向量)2,3,0(-=⨯=→→→i OM n ,直线方向向量为)3,2,0(--=⨯=→→→i n S , 直线方程:312101--=--=-z y x18、设函数)(),(22y x xy x f z ++=ϕ,其中函数f 具有二阶持续偏导数,函数ϕ具有二阶持续导数,求yx z∂∂∂2.解:x y f f xz221⋅'+⋅'+'=∂∂ϕϕ''⋅⋅+''+'+⋅''=∂∂∂y x f xy f x f y x z 2222212219、已知函数)(x f 旳一种原函数为xxe ,求微分方程)(44x f y y y =+'+''旳通解. 解:xxex xe x f )1()()(+='=,先求044=+'+''y y y 旳通解,特性方程:0442=++r r ,221-=、r ,齐次方程旳通解为x e x C C Y 221)(-+=.令特解为xe B Ax y )(+=*, 代入原方程得:1969+=++x B A Ax ,有待定系数法得:⎩⎨⎧=+=19619B A A ,解得⎪⎩⎪⎨⎧==27191B A ,因此通解为x x e x e x C C Y )27191()(221+++=-20、计算二重积分⎰⎰Dydxdy ,其中D 是由曲线1-x y =,直线x y 21=及x 轴所围成旳平面闭区域. 原式=⎰⎰+=1212121y ydx ydy .四.综合题21、在抛物线)0(2>=x x y 上求一点P ,使该抛物线与其在点P 处旳切线及x 轴所围成旳平面图形旳面积为32,并求该平面图形绕x 轴旋转一周所形成旳旋转体旳体积. 解:设P 点)0)(,(0200>x x x ,则02x k =切,切线:)(2,0020x x x x y -=- 即x x x y 0202,=+,由题意32)2(200020⎰=-+x dy y x x y ,得20=x ,)4,2(P πππ1516)44(21224=--=⎰⎰x d x x d x V x 22、已知定义在),(+∞-∞上旳可导函数)(x f 满足方程3)(4)(31-=-⎰x dt t f x xf x,试求:(1)函数)(x f 旳体现式; (2)函数)(x f 旳单调区间与极值; (3)曲线)(x f y =旳凹凸区间与拐点. 解:(1)已知3)(4)(31-=-⎰x dt t f x xf x两边同步对x 求导得:23)(4)()(x x f x f x x f =-'+即:x y xy 33=-',则323cx x y +-=由题意得:2)1(-=f ,1=c ,则323)(x x x f +-=(2)2,0,063)(212===-='x x x x x f 列表讨论得在),2()0,(+∞⋃-∞单调递增,在)2,0(单调递减。
江苏省专转本高数模拟试题与解析第六套江苏省2022年普通高校“专转本”统一考试模拟试卷(六)解析高等数学注意事项:1.考生务必将密封线内的各项填写清楚。
2.考生必须要钢笔或圆珠笔将答案直接写在试卷上,写在草稿纸上无效。
3.本试卷五大题24小题,满分150分,考试时间120分钟。
一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合要求的,请把所选项前的字母填在题后的括号内)。
1、下列各极限正确的是()1某A、lim(1)e某0某C、lim某in某1B、lim(1)某e某某1111D、lim某in1某0某某2、已知当某0时,某2ln(1某2)是inn某的高阶无穷小,而inn某又是1co某的高阶无穷小,则正整数n()A、1B、2C、3D、43、若f(某)f(某),且在0,内f(某)0、f(某)0,则在(,0)内必有()''A、f(某)0,f(某)0''B、f(某)0,f(某)0C、f(某)0,f(某)0D、f(某)0,f(某)0某244、曲线y2的渐近线共有()某5某6A、1条B、2条C、3条D、4条5、设f(某)有连续的导函数,且a0、1,则下列命题正确的是()A、f(a某)d某1f(a某)CB、f(a某)d某f(a某)CaC、(f(a某)d某)af(a 某)D、6、下列级数条件收敛的是()f(a某)d某f(某)C2nA、2n1nB、n1nn11(1)nC、nn1D、n1(1)nn二、填空题(本大题共6小题,每小题6分,共24分,请把正确答案的结果添在划线上)。
7、已知f(0)2,则limh0f(h)f(h)h8、已知曲线y2某33某24某5,则其拐点为9、设函数(某)1te2cotdt,则函数(某)的导数(某)某2某tan2某21某)d某10、(11某211、交换积分次序20d某f(某,y)dy某2某12、如果a3,,2,b,2,1,且ab,则____________三、计算题(本大题共8小题,每小题8分,共64分)。
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
江苏省 2013 年普通高校“专转本”选拔考试高等数学 试题卷(二年级)1、本试卷分为试题卷和答题卡两部分,试题卷共 3 页,全卷满分 150 分,考试时间 120 分钟.2、必须在答题卡上作答,作答在试题卷上无效。
作答前未必将自己的姓名和准考证号准确清晰地填在试题卷和答题卡上的指定位置。
3、考试结束时,须将试题卷和答题卡一并交回。
(本大题共 6 小题,每小题 4 分,满分 24 分。
在下列每小题中,选出一个正确答案,请在答题卡上将所选项的字母标号涂黑) 1、当 x 0时,函数 f (x) ln(1 x) x 是函数 g(x) x 2的 ( )2、曲线y22x x 的渐近线共有 ( )x 23x 2A. 1 条B. 2 条C. 3 条D. 4 条x0,则点 x 0 是函数 f (x)的x01dy4、设 y f ( ) ,其中 f 具有二阶导数,则2 xdx1 121 1 121 A.2 f ( )3 f ( ) B.4 f ( ) 3 f ( )x xx x x xx x 1 121 1 121 C. 2 f ( ) 3 f ( ) D. 4 f ( ) 3 f ( )注意事项: A. 高阶无穷小 B. 低阶无穷小C. 同阶无穷小D. 等价无穷小3、已知函数 f(x)sin 2x x x1x1A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、连续点x xx xx xx x5、下列级数中收敛的是6、已知函数f (x) 在点 x 1 处连续,且lim f(x)x 1x 21切线方程为A 、 n1 2 n1 nn B 、n 1(n 1)C 、n!12nD 、 n n 1 3n1 1 ,则曲线f(x)在点 (1,f (1))处的A. y x 1B. y 2x 2C. y 3x 3D.二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)A(1,1,1),B(2,3,4), C(3,4,5) ,则 ABC 的面积为▲111、设 lim( a x)xe ,则常数 a ▲x0a x2n2 x n的收敛域为▲ n1 n8 小题,每小题 8 分,共 64 分)13 、求极限 lim e x 1x 0ln(1 x) x14 、设函数 z(x, y) 由方程 z 33xy 3z1 所确定,求2dz 及2.x15 、求不定积分 2x cos2xdx . 16 、计算定积分 2 dx2 4 x 217 、设函数 z 2 2xf(x ,e 3y) ,其中函数 f具有二阶连续偏导数,求 yx18 、 已知直线 yz 3y z0 平面 0x上, 又知直线 y 3tt 与平面 平行, 求平面 的 方程. 19 、已知函数f (x)是一阶微分方程2tdy y 满 y(0) 1 的特解, 求二阶常系数非齐次线性dxy 4x 47、设函数 f (x)xsin 1xx 0 在点 x 0 处连续,则常数 a ▲8、已知空间三点 x 9、设函数 y y(x) 由参数方程 y t 2t 3 1d 2所确定,则 dyx110、设向量a, b 互相垂直,且 a 3, b 2, ,则a 2 b12 、幂级数微分方程y 3y 2y f (x)的通解.20 、计算二重积分xdxdy ,其中D 是由曲线y 4 x2(x 0) 与三条直线 Dy x, x 3, y 0 所围成的平面闭区域.四、综合题(本大题共2 小题,每小题10 分,共 20 分)21、设平面图形 D 由曲线x 2 y,y x 与直线y 1 围成,试求:( 1)平面图形 D 的面积;( 2)平面图形 D 绕x 轴旋转一周所形成的旋转体的体积.x2 1 122、已知F(x) (9t35t2)dt是函数f (x) 的一个原函数,求曲线y f(x) 的凹凸区间与拐点.五、证明题(本大题共2 小题,每小题9 分,共 18 分)223、证明:当x 1 时,(1 ln x)2 2x 1 .abb24、设函数f(x)在[a,b] 上连续,证明:函数f(x)dx 2[ f(x) f(a b x)]dx .aa江苏省 2013 年普通高校“专转本”统一考试等数学(二年级) 试卷答案6 小题,每小题 4 分,共 24 分) B 4、B 5、D 6、A6 小题,每小题 4 分,共 24 分)31110 、 2 11 、 y xln x cx 12 、 [ , ) 4 228 小题,每小题 8 分,共 64 分)xx x e e xe12 1 1x sin 2x xcos2x sin2x C 22416、令 x 2sin t,dx 2costdt,x 0,t 0;x 2,t ,213 、原式= lim xe x ln(1 x) x 0 x ln(1 x) x e lim x0 ln (1 2x x ) xe lim x0x xe 1 1x 2x zx 3y y z F y 3z 2 3 1 z 2 , y F z 3x x 3z 2 3 1 z 2 d z d x x1 z2 d y 2 z 2 x15、( z )x ( y 2 1zy( 2z) z 2yz y 2 x 1z 22 22 (1 z ) (1 z ) 2y 2z (1 z 2)32 1 2 12 12x cos2xdx x d sin 2x x sin 2x xsin 2xdx x sin 2x 22 2 xd cos2x 2 一、选择题(本大题共1、 C 2 、 C 3 7、 0 8 、6 9三、计算题(本大 1 (1 x)*2 3x, F z 3z 23 1 x 2sin 2x 1 xcos2x cos2xd x则原式 = 2cost 2dt 02 2costcost 2dt 01 cost 2t 2cos 1122t dt 02(1 2t )dt2cos2cos21dttan t 22z2x 3yyx2x 3y 2x 3y 2x 3y( f 21 2x f 22 2e ) 3e 6e f 218、 直 线 方 向 向 量 S 1 (1, 1,1) (1, 3, 1)(4, 2, 2), S 2 ( 3,1,2), 平 面 的 法 向 量(6, 2,10), 在第一条直线上任取一点(1,1,1),该点也在平dy 1 1 19、 由 y 得 dy dx, dy dx y yy(0) 1 得 C 1, 所以 y e x ,即 y 3y 2y e x , r 2 3r 2 0,r 1 1,r 2 2,齐次方程的通解为 Y C 1e xC 2e 2x . 令特解为 y xAe x , yy Ae x Ae x xAe x , 代入原方程得: Ae x e x, A 1 ,所以通解为 y Y C 1e x C 2e 2x xex41 428sin ) (27 tan 8sin ) 903 4 432 小题,每小题 10 分,共 20 分)1 (2 y y 2)dy (2 2 y 2 1y 3)得 x 1 , 另外 x 0为二导不存在的点, 通过列表分析得: 在 ( ,0),(1,拐点为 (0,0),(1,8) 。
2022-2023学年江苏省苏州市成考高升专数学(文)自考测试卷(含答案带解析) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为()A.1/4B.1/3C.1/2D.3/42.若函数f(x)=/Cr)的定义域是[―1,1],那么f(2x-1)的定义域是()A.[0,1]B.[-3,1)C.[-1,1)D.[-1,0)3.4.从一副52张扑克牌中,任抽一张得到黑桃的概率是()A.A.B.C.D.5.A,B,C,D,E五人并排站成一排,如果B必须站在A的左边(A,B可以不相邻),那么不同的排法共有()A.A.24种B.60种C.90种D.120种6.7.函数的图像之间的关系是()。
A.关于原点对称B.关于x轴对称C.关于直线y = 1对称D.关于y轴对称?8.下列函数中,最小正周期为π的函数是()A.y=sinx+sinx2B.y=sin2xC.y=cosxD.9.10.11.经过点B(0,3)且与直线x+2y-3=0垂直的直线方程为()A.A.2x-y-3=0B.y-2x-3=0C.x+2y-6=0D.2x+y-3=012.设等比数列()。
A.8B.16C.32D.6413.14.b = 0 是直线y = kx + b 过原点的()A.A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件15.()A.B.C.D.16.命题甲:直线y=b-x过原点,命题乙:b=0,则()A.A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件C.甲不是乙的充分条件也不是乙的必要条件D.甲是乙的充分必要条件17.18.已知f(2x)=x2+1,则f(1)的值为()A.A.2B.1C.0D.319.若M(a,b)是直线Y=-x上的一点,则a与b的关系成立的是()A.A.a=bB.a=-bC.D.a>b20.在等差数列{an}中,已知a1+a2+a3+a4+a5=15,则a3= ()。
2001年江苏省普通高校“专转本”统一考试 ___________________________________________ 12002年江苏省普通高校“专转本”统一考试 ___________________________________________ 62003年江苏省普通高校“专转本”统一考试 __________________________________________ 10 2004年江苏省普通高校“专转本”统一考试 __________________________________________ 14 2005年江苏省普通高校“专转本”统一考试 __________________________________________ 182006年江苏省普通高校“专转本”统一考试 __________________________________________ 212007年江苏省普通高校“专转本”统一考试 __________________________________________ 24 2008年江苏省普通高校“专转本”统一考试 __________________________________________ 28 2009年江苏省普通高校“专转本”统一考试 __________________________________________ 31 2010年江苏省普通高校“专转本”统一考试 __________________________________________ 342001年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 37 2002年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 38 2003年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 40 2004年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 41 2005年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 432006年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 45 2007年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 47 2008年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 49 2009年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 51 2010年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 532001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz 10、设)(x f 为连续函数,则+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim 22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12.16、已知⎰∞-=+02211dx x k ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
江苏省2022年普通高校专转本选拔考试《高等数学》试题和答案一、选择题(本大题共8小题,每小题4分,共32分) 1.要使函数2()(1)x xf x x -=-在区间(11)-,内连续,则应补充定义(0)f =( A )A.2e -B.1e -C.eD.2e 2.2sin ()(1)xf x x x =-的第二类间断点的个数为( C )A.0B.1C.2D.33.设(1)1f '=,且0(1)(1)lim 1h f ah f ah h →--+=,则常数a 的值为( B )A.1-B.12-C.12 D.14.设()F x 为()f x 的一个原函数,且()f x 可导,则下列等式正确的是( D ) A.()()dF x f x C =+⎰ B.()()df x F x C =+⎰ C.()()F x dx f x C =+⎰ D.()()f x dx F x C =+⎰5.设二重积分=Dπ,其中222{(,|,0}D x y x y R x =+≤≥,则R 的值为( D )6.下列级数条件收敛的是( C )A.21sin n n n ∞=∑ B.211(1)sin n n n ∞=-∑C.1(1)nn ∞=-∑ D.211(1)sin n n n ∞=-∑7.若矩阵113A 12102a --⎛⎫⎪= ⎪⎪-⎝⎭的秩为2,则常数a 的值为( A ) A.4- B.2- C.2 D.48.设1100001111111234D --=--,ij M 是D 中元素ij a 的余子式,则41424344+++=M M M M ( B )A.2-B.0C.1D.2二、填空题(本大题共6小题,每小题4分,共24分)9.sin lim n n n→∞= 0 . 10.设函数20()arctan 0x x f x x x ⎧≠⎪=⎨⎪⎩,=0,则(0)f '= 1 .11.设函数()sin3f x x =,则2022(0)f =() 0 . 12.若+242=x ae dx e ∞-⎰,则常数a = -2 .13.若幂级数1nn n n x a ∞=∑的收敛半径为2,则幂级数1(1)n n n a x ∞=-∑的收敛区间为13()22, . 14.若向量组1234(1,0,2,0)(1,0,0,2)(0,1,1,1)(2,1,,2)k αααα====,,,线性相关,则k = 4 .三、计算题(本大题共8小题,每小题8分,共64分)15. 求极限sin 0sin 1lim sin x x e x x x→--解:sin 0sin 1lim sin x x e x x x →--sin 20sin 1=lim x x e x x →--sin 0cos cos =lim 2x x e x xx →- sin 0cos 1=lim 2x x x e x →-⋅0cos sin =lim 2x x x x →⋅1=216. 求极限1arctan x dx x⎰解:1arctan x dx x⎰21=arctan 2x d x ⎰2211=arctan arctan 22x x d x x ⋅-⎰2222111=arctan ()1221+x x dx x xx ⋅-⋅⋅-⎰22211=arctan +221+x x dx x x ⋅⋅⎰ 22111=arctan +(1)221x dx x x ⋅-+⎰211=arctan +(arctan )22x x x C x ⋅-+17.设31()x f x x <=≥ 1,求定积分51()f x dx -⎰。
解:51()f x dx -⎰3151=+dx -⎰⎰51=0+⎰31=1t tdt t ⋅+⎰23111=1t dt t -++⎰311=(1)1t dt t -++⎰ 2311=[+ln 1]2t t t -+=2+ln218. 设(,)z z x y =是由方程z e xy yz zx =++所确定的函数,求全微分dz 。
解:设(,,)z F x y z e xy yz zx =---,x F y z '=--,y F x z '=--,z z F e x y '=--z x z z F y z x F e x y '∂+=-='∂--,z y zz F x zy F e x y'∂+=-='∂--,z z y z x z dz dx dy e x y e x y ++=+---- 19. 求微分方程+234x y y y e '''-=的通解。
解:特征方程2+230r r -=,解得12=3=1r r -,312x x Y C e C e -=+为+230y y y '''-=的通解。
1λ=是特征方程2+230r r -=的单根,所以*x y axe =为原微分方程的特解*()(1)x y a x e '=+,*()(2)x y a x e ''=+,代入原微分方程得44x x ae e =,所以=1a *x y xe =为原微分方程的特解,所以*312x x x y Y y C e C e xe -=+=++为原微分方程的通解。
20. 求二重积分Dxydxdy ⎰⎰,其中D为由曲线y 20x y x +==,所围成的闭区域。
解:Dxydxdy⎰⎰120=x dx xydy -⎰1201=[2xy dx⎰1201=[2xy dx ⎰ 13201=(54)2x x x dx -+⎰4321015=[+]86x x x -7=2421. 设110A 120111-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,22B 5610⎛⎫⎪= ⎪⎪-⎝⎭,求矩阵X ,使AX=B 。
11022(A|B)1205611110-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭110220103402112-⎛⎫ ⎪→ ⎪ ⎪-⎝⎭110220103400156-⎛⎫ ⎪→ ⎪ ⎪---⎝⎭110220103400156---⎛⎫ ⎪→ ⎪ ⎪⎝⎭100120103400156⎛⎫ ⎪→ ⎪ ⎪⎝⎭12X 3456⎛⎫ ⎪∴= ⎪ ⎪⎝⎭22. 求方程组123412341234365+36222x x x x x x x x x x x x ++-=⎧⎪-+=-⎨⎪-+-=⎩的通解。
解:增广矩阵11136A 1513612212-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭1113606061203124-⎛⎫⎪→-- ⎪⎪--⎝⎭ 111360*********-⎛⎫ ⎪→- ⎪ ⎪--⎝⎭111360101200112-⎛⎫ ⎪→- ⎪ ⎪-⎝⎭110240101200112-⎛⎫⎪→- ⎪ ⎪-⎝⎭100120101200112-⎛⎫ ⎪→- ⎪ ⎪-⎝⎭,其对应的齐次线性方程组的基础解系为1111ξ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,本身的特解为2220η⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,通解为1212,1210y k k k R ξη⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
四、证明题(本题10分)23. 证明:当04x π<<时,0cos x t e tdt x >⎰。
证明:当04x π<<时,设0()cos x t F x e tdt x =-⎰,()cos 1x F x e x '=-,()(cos sin )0x F x e x x ''=->,()F x '∴在(0,)4π单调递增,()(0)0F x F ''∴>=()F x ∴在(0,)4π单调递增,()(0)0F x F ∴>=,0cos x t e tdt x ∴>⎰。
五、综合题(本大题共2小题,每小题10分,共20分)24.设a 为大于0的常数,D 为由曲线3(0)y ax x =≥与直线y ax =所围成的平面图形,x V 与y V 分别为D 绕x 轴与y 轴旋转所称旋转体的体积,已知=x y V V ,求常数a 的值并求此时D 的面积。
解:12320[()()]x V ax ax dx π=-⎰12260()x V ax x dx π=-⎰2371011[]37a x x π=-2421a π= 21301()3y y V dy a a ππ=-⎰,25330220331314=[]35315aay V y dy a y a a a a πππππ=-⋅-=⎰x y V V =,2442115a a ππ∴=,75a = D 的面积13077()55D S x x dx =-⎰2410711[]524x x =-720= 25.设定义在(,)-∞+∞上的函数()f x 满足方程3()4()=2xf x f x x '-,且(2)=0f ,求:(1)函数()f x 的解析式;(2)曲线()y f x =的凹凸区间与拐点。
解:(1)0(0)=0x f =时,;0x ≠时,24()()=2f x f x x x'-, 442()=(2)dx dx xx f x e C x e dx -⎰⎰+⎰4ln 24ln =(2)x x e C x e dx -+⎰424=(2)x C x x dx -+⋅⎰42=(2)x C x dx -+⎰42=()x C x-43=2Cx x -,把(2)=0f 代入得=1C ,43 ()=2f x x x -(2) 令32 ()=46=0f x x x '-,得驻点123=0=2x x ,,2 ()121212(1)f x x x x x ''=-=- (,0), ()0x f x ''∈-∞>;(0,1), ()0x f x ''∈<;(1,+), ()0x f x ''∈∞>所以()f x 的凸区间为(0,1);凹区间为(,0)(1+)-∞∞和,。
拐点为(0,0)和(1,1)-。