整式练习题
- 格式:docx
- 大小:99.59 KB
- 文档页数:2
整式数学练习题整式是由字母、数字及四种基本运算符号(加法、减法、乘法、乘方)组成的代数式。
它是数学中重要的基础概念,掌握整式的性质与运算方法对于学习代数和解决实际问题具有重要意义。
下面是一些整式练习题,帮助你巩固整式的知识。
练习题一:计算以下整式的值:1. 3x - 2y,当x = 4,y = 2时;2. 2a^2 + 3ab - b^2,当a = 1,b = 2时;3. (x - y)(x + y),当x = 3,y = 2时;4. (2x + 3y)^2,当x = 2,y = 1时。
练习题二:合并以下整式:1. 5x + 3y - 2x + 4y;2. 4a^2b - 2ab^2 + 3ab;3. 2x(x - 3) - 3(x - 3);4. (a + b)(a - b) + 3(a - b)。
练习题三:展开并化简以下整式:1. (2x - 1)(3x + 4);2. (a + b)^2 - (a - b)^2;3. (x + y)^3;4. (2a - b)(3a^2 + ab - 2b^2)。
练习题四:将下列整式因式分解:1. 2x^2 - 3xy + y^2;2. a^2 - 4ab + 4b^2;3. x^3 - y^3;4. 4a^2 - 25。
练习题五:求以下整式的最大公因式和最小公倍数:1. 6x^2y^2 - 9xy^3;2. 2a(a - b) + b(b - a);3. (x + y)^2 - 2(x + y)(x - y) + (x - y)^2;4. 3a^2b - ab^2 + 2a^2 - 2ab。
练习题六:解方程:1. 3x - 4 = 7;2. (x + 3)(x - 2) = 0;3. x^2 - 5x + 6 = 0;4. (y - 2)(y + 1) = 0。
练习题七:求以下函数的定义域:1. f(x) = √(4x - 1);2. g(x) = 1/x;3. h(x) = 3/(x - 2);4. k(x) = √(x^2 - 9)。
整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
整式的运算基础练习题整式的运算是数学中的一个重要分支,它涉及到各种基本运算规则,如加法、减法、乘法和除法等。
下面是一些关于整式运算的基础练习题,可以帮助大家巩固和加深对整式运算的理解。
1、单项式的加法1)计算:2x + 3x = __x2)计算:5a - 2a = __a答案:(1)5x;(2)3a2、多项式的加法1)计算:2x - 3x + 4x = __x2)计算:5a + 2b + 3a = __a + __b答案:(1)3x;(2)8a;2b3、单项式的乘法1)计算:2x × 3x = __x²2)计算:5a × 4b = __ab²答案:(1)6x2(2)20ab24、多项式的乘法1)计算:(2x + 3y) × (x - y) = __x² - __xy + __y²2)计算:(3a - 2b) × (4a + 5b) = __a×__b² + __a×__b - __a ×__b² - __a×__b答案:(1)x2xy+3y2(2)12a×4b+5a×2b−3a×5b−2a×4b即48ab+10ab−15ab−8ab,最终结果为45ab。
整式的运算测试题一、选择题1、下列哪个选项是整式?()A. 2/3B. 4x/3yC. x + 2yD. √22、下列哪个选项是整式的乘法?()A. 3(x + y)B. 4x^2yC. (x + 2y)(x - 2y)D. x + 2y = 03、下列哪个选项是整式的除法?()A. (x + y)/2B. (x + 2y)(x - 2y)C. x \div 2yD. 2x^2 - x = y二、填空题1、如果 a和 b是整数,那么 a + b的值是____。
2、如果 x和 y是整数,那么 x - y的值是____。
整式运算练习题一、选择题(每题2分,共10分)1. 下列哪个表达式是单项式?A. 3x^2 - 5x + 2B. 4x^3C. 2x - 3D. x + 12. 计算下列哪个表达式的结果是常数?A. 3x^2 - 2xB. x^3 + 2x^2 + 3C. 5D. 4x + 33. 两个多项式相加,结果为0,这两个多项式是:A. 互为相反数B. 互为倒数C. 互为倍数D. 互为同类项4. 下列哪个选项不是同类项?A. 3x^2 和 2x^2B. 4y 和 5yC. 3a^2b 和 5a^2bD. 2x 和 3y5. 多项式3x^3 - 2x^2 + x - 5的项数是:A. 1B. 2C. 3D. 4二、填空题(每题2分,共10分)6. 合并同类项:4x^2 + 3x - 2x^2 - 5x = __________。
7. 计算多项式2x^3 - 3x^2 + 4x - 5与多项式3x^3 + 2x^2 - 4x +6的差,结果为__________。
8. 如果多项式ax^3 + bx^2 + cx + d与多项式ex^3 + fx^2 + gx +h相加,结果为0,那么a + e = __________。
9. 多项式2x^2 - 3x + 1除以x - 1的商为2x + __________。
10. 如果多项式x^2 + 2x + 1可以表示为(x + a)^2的形式,那么a的值为__________。
三、计算题(每题5分,共30分)11. 计算下列表达式的值:(2x - 3)(3x + 4)。
12. 展开并简化下列表达式:(x + 1)(x - 1)(x + 2)。
13. 将多项式4x^3 - 5x^2 + 2x - 1除以多项式2x - 1,求商和余数。
14. 计算下列表达式的值:(3x^2 + 2x - 1) / (x + 1)。
四、解答题(每题10分,共40分)15. 已知多项式P(x) = 3x^3 - 2x^2 + x - 5,Q(x) = x^3 - x + 1,求P(x) - Q(x)。
1.单项式2a3b的次数是A.2 B.3 C.4 D.5 2.在下列各式中,二次单项式是A.x2+1 B.13xy2C.2xy D.(–12)23.单项式–2xy3的系数和次数分别是A.–2,4 B.4,–2 C.–2,3 D.3,–2 4.下列说法正确的是A.35xy-的系数是–3 B.2m2n的次数是2次C.23x y-是多项式D.x2–x–1的常数项是15.下列关于多项式5ab2–2a2bc–1的说法中,正确的是A.它是三次三项式B.它是四次两项式C.它的最高次项是–2a2bc D.它的常数项是16.245π6x y的系数、次数分别为A.56,7 B.5π6,6 C.5π6,8 D.5π,67.对于式子:22x y+,2ab,12,3x2+5x–2,abc,0,2x yx+,m,下列说法正确的是A.有5个单项式,1个多项式B.有3个单项式,2个多项式C.有4个单项式,2个多项式D.有7个整式8.下列单项式中,次数为3的是A.223x y-B.mn C.3a2D.272ab c-9.下列关于单项式223x y-的说法中,正确的是A .系数是2,次数是2B .系数是–2,次数是3C .系数是23-,次数是2D .系数是23-,次数是3 10.下列关于单项式–23π5x y的说法中,正确的是A .系数是1,次数是2B .系数是–35,次数是2C .系数是15,次数是3D .系数是–3π5,次数是311.多项式x 2–2xy 3–12y –1是A .三次四项式B .三次三项式C .四次四项式D .四次三项式12.下列说法正确的是A .23vt-的系数是–2 B .32ab 3的次数是6次 C .5x y +是多项式D .x 2+x –2的常数项为213.下列结论正确的是A .0不是单项式B .52abc 是五次单项式C .–x 是单项式D .1x是单项式 14.单项式2ab 2的系数是__________. 15.多项式2a 2b –ab 2–ab 的次数是__________.16.若单项式–2x 3y n 与4x m y 5合并后的结果还是单项式,则m –n =__________.17.观察下面的一列单项式:2x ;–4x 2;8x 3;–16x 4,…根据你发现的规律,第n 个单项式为__________. 18.已知多项式(m –1)x 4–x n +2x –5是三次三项式,则(m +1)n =__________. 19.将多项式a 3+b 2–3a 2b –3ab 2按a 的降幂排列为:__________. 20.指出下列多项式是几次几项式:(1)x 3–x +1;(2)x 3–2x 2y 2+3y 2.21.单项式–258m a b 与–34117x y 是次数相同的单项式,求m 的值. 22.已知:关于x 的多项式(a –6)x 4+2x –12b x –a 是一个二次三项式,求:当x =–2时,这个二次三项式的值.23.单项式32π3x y z-的系数是A.π3B.–π3C.13D.–1324.单项式–ab2的系数是A.1 B.–1 C.2 D.3 25.多项式xy2+xy+1是A.二次二项式B.二次三项式C.三次二项式D.三次三项式26.下列说法中,正确的是A.单项式223x y-的系数是–2,次数是3B.单项式a的系数是0,次数是0C.–3x2y+4x–1是三次三项式,常数项是1D.单项式232ab-的次数是2,系数为92-27.如果整式x n–3–5x2+2是关于x的三次三项式,那么n等于A.3 B.4 C.5 D.628.一组按规律排列的式子:a2,43a,65a,87a,…,则第2017个式子是A.20172016aB.20174033aC.40344033aD.40324031a29.–25xy的系数是__________,次数是__________.30.单项式2x2y的次数是:__________.31.已知多项式kx2+4x–x2–5是关于x的一次多项式,则k=__________.32.单项式–22x y的系数是__________.33.多项式3x m+(n–5)x–2是关于x的二次三项式,则m,n应满足的条件是__________.34.多项式a3–3ab2+3a2b–b3按字母b降幂排序得__________.35.观察下列单项式:–x,3x2,–5x3,7x4,…–37x19,39x20,…写出第n个单项式,为了解这个问题,特提供下面的解题思路.(1)这组单项式的系数依次为多少,绝对值规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2016个,第2017个单项式.36.已知多项式x3–3xy2–4的常数是a,次数是b.(1)则a=__________,b=__________;并将这两数在数轴上所对应的点A、B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离之和为11,求点C在数轴上所对应的数.37.(2017•铜仁市)单项式2xy3的次数是A.1 B.2 C.3 D.4A.12B.πC.2 D.2【解析】A 、35xy -的系数是–35,故此选项错误;B 、2m 2n 的次数是3次,故此选项错误; C 、23x y-是多项式,正确;D 、x 2–x –1的常数项是–1,故此选项错误;故选C . 5.【答案】C【解析】多项式5ab 2–2a 2bc –1的次数是4,有3项,是四次三项式,故A 、B 错误; 它的最高次项是–2a 2bc ,故C 正确;它的常数项是–1,故D 错误.故选C . 6.【答案】B【解析】245π6x y 的系数为5π6,次数为6,故选B .7.【答案】C【解析】22x y +,2a b ,12,3x 2+5x –2,abc ,0,2x y x +,m 中,有4个单项式:12,abc ,0,m ; 有2个多项式:22x y+,3x 2+5x –2.故选C .8.【答案】A【解析】A 、223x y-次数为3,故此选项正确;B 、mn 次数为2,故此选项错误;C 、3a 2次数为2,故此选项错误;D 、272ab c -次数为4,故此选项错误;故选A .9.【答案】D【解析】单项式223x y-的系数是23-,次数是3.故选D .10.【答案】D【解析】该单项式的系数为:–3π5,次数为3,注意π是一个常数,故选D.11.【答案】C【解析】多项式x2–2xy3–12y–1有四项,最高次项–2xy3的次数为四,是四次四项式.故选C.12.【答案】C13.【答案】C【解析】A、0是单项式,错误;B、52abc是三次单项式,错误;C、正确;D、1x是分式,不是单项式,错误.故选C.14.【答案】2【解析】单项式2ab2的系数为2.故答案为:2.15.【答案】3【解析】多项式2a2b–ab2–ab的次数最高项的次数为:3.故答案为:3.16.【答案】【解析】由题意得:m=3,n=5,则m–n=3–5=–2,故答案为:–2.17.【答案】(–1)n+1•2n•x n【解析】∵2x=(–1)1+1•21•x1;–4x2=(–1)2+1•22•x2;8x3=(–1)3+1•23•x3;–16x4=(–1)4+1•24•x4;第n个单项式为(–1)n+1•2n•x n,故答案为:(–1)n+1•2n•x n.解得:62a b ==,, 则原式=2x –12x 2–6, 当x =–2时,原式=–4–2–6=–12. 23.【答案】B【解析】单项式32π3x y z-的系数是–π3,故选B .24.【答案】B【解析】单项式–ab 2的系数是–1,故选B . 25.【答案】D【解析】多项式xy 2+xy +1的次数是3,项数是3,所以是三次三项式.故选D . 26.【答案】D27.【答案】D【解析】∵整式x n –3–5x 2+2是关于x 的三次三项式,∴n –3=3,解得:n =6.故选D .28.【答案】C【解析】由题意,得分子是a的2n次方,分母是2n–1,第2017个式子是40344033a,故选C.29.【答案】–15,3【解析】–25xy的系数是:–15,次数是:3.故答案为:–15,3.30.【答案】3【解析】根据单项式次数的定义,字母x、y的次数分别是2、1,和为3,即单项式的次数为3.故答案为:3.31.【答案】1【解析】∵多项式kx2+4x–x2–5是关于x的一次多项式,∴k–1=0,则k=1.故答案为:1.32.【答案】–1 2【解析】单项式–22x y的系数是–12.故答案为:–12.33.【答案】m=2,n≠5【解析】∵多项式3x m+(n–5)x–2是关于x的二次三项式,∴m=2,n–5≠0,即m=2,n≠5.故答案为:m=2,n≠5.34.【答案】【解析】多项式a3–3ab2+3a2b–b3的各项分别是:a3、–3ab2、3a2b、–b3.故答案为:–b3–3ab2+3a2b+a3.35.【解析】(1)这组单项式的系数依次为:–1,3,–5,7,…系数为奇数且奇次项为负数,故单项式的36.【解析】(1)∵多项式x3–3xy2–4的常数项是a,次数是b,∴a=–4,b=3,点A、B在数轴上如图所示:,故答案为:–4、3;(2)设点C在数轴上所对应的数为x,∵C在B点右边,∴x>3.根据题意得x–3+x–(–4)=11,解得x=5,即点C在数轴上所对应的数为5.37.【答案】D【解析】单项式2xy3的次数是1+3=4,故选D.39.【答案】3【解析】单项式5mn2的次数是:1+2=3.故答案是:3.。
整式练习题及答案整式的加减第1课时代数式课标要求1.掌握⽤字母表⽰数,建⽴符号意识.2.会列代数式表⽰简单的数量关系,会正确书写代数式,会求代数式的值.3.在数学活动中,体会抽象概括的数学思想⽅法和“特殊?⼀般”相互转化的辨证关系. 中招考点⽤字母表⽰数,列代数式,正确书写代数式,求代数式的值.典型例题例1 某市出租车收费标准为:起步价5元,3千⽶后每千⽶价1.2元,则乘坐出租车⾛x(x ﹥3)千⽶应付______________元.分析:因为x ﹥3,所以应付费⽤分为两部分,⼀部分为起步价5元,另⼀部分为⾛(x-3)千⽶应付的1.2(x-3)元.解:[])3(2.15-+x注意:和、差形式的代数式要在单位前把代数式括起来.例2 下列代数式中,书写正确的是()A. ab ·2B. a ÷4C. -4×a ×bD. xy 213E. mn 35 F. -3×6 分析:A :数字应写在字母前⾯ B :应写成分数形式,不⽤“÷”号 C :数与字母相乘,字母与字母相乘时,“×”号省略 D :带分数要写成假分数 E 、F 书写正确. 解:E 、F.例3 下列各题中,错误的是()A. 代数式.,22的平⽅和的意义是y x y x +B. 代数式5(x+y)的意义是5与(x+y)的积C. x 的5倍与y 的和的⼀半,⽤代数式表⽰为25y x +D. ⽐x 的2倍多3的数,⽤代数式表⽰为2x+3分析:选项C 中运算顺序表达错误,应写成)5(21y x + 友情提⽰:数学语⾔有⽂字语⾔、符号语⾔、图形语⾔.进⾏数学思维时,同学们要学会恰当使⽤各种语⾔推理分析,各种语⾔的互译是⼀种数学基本功.例4 当x=1时,代数式13++qx px 的值为2005,求x=-1时,代数式13++qx px 的值.分析:当x=1时,13++qx px ==++1q p 2005,p+q=2004,当x=-1时,13++qx px =-=+-1q p -(p+q )+1=-2004+1=-2003.解:当x=1时,13++qx px ==++1q p 2005 ∴ p+q=2004∴当x=-1时,13++qx px =-1+-q p=-(p+q )+1=-2004+1 =-2003.提⽰:“整体”思想在数学解题中经常⽤到,请同学们在解题时恰当使⽤.例5 下图是⼀个数值转换机的⽰意图,请你⽤x 、y 表⽰输出结果,并求输⼊x 的值为3,y 的值为-2时的输出结果.解:输出结果⽤x 、y 表⽰为: 223y x + 当x=3,y=-2时,223y x +=2)2(323-+? =-1.提⽰:弄清图中运算顺序.例6 某餐饮公司为⼤庆路沿街20户居民提供早餐⽅便,决定在路旁建⽴⼀个快餐店P ,点P 选在何处,才能使这20户居民到P 点的距离总和最⼩?分析:⾯对复杂的问题,应先把问题“退”到⽐较简单的情形:如图1,如果沿街有2户居民,很明显点P 设在p 1、、、p 2之间的任何地⽅都⾏.. p 1 .p . p 2 图1 . p 1、 . p 2(p ). p 3图2如图2,如果沿街有3户居民,点P 应设在中间那户居民、p 2门前.------以此类推,沿街有4户居民,点P 应设在第2、3户居民之间的任何位置,沿街有5户居民,点P 应设在的第3户门前,------沿街有n 户居民:当n 为偶数时,点P 应设在第2n 、12+n 户居民之间的任何位置;当n 为奇数时,点P 应设在第21+n 户门前. 解:根据以上分析,当n=20时,点P 应设在第10、11户居民之间的任何位置.思维驿站:请同学们认真体会“特殊?⼀般”的辨证关系,掌握化归的思想⽅法,学会把复杂的问题化为简单的情形来解决.强化练习⼀、填空题1. 代数式2a-b 表⽰的意义是_____________________________.2. 列代数式:⑴设某数为x,则⽐某数⼤20%的数为_______________.⑵a 、b 两数的和的平⽅与它们差的平⽅和________________.3. 有⼀棵树苗,刚栽下去时,树⾼ 2.1⽶,以后每年长0.3⽶,则n 年后的树⾼为________________,计算10年后的树⾼为_________⽶.4. 某⾳像社对外出租光盘的收费⽅法是:每张光盘在出租后的头两天每天收0.8元,以后每天收0.5元,那么⼀张光盘在出租后第n 天(n >2的⾃然数)应收租⾦_________________________元.5. 观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4------请你将猜想到的规律⽤⾃然数n(n ≥1)表⽰出来______________________.6. ⼀个两位数,个位上的数是a ,⼗位上的数字⽐个位上的数⼩3,这个两位数为_________,当a=5时,这个两位数为_________.⼆、选择题1. 某品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价为()A. 0.7a 元B.0.3a 元C.a 310 元D. a 710元 2. 根据下列条件列出的代数式,错误的是()A. a 、b 两数的平⽅差为a 2-b 2B. a 与b 两数差的平⽅为(a-b)2C. a 与b 的平⽅的差为a 2-b 2D. a 与b 的差的平⽅为(a-b)23. 如果,0)1(22=-++b a 那么代数式(a+b)2005的值为()A. –2005B. 2005C. -1D. 14. 笔记本每本m 元,圆珠笔每⽀n 元,买x 本笔记本和y ⽀圆珠笔,共需()A. ( mx+ny )元B. (m+n)(x+y)C. (nx+my )元D. mn(x+y) 元5. 当x=-2,y=3时,代数式4x 3-2y 2的值为()A. 14B. –50C. –14D. 50三、解答题1. 已知代数式3a 2-2a+6的值为8, 求1232+-a a 的值. 2. 当a=-1,b=-21,c=211时,求代数式b 2-4ac 的值,并指出求得的这个值是哪些数的平⽅. 3. ⼈在运动时的⼼跳速率通常和⼈的年龄有关.如果⽤a 表⽰⼀个⼈的年龄,⽤b 表⽰正常情况下这个⼈在运动时所能承受的每分钟⼼跳的最⾼次数,那么b=0.8(220-a).⑴正常情况下,在运动时⼀个14岁的少年所能承受的每分钟⼼跳的最⾼次数是多少?⑵⼀个45岁的⼈运动时10秒⼼跳的次数为22次,请问他有危险吗?为什么?反馈检测⼀、填空题(每⼩题5分,共25分)1. 某机关原有⼯作⼈员m ⼈,现精简机构,减少20%的⼯作⼈员,则剩下_____⼈.2. 结合⽣活经验作出具体解释:a-b__________________________________.3. 甲以a 千⽶/⼩时、⼄以b 千⽶/⼩时(a >b )的速度沿同⼀⽅向前进,甲在⼄的后⾯8千⽶处开始追⼄,则甲追上⼄需_____________⼩时.4. 若梯形的上底为a ,下底为b ,⾼为h ,则梯形的⾯积为____________;当a=2cm ,b=4cm ,h=3cm 时,梯形的⾯积为____________.5. 按下列程序计算x=3时的结果__________.⼆、选择题(每⼩题5分,共25分)1. 下列式⼦中符合代数式的书写格式的是()A. x ·y 21B.n m 3÷C.4y x -D.ab 432 2. ⼀个长⽅形的周长是45cm ,⼀边长acm ,这个长⽅形的⾯积为()cm 2 A.2)45(a a - B.245a C.)245(a - D.)245(a a - 3. 代数式x 2-7y 2⽤语⾔叙述为()A.x 与7y 的平⽅差B.x 的平⽅减7的差乘以y 的平⽅C.x 与7y 的差的平⽅D. x 的平⽅与y 的平⽅的7倍的差4. 当a=-2,b=4时,代数式))((22b ab a b a ++-的值是()A.56B.48C. –72D.725. ⼀个正⽅体的表⾯积为54 cm 2,它的体积是()cm 3A. 27B.9C.827 D. 36 三、解答题(每题10分,共50分)1. 列代数式⑴若⼀个两位数⼗位上的数是a ,个位上的数是b ,这个两位数是_________.若⼀个三位数百位上的数为a,⼗位上的数是b ,个位上的数c ,这个三位数是_________. ⑵某品牌服装以a 元购进,加20%作为标价.由于服装销路不好,按标价的⼋五折出售,降价后的售价是__________元,这时仍获利________________________元.⑶电影院第⼀排有a 个座位,后⾯每排⽐前⼀排多2个座位,则第x 排的座位有____________个.⑷A 、B 两地相距s 千⽶,某⼈计划a ⼩时到达,如果需要提前2⼩时到达,每⼩时需多⾛___________________千⽶.2. 已知代数式32++x x 的值为7,求代数式7332++x x 的值.3. 当41=+-b a b a 时,求代数式ba b a b a b a -+-+-)(2的值. 4. 若0)3(12=++-y x ,求21xy xy --的值.5. 给出下列程序:若输⼊x=1时,输出的值为-2,求输⼊x=-2时,输出的值是多少?第2课时整式的加减课标要求1. 了解单项式、多项式、整式的有关概念,弄清它们与代数式之间的联系和区别.2. 理解同类项的概念,会判断同类项,熟练合并同类项.3. 掌握去括号法则、添括号法则,能准确地进⾏去括号与添括号.4. 熟练地进⾏整式的加减运算.中招考点单项式、多项式、整式的有关概念,同类项的概念,去括号法则、添括号法则,整式的加减运算.典型例题例1 判断下列各代数式是否是单项式.如果不是,请简要说明理由;如果是,请指出它的系数和次数:⑴ a+2 ⑵ x 1 ⑶ 2r π⑷ b a 223- ⑸ m ⑹ -3×104t 分析:同学们要弄清题中涉及到的⼏个概念,即:数与字母的乘积组成的代数式叫做单项式(单独⼀个数或⼀个字母也是单项式);单项式中的数字因数叫做这个单项式的系数;单项式中所有字母的指数和叫做这个单项式的次数.解:⑴不是.因为原代数式中出现了加法运算. ⑵不是.因为原代数式是1与x 的商. ⑶是.它的系数是π,次数是2. ⑷是.它的系数是-23,次数是3. ⑸是.它的系数是1,次数是1. ⑹是.它的系数是-3×104,次数是1.注意:圆周率π是常数;当⼀个单项式的系数是1或-1、次数是1时,“1”通常省略不写;单项式的系数是带分数时,通常写成假分数,如⑷中b a 223-. 例2 指出多项式223542x y y x +-的项、次数,是⼏次⼏项式,并把它按x 降幂排列、按y 的升幂排列.分析:解本题的关键是要弄清⼏个概念:多项式的项、次数,按某⼀字母降幂排列、按某⼀字母的升幂排列.解:多项式223542x y y x +-的项有:2x 3y,-4y 2,5x 2; 次数是4;是四次三项式;按x 降幂排列为:2x 3y+5x 2- 4y 2;按y 的升幂排列为:5x 2+2x 3y- 4y 2.提⽰:多项式的次数不是所有项的次数之和,⽽是次数最⾼项的次数;多项式的每⼀项都包括它前⾯的符号.例3 请写出-2ab 3c 2的两个同类项_______________.你还能写多少个?________.它本⾝是⾃⼰的同类项吗?___________.当m=________,3.8c b a m m -2是它的同类项?分析:本题是⼀道开发题,给同学们很⼤的思维空间,对同类项的正确理解是解题的关键. 解:2.1ab 3c 2 、-6ab 3c 2等;还能写很多(只要在ab 3c 2前⾯添加不同的系数);它本⾝也是⾃⼰的同类项;m=-1.∵1=m 且2-m=3∴m=-1.例4 如果关于字母x 的⼆次多项式-3x 2+mx+nx 2-x+3的值与x ⽆关,求m 、n 的值.分析:本题的“题眼”——多项式-3x 2+mx+nx 2-x+3的值与x ⽆关,这⼀条件说明了:关于字母x 的⼆次项系数、⼀次项系数都为零.解:∵ -3x 2+mx+nx 2-x+3=(-3+n )x 2+(m-1)x+3∴ -3+n=0,m-1=0∴ m=1,n=3.例5 a >0>b >c ,且c b a +? 化简c b b a c b a c a ++--++++分析:求绝对值⾸先要判断代数式是正数或0或负数.本题中可⽤赋值法、数形结合法判断a+c 、a+b+c 、a-b 、b+c 的符号.解:如图知,a 、b 、c 在数轴上的位置.∵ a >0,b <0,c <0,c b a +?∴ a+c >0,a+b+c >0,a-b >0,b+c <0∴ c b b a c b a c a ++--++++=(a+c )+(a+b+c )-(a-b )-(b+c )=a+c+a+b+c-a+b-b-c=a+b+c.反思总结:解含有字母的题⽬通常在字母取值范围赋值,可以把抽象问题直观化.强化练习⼀、填空题 1. 单项式323y x -的系数是_______,次数是_________. O . a .b .c .2. 多项式124332+-y x xy 的次数是______,三次项系数是________.3. 把多项式723322---y x y x xy 按x 升幂排列是_________________.4. 下列代数式:523,,41,3,2,1213,4332232y x a x y x bc a x m m x ----+--.其中单项式有_______________________________,多项式有___________________________.5. 多项式274a ab -b 2-8ab 2+5a 2b 2-9ab+ab 2-3中,________与-8ab 2是同类项,5a 2b 2与_______是同类项,是同类项的还有_____________________________.6. 3a-4b-5的相反数是_______________.⼆、选择题1. 如果多项式521)2(24-+--x x x a b 是关于x 的三次多项式,那么() A. a=0,b=3 B. a=1,b=3 C. a=2,b=3 D. a=2,b=12. 如果0233=+xyx By Axy ,则A+B=( ) A. 2 B. 1 C. 0 D. –13. 下列计算正确的是()A. 3a-2a=1B. –m-m=m 2C. 2x 2+2x 2=4x 4D. 7x 2y 3-7y 3x 2=04. 在3a-2b+4c-d=3a-d-( )的括号⾥应填上的式⼦是()A. 2b-4cB. –2b-4cC. 2b+4cD. –2b+4c5. 如果⼀个多项式的次数是4,那么这个多项式任何⼀项的次数应()A. 都⼩于4B. 都不⼤于4C. 都⼤于4D. ⽆法确定三、解答题1. 如果0.65x 2y 2a-1 与–0.25x b-1y 3是同类项,求a,b 的值.2. 先化简,再求值.b a a b ba ab b a 2222254325.0315.0-++-,其中a=-5,b=-3. 3. 把多项式6.041312123-+-b b b 写成⼀个三次多项式与⼀个⼆次三项式之差. 4. 计算:63)(41)(21y x y x y x y x --++++- 反馈检测⼀、填空题(每⼩题5分,共25分)1. 在⼀次募捐活动中,某校平均每名同学捐款a 元,结果⼀共捐款b 元,则式⼦ab 可解释为_________________________________________________________. 2. 在某地,⼈们发现蟋蟀叫的次数与温度有某种关系.⽤蟋蟀1分钟叫的次数除以7,然后再加上3,就可以近似地得到该地当时的温度(0C ).设蟋蟀1分钟叫的次数为n,⽤代数式表⽰该地当时的温度为_______0C ;当蟋蟀1分钟叫的次数为100时,该地当时的温度约为________0C (精确到个位).3. k=______时,-12341+k y x 与9332y x 的和是单项式. 4. 在括号内填上适当的项:(a+b-c)(a-b+c)=[][](_______)(________)-+a a .5. 多项式32327453.0xy y x y x ---的次数是____,常数项为_____,四次项为_______.⼆、选择题(每⼩题5分,共25分)1. 某宾馆的标准间每个床位标价为m 元,旅游旺季时上浮x%,则旅游旺季时标准间的床位价为()元.A.mx%B.m+x%C.m(1+x%)D.m(1-x%).2. ⽤代数式表⽰“a 与-b 的差”,正确的是()A.b-aB.a-bC.-b-aD.a-(-b)3. 当x=-2,y=3时,代数式4x 3-2y 2的值是()A.14B.-50C.-14D.504. 下列运算正确的是()A.3a+2b=5abB.3a 2b-3ba 2=0C.3x 2+2x 3=5x 5D.5y 2-4y 2=15. 下列说法中,错误的是()A.单项式与多项式统称为整式B.单项式x 2yz 的系数是1C.ab+2是⼆次⼆项式D.多项式3a+3b 的系数是3三、解答题(每题10分,共50分)1. ⑴若b a =,请指出a 与b 的关系. ⑵若25a 4b 4是某单项式的平⽅,求这个单项式.2. 化简求值:4a 2b-2ab 2-3a 2b+4ab 2,其中a=-1,b=2.3. 在计算代数式(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中x=0.5,y=-1时,甲同学把x=0.5错抄成x=-0.5,但他计算的结果也是正确的.试说明理由,并求出这个结果.4. 你⼀定知道⼩⾼斯快速求出:1+2+3+4+…+100=5050的⽅法.现在让我们⽐⼩⾼斯⾛得更远,求1+2+3+4+…+n=_______________.请你继续观察:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…求出:13+23+33+…+n 3=_______________________.5. 如果A=3x 2-xy+y 2,B=2x 2-3xy-2y 2,那么2A-3B 等于多少?《整式的加减》综合检测(A )⼀、填空题(每题3分,共30分)1.光明奶⼚1⽉份产奶m 吨,2⽉份⽐1⽉份增产15%,则2⽉份产奶______吨.2.代数式6a 表⽰_____________________________________________.3.单项式-4πxy 2的系数是_______,次数是__________.4.多项式365922-+-y x xy xy 的⼆次项是___________.5.三个连续偶数中间⼀个是2n ,第⼀个是______,第三个是_______,这三个数的平⽅和是_____________(只列式⼦,不计算)6.若2a 3b-0.75ab k +3×105是五次多项式,则k=__________.7.单项式-5x m+3y 4与7x 5y 3n-1是同类项,则n m =_____,这两个单项式的和是___________.8.2ab+b 2+__________=3ab-b 2 .9.⼀长⽅形的⼀边长为2m+n,⽐另⼀边多m-n (m >n ),则长⽅形的周长是____________.10.x 是两位数,y 是三位数,y 放在x 左边组成的五位数是______________.⼆、选择题(每题4分,共20分)1. 下列说法中,正确的是()A.若ab=-1,则a 、b 互为相反数B.若3=a ,则a=3C.-2不是单项式D.-xy 2的系数是-12. 多项式522--a a 的项是()A.2a 2,-a,-3B. 2a 2,a,3C. 2a 2,-a,3D. 2a 2,a,-33. 下列代数式5.2,1,2,1,22--+-+yx a x x x x ,其中整式有()个 A.4 B.3 C.2 D.14. 若a <0, 则2a+5a 等于()A.7aB.-7aC.-3aD.3a5. 看下表,则相应的代数式是()A.x+2B.2x-3C.3x-10D.-3x+2三、解答题(每⼩题10分,共50分)1.已知211211-=?,----=?,3121321则=+)1(1n n ________. 计算:)1(1431321211++---+?+?+?n n 探究:)12)(12(1751531311+-+---+?+?+?n n . 2. 已知A=3a 2-2a+1 B=5a 2-3a+2 C=2a 2-4a-2, 求A-B-C.3. 如果关于x 的多项式21424-+x mx 与3x n +5x 是同次多项式,求4322123-+-n n n 的值.4. 化简5a 2-[])3(2)25(222a a a a a ---+(⽤两种⽅法)5. 按下列要求给多项式-a 3+2a 2-a+1添括号.⑴使最⾼次项系数变为正数;⑵使⼆次项系数变为正数;⑶把奇次项放在前⾯是“-”号的括号⾥,其余的项放在前⾯是“+”号的括号⾥.《整式的加减》综合检测(B )⼀、填空题(每题3分,共30分)1根据⽣活经验,对代数式a-2b 作出解释:_____________________________________.2.请写出所有系数为-1,含有字母x 、y 的三次单项式_________________________.3.如果多项式x 4-(a-1)x 3+5x 2+(b+3)x-1不含x 3和x 项,则a=_____,b=___________.4.试写出⼀个关于x 的⼆次三项式,使⼆次项系数为2,常数项为-5,⼀次项系数为3 ,答案是_______________________.5.指出代数式-a 2bc 2和a 3x 2的共同点,例如:都含字母a ,.①________________,②_____________.6.如果x 与2y 互为相反数,则.____________2=+yx 7.⼀个多项式加上-5+3x-x 2得到x 2-6,这个多项式是___________,当x=-1时,这个多项式的值是________.8.代数式-3+(x-a)2的最⼩值为_______,这时x=_______.9.把多项式2a-b+3写成以2a 为被减数的两个式⼦的差的形式是___________________.10.五·⼀⼴场内有⼀块边长为a ⽶的正⽅形草坪,经过统⼀规划后,南北向要加长2⽶,⽽东西向要缩短2⽶.改造后的长⽅形的⾯积为___________平⽅⽶.⼆、选择题(每题4分,共20分)1. 下⾯列出的式⼦中,错误的是()A.a 、b 两数的平⽅和:(a+b)2B.三数x 、y 、z 的积的3倍再减去3:3xyz-3C. a 、b 两数的平⽅差:a 2-b 2D. a 除以3的商与4的和的平⽅:(43+a )2 2. 下列各组单项式中是同类项的为()A.3xy,3xyzB.2ab 2c,2a 2bcC.-x 2y 2 ,7y 2x 2D. 5a,-ab3. 下列代数式a+bc,5a,mx 2+nx+p,-x.,1,5xyz,nm ,其中整式有()个 A.7 B.6 C.5 D.44. ⼀个正⽅形的边长减少10%,则它的⾯积减少()A.19%B.20%C.1%D.10%5. 当m 、n 都为⾃然数时,多项式a m +b n +2m+2的次数是()A.2m+n+2B.m+2C.m 或nD.m 、n 中较⼤的数三、解答题(每⼩题10分,共50分)1. 先化简,再求值:(4x 2-3x) +(2+4x-x 2 ) - (2x 2+x+1), 其中x= -2 .2. 已知x 2+y 2=7,xy= -2. 求5x 2-3xy-4y 2-11xy-7x 2+2y 2的值.3. 已知A=2x 2+3xy-2x-1, B= -x 2+xy-1, 且3A+6B 的值与x ⽆关,求y 的值.4. 若0)23(22=++-b b a ,求:63)(31)(41)(21b a b a b a b a b a -+++--++-值. 5. 规定⼀种新运算:a *b= ab+a-b, 求 a *b+(b-a )*b.第三部分《整式的加减》代数式强化练习参考答案⼀、1.2a 与b 的差 2.⑴(1+10%)x ⑵(a+b)2 +(a-b)2 3. 2.1+0.3n 5.1 4.1.6+0.5(n-2)5.n 2+n =n(n+1)6.10(a-3)+a 25 ⼆、1.D 2.C 3.C 4.A 5.B三、1. ∵3a 2-2a +6=8 2. b 2-4ac=(-21)2-4×(-1)×23=425 ∴ 3a 2-2a=2 ∵(±25)2=425 ∴1232=-a a ∴425是±25的平⽅. ∴.2111232=+=+-a a 3. ⑴b=0.8(220-14)=164.8答:正常情况下,在运动时⼀个14岁的少年所能承受的每分钟⼼跳的最⾼次数164次. ⑵b=0.8(220-45)=140, ∵22×6=132 132<140 ∴他没有危险.反馈检测参考答案⼀、1.(1-20%)m 2.答案不唯⼀3.b a -8 4.2)(h b a +,9cm 2 5.15 ⼆、1C 2D 3B 4C 5A三、1.⑴ 10a+b,100a+10b+c ⑵ (1+20%)a ·85%,0.2a ⑶ a+(x-1) ⑷ (a s a s --2) 2.19 3.-3.5 4. -5 5.4.强化练习参考答案⼀1. 32- , 4 2. 4, 3 3. –7+2xy 2-x 2y-x 3y 34. 523,41,15.03;,3,4332322y x x y x m m a bc a x --+---- 5. ab 2;-7a 2b 2 ;4ab 与-9ab 6. –3a+4b+5 .⼆、1.C 2.C 3.D 4.A 5.B三、1. 2,3 2. 30,315122-+ab b a 3. )6.04121(2123+--b b b 4. y x 411211+. 反馈检测参考答案⼀、1. 参加捐款的学⽣⼈数 2. (37+n )、17 3. 4 4. b-c,b-c 5. 5;-4;-7xy 3. ⼆、1.C 2.D 3.B 4.B 5.D三、1. ⑴a=b 或a=-b ⑵±5a 2b 2 2. a 2b+2ab 2,-63. 提⽰:(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)= 2x 3-3x 2y -2xy 2-x 3+2xy 2-y 3-x 3+3x 2y -y 3=-2 y 3当y=-1时,原式=-2×(-1)3=24. 2)1(+n n ,(1+2+3+4+-----+n )2 =4)1(2)1(222+=??+n n n n . 5. 提⽰:2A-3B=2(3x 2-xy+y 2)-3(2x 2-3xy-2y 2)=6x 2-2xy+2y 2-6x 2+9xy +6y 2=7xy +8y 2.《整式的加减》综合检测(A )⼀、1.(1+15%)m 2.答案不唯⼀ 3.-4π;3 4.-9xy 5.2n-2;2n+2;(2n-2)2+(2n)2+(2n+2)2 6.4 7.925,2x 5y 4 8. ab-2b 2 9.6m+6n 10.10y+x ⼆、1.D 2.A 3.B 4.C 5.D 三、1.解:111+-n n , )1(1431321211++---+?+?+?n n =211-+3121-+---+111+-n n =1-11+n =1+n n . )12)(12(1751531311+-+---+?+?+?n n =)311(21-+)5131(21-+---+)121121(21+--n n =)1211215131311(21+--+---+-+-n n =)1211(21+-n =12+n n . 2.解:A-B-C=(3a 2-2a+1)-(5a 2-3a+2 )-(2a 2-4a-2)=3a 2-2a+1-5a 2+3a-2-2a 2+4a+2=-4a 2+5a+1.3.解:根据题意,若m=0,则n=2; 若m ≠0,则n=4.当n=2时,4322123-+-n n n =-2当n=4时,4322123-+-n n n =8. 4. 解:⽅法⼀(先去⼩括号):原式=5a 2-[]a a a a a 6225222+--+=5a 2-(4a 2+4a )=a 2-4a.⽅法⼆(先去中括号):原式=5a 2-a 2-(5a 2-2a)+2(a 2-3a)=5a 2-a 2-5a 2+2a +2a 2-6a= a 2-4a.5.解:⑴ -a 3+2a 2-a+1=-( a 3-2a 2+a -1).⑵ -a 3+2a 2-a+1=+( -a 3+2a 2-a+1).⑶ -a 3+2a 2-a+1=-( a 3+a )+( 2a 2+1).《整式的加减.》综合检测(B )⼀、1.答案不唯⼀ 2. –xy 2,-x 2y 3. 1,-3 4. 2x 2+3x-5 5. 都是整式、都是单项式、次数都是56. 07. 2x 2-3x-1,48. –3,a9. 2a-(b-3) 10. (a+2)(a-2 )或a 2-4.⼆、1.A 2.C 3.B 4.A 5.D.三、1.解:原式=4x 2-3x+2+4x-x 2 -2x 2-x-1= x 2+1 ,当x= -2时,原式= (—2)2+1 = 5.2.解:原式= 5x 2-7x 2-3xy-11xy -4y 2+2y 2= -2x 2-14xy-2y 2= -2(x 2+y 2)-14xy ,当x 2+y 2=7,xy= -2时,原式= -2×7-14×(-2) = -14+28 = 14.3.解:3A+6B = 3(2x 2+3xy-2x-1)+6( -x 2+xy-1)= 6x 2+9xy-6x-3 -6x 2+6xy-6= 15xy-6x-9 = (15y-6)x-9要使此代数式的值与x ⽆关,只需15y-6=0, 即.52=y 4.解:∵ 0)23(22=++-b b a ,且02≥-b a ,0)23(2≥+b∴ 2a-b=0, 3b+2=0 ∴ b= -32, a= -31. 当b= -32, a= -31时, 63)(31)(41)(21b a b a b a b a b a -+++--++-= ())(613121b a -+-+))(3141(b a ++= )(127b a += )3231(127--= 12 7-. 5.解:a*b+(b-a)*b = ab+a-b+(b-a)b+(b-a)-b= ab+a-b+b 2-ab+b-a-b= -b+b 2.。
整式的除法练习题(含答案).doc 整式的除法》题一、选择题1.正确答案是B。
改写为:a+a4=a5是错误的,应为a+a4=a4+a,所以选项B正确。
2.正确答案是D。
改写为:(-3b3)2÷b2=9b6÷b2=9b4,所以选项D正确。
3.正确答案是A。
改写为:(ab)2=a2b2,所以选项A正确。
4.正确答案是C。
改写为:(x3y2)•(xy2)=x4y4,所以选项C正确。
5.正确答案是B。
改写为:(a3b6)÷(a2b2)=a(b4),所以a2b8=a(b4)•a2b2=ab6•a2b2=9a2b8,所以选项B正确。
6.正确答案是D。
改写为:(a3+a2)÷a=a2+a,所以选项D正确。
7.正确答案是D。
改写为:x+2x-12=(x-2)(x+6),所以选项D正确。
8.正确答案是C。
改写为:(-4-5n)(4-5n)=-16+20n+20n-25n2=25n+16,所以选项C正确。
二、填空题9.计算:(a2b3-a2b2)÷(ab)2=ab-a,所以答案为ab-a。
10.另一边长为2a-3b,所以答案为2a-3b。
11.除式为x2+4x-1,所以答案为x2+4x-1.12.计算:(6x5y-3x2)÷(-3x2)=-2y,所以答案为-2y。
13.计算:5=1·5=18·xy,所以xy=1/18.14.计算:-2x2y·(-x)·(-y)=2x3y3,所以答案为2x3y3/8x2=-y/4.15.计算:x=(x+y)+(x-y)=1004+2=1006,所以x-y=1006-2=1004.16.计算:2x-4=5,所以x=3.5.代入4x2-16x+16得到答案为16.25.17.计算:m=3,n=6,所以2a3b9+3=8a9b15,解得a=2/3,b=3/2.所以答案为2a3b6+3.18.加上的单项式为4x,因为16x2+4x=(4x)2,所以答案为4x。
整式的运算练习题1. 将下列各式进行化简:a) $2x + 3y - 4x - 5y$b) $3a^2 - 4ab + 2b^2 - a^2 + 6ab - 7b^2$c) $(x + 3y)^2 - (x - 2y)^2$d) $(2a - b)(3a + 2b) - (a - 2b)(4a - 3b)$2. 计算下列各式:a) $3x^2 + 2x - 5$,当 $x = 2$ 时的值。
b) $4y^2 - 3y + 2$,当 $y = -1$ 时的值。
3. 求解下列各方程:a) $4x + 5 = 3x - 2$b) $2(x - 3) = 4(x + 1)$c) $5(2y - 1) = 3(3y + 2)$d) $7 - 2(3w - 4) = 13$e) $(2z + 3)(4z - 1)= 5(6z - 2)$4. 根据题意列式并求解问题:a) 一条带电粒子在电场中先经过一个带电板,然后经过一个加速器,最终以 $v$ 的速度进入平行板电容器。
设带电板电势为 $V_1$,平行板电容器两板间距离为 $d$,两板电压为 $V_2$,电场强度为 $E$,求带电粒子进入平行板电容器的速度表达式。
b) 甲、乙两地相距 $150$ 公里,有两辆火车同时从甲、乙两地相对而行,火车甲每小时行 $50$ 公里,火车乙每小时行 $70$ 公里。
若两火车在 $2$ 小时后相遇,求相遇时乙地离开的时间。
5. 解决实际问题:某公司生产两种型号的电脑,型号 A 的成本为 $4000$ 元/台,型号B 的成本为 $5000$ 元/台。
根据市场需求预测,型号 A 的销售量为$x$ 台,型号 B 的销售量为 $y$ 台。
已知每台型号 A 电脑的售价为$6000$ 元/台,型号 B 电脑的售价为 $8000$ 元/台。
求最大利润,并确定销售量,使得利润最大。
6. 定义函数 $f(x) = 2x^3 + 5x^2 - 3x + 2$,求:a) $f(-2)$ 的值。
整式加减练习题及答案一、整式加法练习题1、将3x^2 + 4x + 5和2x^2 + 3x - 7相加。
解答:将相同的项合并:(3x^2 + 2x^2) + (4x + 3x) + (5 - 7) = 5x^2 + 7x - 22、将-2y^3 + 5y^2 + 3y和-3y^3 + 2y^2 - 4y相加。
解答:将相同的项合并:(-2y^3 - 3y^3) + (5y^2 + 2y^2) + (3y - 4y) = -5y^3 + 7y^2 - y3、将ab^2 - 3a^2b + 2ab和-4ab^2 + a^2b + 3ab相加。
解答:将相同的项合并:(ab^2 - 4ab^2) + (-3a^2b + a^2b) + (2ab + 3ab) = -3ab^2 - 2a^2b + 5ab二、整式减法练习题1、将4x^2 + 3x - 5减去2x^2 - 3x + 7。
解答:利用减法的性质,将减法转化为加法:(4x^2 + 3x - 5) + (-2x^2 + 3x - 7) = 2x^2 + 6x - 122、将5y^3 - 2y^2 + 4y减去-3y^3 + y^2 - 2y。
解答:利用减法的性质,将减法转化为加法:(5y^3 - 2y^2 + 4y) + (3y^3 - y^2 + 2y) = 8y^3 - y^2 + 6y3、将3ab^2 - 2a^2b + ab减去-4ab^2 + a^2b - ab。
解答:利用减法的性质,将减法转化为加法:(3ab^2 - 2a^2b + ab) + (4ab^2 - a^2b + ab) = 7ab^2 - a^2b + 2ab三、整式加减综合练习题1、将2x^2 + 3x - 4和-3x^2 + 4x + 5相加,再减去x^2 - 2x + 3。
解答:首先将相同的项合并:(2x^2 - 3x^2 + x^2) + (3x + 4x - 2x) + (-4 + 5 - 3) = 0x^2 + 5x - 22、将-4y^3 + 5y^2 - 3y减去2y^3 + 2y^2 - y,再加上-3y^3 + 4y^2 + 6y。
整式的加减练习题打印一、基础题1. 计算:3x + 5x2. 计算:4a 2a3. 计算:7b + 9b 2b4. 计算:5m 3m + 2m5. 计算:6n 4n n二、进阶题1. 简化表达式:2x + 3x 4x + 5x2. 简化表达式:5a 3a + 2a a3. 简化表达式:4b + 6b 2b 3b4. 简化表达式:7m 5m + 2m m5. 简化表达式:9n 6n + 3n 2n三、综合题1. 计算:(3x + 4y) (2x y)2. 计算:(5a 3b) + (2a + 4b)3. 计算:(7m + 2n) (4m 3n)4. 计算:(6p 5q) + (3p + 2q)5. 计算:(8r + 7s) (5r 4s)四、应用题1. 小明有苹果和香蕉若干,苹果有3个,香蕉有5个,小明又买了2个苹果和3个香蕉,现在小明有多少个苹果和香蕉?2. 小红有铅笔和橡皮若干,铅笔有4支,橡皮有6块,小红用掉了2支铅笔和3块橡皮,现在小红还剩多少支铅笔和橡皮?3. 老师有数学书和语文书若干,数学书有5本,语文书有7本,老师又买了3本数学书和4本语文书,现在老师有多少本数学书和语文书?4. 妈妈有红色袜子和蓝色袜子若干,红色袜子有6双,蓝色袜子有8双,妈妈又买了2双红色袜子和3双蓝色袜子,现在妈妈有多少双红色袜子和蓝色袜子?5. 爸爸有黑色裤子和白色裤子若干,黑色裤子有3条,白色裤子有5条,爸爸又买了1条黑色裤子和2条白色裤子,现在爸爸有多少条黑色裤子和白色裤子?五、多项式加减题1. 计算:2x^2 + 3x^2 x^22. 计算:4a^3 2a^3 + a^33. 计算:5b^2 + 7b^2 2b^24. 计算:6m^4 3m^4 + m^45. 计算:7n^3 4n^3 n^3六、含常数项的整式加减题1. 计算:3x + 4 2x + 12. 计算:5a 3 + 2a 23. 计算:7b + 6 b 44. 计算:8m 5 + 3m 15. 计算:9n + 2 4n 3七、混合整式加减题1. 计算:(2x^2 + 3x) (x^2 2x)2. 计算:(4a^3 a) + (3a^3 + 2a)3. 计算:(5b^2 + 4) (2b^2 3)4. 计算:(6m^4 5m) + (m^4 + 2m)5. 计算:(7n^3 + 8) (4n^3 n)八、实际应用题1. 小华每天跑步锻炼,第一天跑了3圈,第二天比第一天多跑了2圈,第三天又比第二天多跑了1圈。
整式经典练习题整式是代数式的一种形式,由字母和常数通过加、减、乘运算符号组成,且没有除法。
整式的求解能够帮助我们提升代数运算的能力和思维逻辑,下面将介绍几个经典的整式练习题。
1. 练习题一已知整式 $A = 3x^2 - 5xy + 2y^2$,将其因式分解。
解析:根据因式分解的原则,我们需要寻找整式 $A$ 中的公因式,然后进行提取。
在这个例子中,整式 $A$ 的公因式为3,因此可以将整式因式分解为 $A = 3(x^2 - \frac{5}{3}xy + \frac{2}{3}y^2)$。
2. 练习题二已知整式 $B = (x + 3)(x - 2) - 2(x - 2)$,将其展开并化简。
解析:展开整式 $B$ 并进行化简的过程如下:$B = (x + 3)(x - 2) - 2(x - 2)$$= x^2 - 2x + 3x - 6 - 2x + 4$$= x^2 - x - 2$因此,整式 $B$ 展开并化简后的结果为 $B = x^2 - x - 2$。
3. 练习题三已知整式 $C = (2x - 3y)(3x + 4y) - (2x - 3y)(x + y)$,将其合并同类项并化简。
解析:将整式 $C$ 中的合并同类项并进行化简的过程如下:$C = (2x - 3y)(3x + 4y) - (2x - 3y)(x + y)$$= 6x^2 + 8xy - 9xy - 12y^2 - (2x^2 + 2xy - 3xy - 3y^2)$$= 6x^2 + 8xy - 9xy - 12y^2 - 2x^2 - 2xy + 3xy + 3y^2$$= 4x^2 - xy - 9y^2$因此,整式 $C$ 合并同类项并化简后的结果为 $C = 4x^2 - xy -9y^2$。
4. 练习题四已知整式 $D = 3x^3 - 4xy^2 + 5x^2y - 6y^3$,将其按降幂排列。
解析:按照降幂排列的原则,我们需要将整式 $D$ 中的各项按照字母的幂次从高到低进行排列。
整式练习题及答案一. 单项选择题。
1. 下列各式中,是一元二次整式的是()A. 3x - 2y + 1B. 2x^2 - 3xy + 4y^2C. 4x^3 - 5x^2y + 6xy^2D. 7x^2 + 8y^2 - 9z^2答案:B2. 化简下列各式:(1)3x^2 - 4x^2 - 2x + 3x + x^2 - x(2)(4x - 3y)^2 - (2x + 3y)^2答案:(1)3x^2 - 4x^2 - 2x + 3x + x^2 - x = -2x^2 + x(2)(4x - 3y)^2 - (2x + 3y)^2 = 16x^2 - 24xy + 9y^2 - 4x^2 - 12xy - 9y^2 = 12x^2 - 36xy二. 填空题。
1. 将 2xy - 3x^2 + 4y^2 + 5x^2 - 6xy 化简得到 ____________。
答案:-x^2 - 4xy + 4y^22. 按指数递减排列多项式 3xy^2 - 2x^2 + 5yx^2 - 4y^2 + x^2。
答案:3xy^2 - 4y^2 + 5yx^2 + x^2 - 2x^2三. 解答题。
将下列各式进行合并整理。
1. (3x^3 - x^2 + 2x + 4y) + (2x^3 - 3y + 5x^2 - 2x + 4y)答案:5x^3 + 4x^22. (5x^2 - 3xy + 2) - (3y^2 + 2xy - 4x^2 - 1)答案:9x^2 - 3xy + 3y^2 + 3四. 计算题。
1. 已知 a = 2x - y,b = 3x + y,计算 a^2 + 2ab - b^2。
答案:8x^2 + 4xy2. 计算 (2x - 3y)(4x + 5y)。
答案:8x^2 - 7y^2总结:本文提供了一套整式练习题及答案,涵盖了单项选择题、填空题、解答题和计算题。
在解答题部分,对各式进行了合并整理,使其更加简洁清晰。
可编辑修改精选全文完整版《整式》练习题一、知识点:1、整式的加减法:(1)去括号法则;(2)添括号法则;(3)合并同类项法则。
2、整式的乘法:幂的运算:(1)m n m n a a a +•=(2)m n mn a a =()(3)()n n n ab a b =(m n 、都是正整数)乘法公式: (1)22))((b a b a b a -=-+ (2) 222()2a b a ab b ±=±+3、整式的除法:m n m na a a-÷=(0a ≠,m n 、都是正整数)4.),0(1);0(10为正整数p a a a a a p p ≠=≠=-二、练习题:1.(2011宿迁)计算(-a 3)2的结果是( )A .-a 5 B .a 5 C .a 6 D .-a 62.(2011日照)下列等式一定成立的是( )(A )a 2+a 3=a 5 (B )(a+b )2=a 2+b 2 (C )(2ab 2)3=6a 3b 6 (D )(x -a )(x -b )=x 2-(a+b )x+ab3.(2011宜宾)下列运算正确的是( )A .3a -2a=1B .632a a a =⋅C .2222)(b ab a b a +-=-D .222)(b a b a +=+4.计算323)(a a ⋅的结果是( )A .8a B .9a C .10a D .11a5.下列运算正确的是( )A 、22x x x =⋅ B 、22)(xy xy = C 、632)(x x = D 、422x x x =+ 6.下列运算中正确的是( )A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+ 7.负实数a 的倒数是( )A .-a B . 1 a C .- 1aD .a8.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A.Q P > B. Q P = C. Q P < D.不能确定9.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为( )A. 26元 B. 27元 C. 28元 D. 29元10.如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( ) A.()2222a b a ab b -=-+ B.()2222a b a ab b +=++C.22()()a b a b a b -=+-D.2()a ab a a b +=+a 第19题 ba -baba -b甲乙11.图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )A .22()()4m n m n mn +--=B .222()()2m n m n mn +-+= C .222()2m n mn m n -+=+ D .22()()m n m n m n +-=-12.(2011邵阳)若□×3ab=3a 2b ,则□内应填( )A.ab B.3ab C.a D.3a 13.(2011芜湖)如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm a a +B .2(315)cm a + C .2(69)cm a + D .2(615)cm a +14.(2011枣庄)如图,边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m+3B .m+6C .2m+3D .2m+615.(2011泰州)多项式 与m 2+m -2的和是m 2-2m .16.(2011荆州)已知x A 2=,B 是多项式,在计算A B +时,小马虎同学把A B +看成了A B ÷,结果得x 2+21x ,则A B += 。
整式的运算练习题(共10篇)整式的运算练习题(一): 30道整式的运算练习题快,我很急,最好到答案(x2+ax+b)(x2-3x+4)=x^4-3x^3+4x^2+ax^3-3ax^2+4ax+bx^2-3bx+4b=x^4-(3-a)x^3+(4-3a+b)x^2+(4a-3b)+4b3-a=0 => a=34-3a+b=04-3*3+b=0b=5设任取0-9中3个数X,Y,Z.6个两位数分别是:10X+Y,10Y+X,10X+Z,10Z+X,10Y+Z,10Z+Y. 6个数相加,和是22X+22Y+22Z=22(X+Y+Z).再除以(X+Y+Z)等于22.所以不管X,Y,Z如何,最终结果都是22.1)(x-y)(x+3) (2)(3)(5a2+8a)+(3a2-7a+5) (4)(-3)5 (-3)2 3(5) (6)x2y2 (-x2y)(7)(2a+3b)(a-b) (8)(5a3-2a+a2)÷(-2a)a的平方*b^3ab+5*a的平方*[email protected]=a^2*(b+3ab)+5a^2*(b-4ab)=a^2b+3a^3b+5a^2b-20a^3b=6a^2b-17a^3b=6*(5^2)*3-17*(5^3)*3=5895(2x^2)^3-6x^3(x^3+2x^2+x)=(8x^6)-(6x^6+12x^5+6x^4)=8x^6-6x^6-12x^5-6x^4=2x^6-12x^5-6x^42(x+y+z)(x+y-z)=(x+y)^2 - z^2=x^2 + y^2 -2xy -z^23[(x+y)^2-(x-y)^2]÷(2xy)=[x^2 + 2xy + y^2 -(x^2 - 2xy + y^2)]/(2xy)=[x^2 + 2xy + y^2 - x^2 + 2xy - y^2)]/(2xy)=(4xy)/(2xy)=24a^2 (a+1)^2-2(a^2-2a+4)=a^2[a^2 + 2a +1]-(2a^2-4a+8)=a^4 + 2a^3 + a^2 - 2a^2 + 4a -8=a^4 + 2a^3 - a^2 + 4a - 8【整式的运算练习题】整式的运算练习题(二): 整式的运算练习题 90道快,我只找到这些,不知道你是要找小学的还是初中的:一)计算题:(1)23+(-73)(2)(-84)+(-49)(3)7+(-2.04)(4)4.23+(-7.57)(5)(-7/3)+(-7/6)(6)9/4+(-3/2)(7)3.75+(2.25)+5/4(8)-3.75+(+5/4)+(-1.5)(9)(-17/4)+(-10/3)+(+13/3)+(11/3)(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)(11)(+1.3)-(+17/7)(12)(-2)-(+2/3)(13)|(-7.2)-(-6.3)+(1.1)|(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)(15)(-2/199)*(-7/6-3/2+8/3)(16)4a)*(-3b)*(5c)*1/6还有50道题,不过没有答案1.3/7 × 49/9 - 4/32.8/9 × 15/36 + 1/273.12× 5/6 –2/9 ×34.8× 5/4 + 1/45.6÷ 3/8 –3/8 ÷66.4/7 × 5/9 + 3/7 × 5/97.5/2 -( 3/2 + 4/5 )8.7/8 + ( 1/8 + 1/9 )9.9 × 5/6 + 5/610.3/4 × 8/9 - 1/30.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.411.7 × 5/49 + 3/1412.6 ×( 1/2 + 2/3 )13.8 × 4/5 + 8 × 11/514.31 × 5/6 – 5/615.9/7 - ( 2/7 – 10/21 )16.5/9 × 18 –14 × 2/717.4/5 × 25/16 + 2/3 × 3/418.14 × 8/7 –5/6 × 12/1519.17/32 –3/4 × 9/2420.3 × 2/9 + 1/321.5/7 × 3/25 + 3/722.3/14 ×× 2/3 + 1/623.1/5 × 2/3 + 5/624.9/22 + 1/11 ÷ 1/225.5/3 × 11/5 + 4/326.45 × 2/3 + 1/3 × 1527.7/19 + 12/19 × 5/628.1/4 + 3/4 ÷ 2/329.8/7 × 21/16 + 1/230.101 × 1/5 –1/5 × 2131.50+160÷40 (58+370)÷(64-45)32.120-144÷18+3533.347+45×2-4160÷5234(58+37)÷(64-9×5)35.95÷(64-45)36.178-145÷5×6+42 420+580-64×21÷2837.812-700÷(9+31×11)(136+64)×(65-345÷23)38.85+14×(14+208÷26)39.(284+16)×(512-8208÷18)40.120-36×4÷18+3541.(58+37)÷(64-9×5)42.(6.8-6.8×0.55)÷8.543.0.12× 4.8÷0.12×4.844.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.645.6-1.6÷4= 5.38+7.85-5.37=46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.948.10.15-10.75×0.4-5.749.5.8×(3.87-0.13)+4.2×3.7450.32.52-(6+9.728÷3.2)×2.551.-5+58+13+90+78-(-56)+5052.-7*2-57/(353.(-7)*2/(1/3)+79/(3+6/4)54.123+456+789+98/(-4)55.369/33-(-54-31/15.5)56.39+{3x[42/2x(3x8)]}57.9x8x7/5x(4+6)58.11x22/(4+12/2)59.94+(-60)/10整式的运算练习题(三): 整式的运算练习题1.化简:3(a+5b)-2(b-a).2.有这样一道题:“计算(2x^3-3x^2y-2xy^2)-(x3-2xy^2+y^3)+(-x3+3x^2y-y^3)的值,其中x=1/2,y=-1”.甲同学把“x=1/2”错抄成“x=-1/2”,但他计算的结果也是正确的,试说明理由,并求出这个结果.整式的运算练习题(四): 初一整式加减计算题25道3ab-4ab+8ab-7ab+ab=______.4.7x-(5x-5y)-y=______.5.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.6.-7x2+6x+13x2-4x-5x2=______.7.2y+(-2y+5)-(3y+2)=______.11.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.12.2a-(3a-2b+2)+(3a-4b-1)=______.13.-6x2-7x2+15x2-2x2=______.14.2x-(x+3y)-(-x-y)-(x-y)=______.16.2x+2y-[3x-2(x-y)]=______.17.5-(1-x)-1-(x-1)=______.18.( )+(4xy+7x2-y2)=10x2-xy.19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.23.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.26.-(2x2-y2)-[2y2-(x2+2xy)]=______.27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).31.3a-(2a-3b)+3(a-2b)-b=______.32.化简代数式x-[y-2x-(x+y)]等于______.33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.34.3x-[y-(2x+y)]=______.35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.36.已知x≤y,x+y-|x-y|=______.37.已知x<0,y<0,化简|x+y|-|5-x-y|=______. 38.4a2n-an-(3an-2a2n)=______.39.若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2-x2+2xy,则这个多项式为______.40.-5xm-xm-(-7xm)+(-3xm)=______.41.当a=-1,b=-2时,[a-(b-c)]-[-b-(-c-a)]=______.43.当a=-1,b=1,c=-1时,-[b-2(-5a)]-(-3b+5c)=______.44.-2(3x+z)-(-6x)+(-5y+3z)=______.45.-5an-an+1-(-7an+1)+(-3an)=______.46.3a-(2a-4b-6c)+3(-2c+2b)=______.48.9a2+[7a2-2a-(-a2+3a)]=______.50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______..(4x2-8x+5)-(x3+3x2-6x+2).72.(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2). 73.-{2a2b-[3abc-(4ab2-a2b)]}.74.(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b).75.(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2).76.(3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).77.(4a-2b-c)-5a-[8b-2c-(a+b)].78.(2m-3n)-(3m-2n)+(5n+m).79.(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab).80.xy-(2xy-3z)+(3xy-4z).81.(-3x3+2x2-5x+1)-(5-6x-x2+x3).83.3x-(2x-4y-6x)+3(-2z+2y).84.(-x2+4+3x4-x3)-(x2+2x-x4-5).85.若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B.86.已知A=3a2-5a-12,B=2a2+3a-4,求2(A-B).87.2m-{-3n+[-4m-(3m-n)]}.88.5m2n+(-2m2n)+2mn2-(+m2n).89.4(x-y+z)-2(x+y-z)-3(-x-y-z).90.2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).92.2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2).93.2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}.94:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.95:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).96:a3-(a2-a)+(a2-a+1)-(1-a4+a3).97.4x-2(x-3)-3[x-3(4-2x)+8].整式的运算练习题(五): 100道整式练习题50个加减50个乘除的...六年级数学期末试卷一、填空.第1题2分,其余每题1分,共22%1、2—公顷=_____公顷____平方米 2—小时=_____小时_____分2、120千克的—是_____千克 72公顷比_____公顷少—3、30:()=——=()÷—=1—=()%4、在()里填“>、<或=”1—÷—()1— 1—÷—()1—÷—1—()1—×— 2—:—()2—×1—5、某班男生25人,女生20人,男生比女生多——,男生比女生多占全班人数的——.6、一个圆的半径2厘米,这个圆的周长_____厘米,面积_____平方厘米.7、一件工程,甲队单独做要20天完成,乙队单独做要30天完成,甲乙两队的工作效率之比是_____.8、一种小麦出粉率为85%,要磨13.6吨面粉,需要这样的小麦_____吨.9、在推导圆面积计算公式时,将一个圆平均分成16等份,拼成一个近似的长方形;量得长方形宽3厘米,这个长方形长_____厘米,这个圆的面积_____平方厘米.10、在边长4厘米圆内,剪一个最大的正方形,这个正方形的面积_____平方厘米.11、一个比,如果将前项增加30%,后项必须加上3,比值才能不变.这个比的后项是_____.二、判断.5%1、甲数除以乙数等于甲数乘乙数的倒数.()2、男生比女生多25%,也就是女生比男生少25%.()3、周长相等的圆和正方形,面积相比,圆的面积大.()4、圆内最长的线段是直径.()5、某工人生产102个零件,经检验有100个合格,合格率为100%.()三、选择.4%1、甲、乙两件商品,甲比乙贵—,下列说法正确的是()A、乙比甲便宜—B、甲比乙贵的相当于甲的—C、乙比甲便宜的相当于乙的—D、乙比甲便宜的相当于甲的—2、一根绳长—米,剪去它的—,还剩这根绳的()A、—B、—米C、—D、—3、一种商品先涨价—,再降价10%,现价与原价相比()A、贵B、便宜C、一样D、无法确定4、一个半圆的周长10.28厘米,这个半圆的直径()厘米A、2B、4C、6D、8四、计算.34%1、直接写得数.4%—×3.2= —-0.6= 4.8÷1—= 0.8÷—=8.5×—= —+0.5= 0.28÷0.21= —+5÷7=2、用简便方法计算.8%5—-5.3+4—-2.7 3—÷—+5—×1—4.7×—-0.125+12.5%×6.3 79—×—3、解方程.4%2X-—=0.54 8X=17.6-—X4、用递等式计算.(每题3分,计9分)8—+5.6×1— 1.5×—+2.1÷—(4-3.5×—)÷1—5、列综合算式(或方程)解答.(每题3分,计6分)(1)25个—相加的和比什么数(2)2—减去什么数的40%,多4—正好等于2—的一半6、已知下图三角形面积25平方厘米,求圆的面积.3%五、应用题.35%1、一套西服原价480元,因季节调价,降价—出售,现在这套西服卖多少元2、修路队修一条公路,已修了240米,比剩下的少—,这条公路还剩多少米未修3、一项工程,甲队单独修要20天完成,乙队单独修要30天完成;乙队先修几天后,甲队再用8天就能正好修完4、红星小学,五、六年级共有785名学生,其中五年级学生数相当于六年级的—,红星小学六年级有多少名学生5、甲、乙两桶汽油同样多,从甲桶倒—到乙桶,这时乙桶有汽油30.4千克,甲桶原有汽油多少千克6、快、慢两车同时从相距480千米的两地相向而行,3小时后还相距全程的—,照这样的速度,两车还要经过几小时才能相遇7、某工地想用甲乙两辆汽车一次将一堆货物运走,而甲乙两车的运载总量为9.18吨;如甲车多装—或乙车多装—就能一次全部运走,甲车的运栽量是多少吨小学数学六年级期末试卷【打印】【时间:2023-5-23】【关闭】小学数学六年级期末试卷(A卷)一、填空.(6,10题每空2分,其余每空1分,共18分)1、一百零五万八千写作(),改写成以万为单位的数是()万.2、20.08千米=()千米()米3、3时45分写成分数是()时,写成小数是()时.4、的分数单位是(),有()个这样的分数单位.5、把340分解质因数应写成340=().6、10以内所有质数的平均数是().7、7==()%8、8.4:的比值是().9、()米的与6米的相等.10、一个圆柱的高等于底面半径的4倍,这个圆柱的侧面展开图的周长是61.68厘米,这个圆柱体底面半径是().(π取3.14).二、判断题.对的画“√”,错的画“×”.(4分)1、一个自然数没有比它本身再大的约数.()2、97是100以内最大的质数.()3、在一个乘法算式里,乘数是,积与被乘数的比是4:5.()4、任何一个圆柱体的体积都比圆锥体多2倍.()三、选择题.把表示正确答案的字母填在()里.(4分)1、一桶油5千克,先用去全部的,再用去千克,一共用去().A、千克B、千克C、4千克2、用4个体积是1立方分米的正方体木块拼成一个长方体,这个长方体的表面积可能是().A、16平方分米B、18平方分米C、24平方分米四、用简便方法计算(写出简算过程)(6分)1、2、1.25×25×0.4×8五、脱式计算.(20分)1、205×32-6562、2975÷125+26×3.53、4、(2-1.25×)×(5、六、求下面图形中空白部分的面积.(5分)七、列式计算.(8分)1、560的40%比它的多多少2、一个数的15%比12.8多,求这个数.(用方程解)八、应用题.(35分)1、机床厂第一季度生产机床570台,比计划多生产90台,超额完成计划的百分之几2、一项工程,甲队独干3天完成总工程的,照这样计算,完成全部工程的,需要多少天3、A、B两地相距32千米,甲、乙分别从A、B两地同时出发,相向而行,乙和甲的速度之比是 3:5,相遇时,甲行了多少千米4、一个梯形的面积是12平方分米,上底和高都是2.4分米,下底长多少分米(用方程解)5、原来做一套校服需要78元,现在每套提价12元,原来60套校服的钱现在可以做多少套6、张老师借来一本书,第一天看了全书的30%,第二天看的比全书的少14页,两天共看了70页,这本书一共多少页7、一个圆柱形玻璃缸,底面半径2分米,里面盛有1.5分米深的水,将一块不规则的铁放入这缸水中,水面上升0.5分米,这块铁的体积是多少小学数学六年级期末试卷(B卷)一、填空.(每空1分,共19分)1、100个亿,5个千万,4个十万组成的数写作(),用四舍五入法省略“亿”后面的尾数是().2、升=()升()毫升3.45时=()时()分3、先把8.05扩大10倍,再把小数点向左移动两位,得()4、在9、10和18三个数中,()能被()整除,()和()互质.5、18和21的最大公约数是(),最小公倍数是().6、a和b都是自然数,如果>,那么,a和b相比,()大.7、如果把甲数的给乙数,这时甲、乙两个数恰好相等,原来乙数与甲数的最简整数比是().8、六(1)班男生人数是女生人数的125%,男生人数是全班人数的,女生人数比是男生人数少()%.9、把一个棱长4分米的正方体木块削成一个最大的圆柱体,圆柱体的体积是().10、把一块长80米、宽60米的长方形菜地画在比例尺是1:2023的图纸上,图上面积是().二、判断题.对的画“√”,错的画“×”.(4分)1、能被2整除的数一定不能被3整除.()2、把12.5米:千米化成最简单的整数比是1:10()3、一个长方体的棱长和是24厘米,这个长方体的体积一定是6立方厘米.()4、甲数的等于乙数的,甲数比乙数多60%.三、选择题.把正确答案的序号填在()里.(4分)1、已知把3米长的线段平均分成4份,可以得出()①每份是3米的②每份是米③每份是3米的④每份是1米的2、根据甲数除以乙数商是4,可以确定().①甲数一定能被乙数整除②乙数一定能被甲数除尽③甲数与乙数的比是4:1④甲数是甲乙两数的最小公倍数四、用简便方法计算(写出简单过程)(6分)五、脱式计算.(20分)1、98×102-69992、0.4÷2.5+0.07×50六、下图中的排水管,外直径30厘米,管壁厚3厘米,管长4米,求排水管的体积.(4分)七、列式计算.(8分)1、13.6减去9.4的差,除以,商是多少2、3.1比一个数的少1.6,这个数是多少(用方程解)八、应用题.(35分)1、李明把500元存入银行,一年后取回本息537.35元,求年利率.2、果园里的苹果树比梨树多160棵,梨树比苹果树少.果园里有苹果树多少棵3、一辆汽车从东城开往西城,前3小时每小时行41千米,后4小时共行220千米,这辆汽车平均每小时行多少千米4、建筑队用480块方砖可以铺地15平方米,照这样计算,学校的电化教室地面是120平方米,需要购买多少块方砖(用比例方法解)5、用铁皮焊一只底面边长都是25厘米,高40厘米的长方体无盖水桶,至少需要铁皮多少平方厘米(1)求三个植树队共有多少人.把数据填入表内.(2)求三个队平均每人植树多少棵.把得数填入表内.7、上学期红光小学六年级共有学生180人,这学期男生人数增加了16%,女生人数减少6人,这学期全年级共有学生186人,上学期六年级有男生有多少人整式的运算练习题(六): 求初一计算题,整式练习及答案得数就行.计算题要四个数的,整式要四项.2x+17=353x-64=1112+8x=520.8x-4.2=2.22x+5=103x-15=754x+4o=3203x+77=1225x-1.6=0.66x-4=2010x-0.6=2.4500-12x=1401) 66x+17y=396725x+y=1200答案:x=48 y=47(2) 18x+23y=230374x-y=1998答案:x=27 y=79(3) 44x+90y=779644x+y=3476答案:x=79 y=48(4) 76x-66y=408230x-y=2940答案:x=98 y=51(5) 67x+54y=854671x-y=5680答案:x=80 y=59(6) 42x-95y=-1410 21x-y=1575答案:x=75 y=48(7) 47x-40y=85334x-y=2023答案:x=59 y=48(8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95(9) 97x+24y=7202 58x-y=2900答案:x=50 y=98(10) 42x+85y=6362 63x-y=1638答案:x=26 y=62(11) 85x-92y=-2518 27x-y=486答案:x=18 y=44(12) 79x+40y=2419 56x-y=1176答案:x=21 y=19(13) 80x-87y=2156 22x-y=880答案:x=40 y=12(14) 32x+62y=5134 57x+y=2850答案:x=50 y=57(15) 83x-49y=8259x+y=2183答案:x=37 y=61(16) 91x+70y=5845 95x-y=4275答案:x=45 y=25(17) 29x+44y=5281 88x-y=3608答案:x=41 y=93(18) 25x-95y=-4355 40x-y=2023答案:x=50 y=59(19) 54x+68y=3284 78x+y=1404答案:x=18 y=34(20) 70x+13y=3520 52x+y=2132答案:x=41 y=50(21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99(22) 36x+77y=7619 47x-y=799答案:x=17 y=91(23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78(24) 28x+28y=3332 52x-y=4628答案:x=89 y=30(25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54(26) 79x-76y=-4388 26x-y=832答案:x=32 y=91(27) 63x-40y=-821 42x-y=546答案:x=13 y=41(28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78(29) 85x+67y=7338 11x+y=308答案:x=28 y=74(30) 78x+74y=12928 14x+y=1218答案:x=87 y=83(31) 39x+42y=5331 59x-y=5841答案:x=99 y=35(32) 29x+18y=1916 58x+y=2320答案:x=40 y=42(33) 40x+31y=604345x-y=3555答案:x=79 y=93(34) 47x+50y=8598 45x+y=3780答案:x=84 y=93(35) 45x-30y=-1455 29x-y=725答案:x=25 y=86(36) 11x-43y=-1361 47x+y=799答案:x=17 y=36(37) 33x+59y=3254 94x+y=1034答案:x=11 y=49(38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55(39) 94x+71y=7517 78x+y=3822答案:x=49 y=41(40) 28x-62y=-4934 46x+y=552答案:x=12 y=85(41) 75x+43y=8472 17x-y=1394答案:x=82 y=54(42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=36 (45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=84 20x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92 3X+18=52 x=34/3 4Y+11=22 y=11/4 3X*9=5 x=5/278Z/6=48 z=363X+7=59 x=52/34Y-69=81 y=75/4 8X*6=5 x=5/487Z/9=4 y=63/715X+8-5X=54 x=4.6 5Y*5=27 y=27/40 8x+2=10 x=1x*8=88 x=11y-90=1 y=912x-98=2 x=506x*6=12 x=1/35-6=5x x=-1/56*x=42 x=755-y=33 y=2211*3x=60 x=20/11 8-y=2 y=-61.x+2=32.x+32=333.x+6=184.4+x=475.19-x=86.98-x=137.66-x=108.5x=109.3x=2710.7x=711.8x=812.9x=913.10x=10014.66x=66015.7x=4916.2x=417.3x=918.4x=1619.5x=2520.6x=3621.8x=6422.9x=8123.10x=10024.11x=12125.12x=14426.13x=16927.14x=19628.15x=22529.16x=25630.17x=28931.18x=32432.19x=36133.20x=40031.21x=44132.22x=48433.111x=1232134.1111x=123432135.11111x=12345432136.111111x=1234565432137.46/x=2338.64/x=839.99/x=1140.1235467564x=041.2x+1= -2+x42.4x-3(20-x)=343..-2(x-1)=444.3X+189=52145.4Y+119=22 546.3X+77=5947.4Y-6985=8148.X=0.149.5X=55.550.Y=50-85(-8)-(-1) =-745+(-30) =15-1.5-(-11.5) =10-0.25-(-0.5) =0.2515-【1-(-20-4)】 =-10-40-28-(-19)+(-24) =-7322.54+(-4.4)+(-12.54)+4.4 =10(2/3{三分只二“/”是分数线}-1/2)-(1/3-5/6)=2/3 2.4-(-3/5)+(-3.1)+4/5 =0.7(-6/13)+(-7/13)-(-2) =13/4-(-11/6)+(-7/3) =1/411+(-22)-3×(-11) =22(-0.1)÷0.5×(-100) =20(-2)的3次方-9 =-1723÷[-9-(-4)] =-23/5(3/4-7/8)÷(-7/8) =1/7(-60)×(3/4+5/6)=-95给我分吧整式的运算练习题(七): 急求300道初一整式运算题目(最好带答案)看清楚,是正是运算题带xy的那种,不要带有中文,在一小时之内出完的, 从发布问题至今,已超过2小时无追加100和50只能追加20至30(看时间而定)于09年7月31日11:58 公告答案一、填空题(每小题2分,共16分)1、多项式-abx2+ x3- ab+3中,第一项的系数是 ,次数是 .2、计算:①100×103×104 =;②-2a3b4÷12a3b2 = .3、(8xy2-6x2y)÷(-2x)=4、一个正方体的棱长为2×102毫米,则它的体积是毫米3.5、(a+2b-3c)(a-2b+3c)=[a+( )]·[a-( )] .6、(-3x-4y) ·( ) = 9x2-16y2.7、已知正方形的边长为a,如果它的边长增加4,那么它的面积增加 .8、如果x+y=6,xy=7,那么x2+y2= ,(x-y)2= .三、计算题(每小题5分,共30分)15、2(x3)2·x3-(2 x3)3+(-5x)2·x716、(-2a3b2c) 3÷(4a2b3)2-a4c·(-2ac2)17、-2a2( ab+b2)-5a(a2b-ab2)18、(3x3-2)(x+4)-(x2-3)(3x-5)19、9(x+2)(x-2)-(3x-2)220、[(x+y)2-(x-y2)+4xy] ÷(-2x)四、先化简,再求值(每小题7分,共14分)21、(3a-7)(3a+7)-2a( -1) ,其中a=-322、[(3x- y 2)+3y(x-)] ÷[(2x+y)2-4y(x+ y)] ,其中x=-7.8,y=8 检举回答人的补充 2023-08-17 09:12 (1).(x-1)-(2x+1)=-x-2(2).3(x-2)+2(1-2x)=-x-4(3).3(2b-3a)+3(2a-3b)=-3a-3b(4).(3x^2-xy-2y^2)-2(X^2+xy-2y^2)=(3x-y)(x+2y)-(x+2y)(x-y)=3y(x+2y)(5)7a^b-(-4a^b+5ab^2)-2(2a^2b-3ab^2)=7a^b+4a^b-5ab^-4a^b+6ab^=-a^b+ab^=ab(b-a)100×103×104 =;②-2a3b4÷12a3b2 =、(8xy2-6x2y)÷(-2x)=、(a+2b-3c)(a-2b+3c)=[a+( )]·[a-( )]、(-3x-4y) ·( ) = 9x2-16y2.、(a+2b-3c)(a-2b+3c)=[a+( )]·[a-( )]2(x3)2·x3-(2 x3)3+(-5x)2·x71.(2a+3b)*(2a-b)2.(2x+y-1)的平方解1.(2a+3b)*(2a-b) 用十字相乘法吧2 2 =4a2-3b2+4ab3 -12.(2x+y-1)的平方 =4x2+y2+4xy +1-4x-2y(3) 2(ab-3)(4)-3(ab2c+2bc-c) (5)(―2a3b) (―6ab6c) (6)(2xy2) 3yx(1)2ab(5ab2+3a2b)(2)三、巩固练习:1、判断题:(1) 3a3·5a3=15a3 ()(2) ( )(3) ( )(3) -x2(2y2-xy)=-2xy2-x3y ( )2、计算题:(3) (4) -3x(-y-xyz)(5) 3x2(-y-xy2+x2) (6) 2ab(a2b- c)(7) (a+b2+c3)·(-2a) (8) [-(a2)3+(ab)2+3]·(ab3)检举回答人的补充 2023-08-17 09:13 脱式计算:(15.6+9.744/2.4)*0.52.881/0.43-3.5*0.2413.5*0.68/8.543.6-7.6*4.1(86.9+667.6)/50.3(73.5+80.5)/(10+12)(7.8*15+5.1*10+6*5)/(15+10+5)12.53-1.35*2-9.30.8*(4-3.75)/0.16-1.3*(10-7.3)3/7 × 49/9 - 4/38/9 × 15/36 + 1/2712× 5/6 –2/9 ×38× 5/4 + 1/46÷ 3/8 –3/8 ÷64/7 × 5/9 + 3/7 × 5/95/2 -( 3/2 + 4/5 )7/8 + ( 1/8 + 1/9 )9 × 5/6 + 5/63/4 × 8/9 - 1/37 × 5/49 + 3/146 ×( 1/2 + 2/3 )8 × 4/5 + 8 × 11/531 × 5/6 – 5/69/7 - ( 2/7 – 10/21 )5/9 × 18 –14 × 2/74/5 × 25/16 + 2/3 × 3/414 × 8/7 –5/6 × 12/15 17/32 –3/4 × 9/24 3 × 2/9 + 1/35/7 × 3/25 + 3/7.3/14 ×× 2/3 + 1/61/5 × 2/3 + 5/69/22 + 1/11 ÷ 1/25/3 × 11/5 + 4/345 × 2/3 + 1/3 × 157/19 + 12/19 × 5/61/4 + 3/4 ÷ 2/38/7 × 21/16 + 1/23/7 × 49/9 - 4/32.8/9 × 15/36 + 1/273.12× 5/6 –2/9 ×34.8× 5/4 + 1/45.6÷ 3/8 –3/8 ÷66.4/7 × 5/9 + 3/7 × 5/97.5/2 -( 3/2 + 4/5 )8.7/8 + ( 1/8 + 1/9 )9.9 × 5/6 + 5/610.3/4 × 8/9 - 1/311.7 × 5/49 + 3/1412.6 ×( 1/2 + 2/3 )13.8 × 4/5 + 8 × 11/514.31 × 5/6 – 5/615.9/7 - ( 2/7 – 10/21 )16.5/9 × 18 –14 × 2/717.4/5 × 25/16 + 2/3 × 3/418.14 × 8/7 –5/6 × 12/1519.17/32 –3/4 × 9/2420.3 × 2/9 + 1/3整式的运算练习题(八): 求15道初一上学期整式计算求值的题,.2X―[6-2(X-2)] 其中 X=-22.(5a+2a2-3-4a3)-(-a+3a3-a2),其中a=-23.(2m2n+2mn2)-[2(m2n-1)+2mn2+2],其中m=-2,n=24.(5a+2a2-3-4a3)-(-a+3a3-a2),其中a=-25、(2m2n+2mn2)-[2(m2n-1)+2mn2+2],其中m=-2,n=26.3(ab+bc)-3(ab-ac)-4ac-3bc 其中:a=2023/2023,b=1/3,c=1 7.(3xy+10y)+[5x-(2xy+2y-3x)]其中xy=2,x+y=38.已知a=-2,b=-1,c=3,求代数式5abc-2a2b+[3abc-(4ab2-a2b)]的值.9. 2 ( a2b + ab2)- [ 2ab2 - (1- a2b) ] - 2,其中a= -2,b=0.510.(-3x2-4y)-(2x2-5y+6)+(x2-5y-1) 其中 x=-3 ,y=-1【整式的运算练习题】整式的运算练习题(九): 整式的加减附加题1.填空::1.X与-20‰X的和是()2.(2X-3Y )与(X-Y)的2倍的差是()二.一个长方形的宽为A,长比宽大1 ,那么这个长方行的周长为()三.先化简,在求值(2)5(3A二的平方B-AB的平方)-(AB的平方+3A的平方B),其中A=2分之一,B=-1.四.已知一个三角形的周长为3A+2B,其中第一条边长为A+B,第二条边长比第一条边长小1 ,求第三边的长.综合运用五.列式比Y的2分之一大5的数与比Y的2倍小6的数,并计算这两个数的和6:已知A=X3的立方+3Y的立方-XY平方,B=-Y的立方+X的立方+2XY的平方,其中X=3分之一,Y=2,求A-B的值7:已知:(m-2)a的2次方b|m+1|的次方是关于a,b的五次单项式,求下列代数式的值,并比较(1)(2)两题结果:1m的2次方-2m+1. (2)(m-1)的2次方1.字母能表示什么初一数学习题精选一、填空题1.一打铅笔12支, 打铅笔______支;2.小明上学走的路程是 ,所用的时间是 ,则小明上学行走的速度是______;3.一种本的单价是元,问个本需要______元.二、解答题1.如图,圆中挖掉一个正方形,试用r表示阴影部分面积.2.如图所示一个边长为1的正方形的分割方法,当分割n次时其中最小的四边形的面积是多少.参考答案:一、1. 2. 3.二、1.(提示:如答图,把正方形分成两个三角形,其中三角形的面积是 .2.(提示:当分割一、二、三…次所得的最小四边形的面积依次是 ,分 2.代数式习题精选一、选择题1.下面选项中符合代数式书写要求的是()A B C D2.火车速度是千米/小时,则分钟可行驶()A 千米B 千米C 千米D 千米3.用代数式表示“ 与的差的2倍”正确的是()A B C 2 D4.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为()A 元B 元C 元D 元二、填空题1.如果圆锥体的底面半径为 ,高为 ,则圆锥体的体积是_______;2.一个长方体的长、宽、高分别是、、 ,则这个长方体的表面积是_______;3.一所小学,女教师人数占教师总人数的90%,男教师人数是 ,这所学校教师的总数是_______;4.代数式的项是_______和_______,它们的系数分别是_______和_______.5.在下边的日历中,任意圈出一竖列上相邻的三个数,设中间一个数为a,则这三个数之和为_______.(用含a的代数式表示)6.观察下列各式:请你将猜想到的规律用自然数表示出来_______.7.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m元后,又降低20%,现售价为n元,那么该电脑的原售价为_______元.8.如图,观察下列各正方形图案,每条边上有个圆点,每个图案圆点的总数是S,按此规律推断S与n的关系式是_______.三、解答题1.一种蔬菜x千克,不加工直接出售每千克可卖y元,如果经过加工重量减少了20%,价格增加了40%,问x千克这种蔬菜加工后可卖多少钱;如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱比加工前多卖多少钱2.举出三个实际问题,其中的数量关系可以用a、b来表示.3.如图,用a来表示阴影部分的面积.4.2.写出一个只含字母x的代数式.要求:(1)要使此代数式有意义;(2)字母x的取值范围为全体实数;(3)此代数式的值恒为正数.参考答案:一、1.C 提示:看课本第92页“注意”.2.D 提示:分钟即小时,时间速度=路程,即.3.C 提示:注意运算顺序.4.D 提示:原价现售价.二、1. 2. 3.(提示:女教师占教师总数的90%,则男教师应占教师总数的10%).4..5.提示:多做几次试验,即可得到答案.6.提示:纵向观察各列数的特点.7.提示:先表示第一次降价后的.8.有不同思路,比如可把组成正方形的点看做是如答图所示的4部分,答案为或者三、1.1.12xy元,1680元,180元2.(1)a、b分别表示长方形的长和宽,则长方形的面积是(2)如果a表示某种物品的单价、b表示某种物品的数量,则这种物品的总价可表示为 ,(3)a表示汽车行驶的速度,b表示汽车行驶的时间,则可表示汽车行驶的路程.3.(提示:如答图,其中阴影面积的一半,等于以a为半径的四分之一的圆的面积减去以a为两直角边的直角三角形的面积)4.答案不确定,如3.代数式求值习题精选一、选择题1.下列代数式:的值,肯定为正数的有()A.1个 B.2个 C.3个 D.以上答案都不对2.下表表示每给x的一个值,某个代数式的相应的值.满足表中所列所有条件的代数式是()0 1 2 3代数式的值 2 -1 -4 -7A. B. C. D.3.当时,代数式的值是()A.13 B. C. D.4.根据如图所示的计算程序计算代数式的值.若输入的x值为 ,则输出的结果为()A. B. C. D.二、填空题1.如图,填表:2.如图,填数:1.答如下表格2.答如图参考答案:一、1.A 提示:只有代数式的值悟为正数.2.D3.B 提示:易断定之值为整数,故代数式的值是带分数,其分数部分是 ,故不必动笔便可得出结果.4.C 提示:所以应计算代数式当时的值.二、1.答如下表格2.答如图三、1.(1)(2)177元2.(1) ,(2)403.(1)平方厘米(2)当时原式平方厘米整式的运算练习题(十): 初一上册数学有理数运算的练习题!1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数; ②一个有理数不是正数就是负数;③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的A.1B.2C.3D.42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:a 0 b把a,-a,b,-b按照从小到大的顺序排列 ( )A. -b<-a<a<bB.-a<-b<a<bC. -b<a<-a<bD.-b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数; ②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数; ④两个数比较,绝对值大的反而小A.①②B.①③C.①②③D.①②③④4.下列运算正确的是 ( )A. B.-7-2×5=-9×5=-45C.3÷D.-(-3)2=-95.若a+b<0,ab<0,则 ( )A.a>0,b>0;B.a<0,b<0;C. a,b两数一正一负,且正数的绝对值大于负数的绝对值;D.a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kgB.0.6kgC.0.5kgD.0.4kg7.一根1m长的小棒,第一次截去它的 ,第二次截去剩下的 ,如此截下去,第五次后剩下的小棒的长度是()A .( )5m B. [1-( )5]m C. ( )5m D. [1-( )5]m8.若ab≠0,则的取值不可能是()A.0B.1C.2D.-2二、填空题:9.比大而比小的所有整数的和为 .10.若那么2a一定是 .11.若0<a<1,则a,a2, 的大小关系是 .12.多伦多与北京的时间差为–12 小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是 .13上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m/min.14.规定a*b=5a+2b-1,则(-4)*6的值为 .15.已知 =3, =2,且ab<0,则a-b= .16.已知a=25,b= -3,则a99+b100的末位数字是 .三、计算题.17. 18. 8-2×32-(-2×3)219. 20.[-38-(-1)7+(-3)8]×[- 53]21. –12 × (-3)2-(- )2023×(-2)2023÷22. –16-(0.5- )÷ ×[-2-(-3)3]-∣ -0.52∣四、解答题.23.已知1+2+3+…+31+32+33==17×33.求 1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.24.在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少请列出算式解答.25.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次-4 +7 -9 +8 +6 -5 -2(1)求收工时距A地多远(2)在第次纪录时距A地最远.(3)若每km耗油0.3升,问共耗油多少升26.如果有理数a,b满足∣ab-2∣+(1-b)2=0试求+…+ 的值.答案:一、选择题:1-8:BCADDBCB二、填空题:9.-3;10.非正数;11.;12.2:00;13.3.625×106;14.-9;15.5或-5;16.6三、计算题17.-9;18.-45;19.;20.;21.;22.四、解答题:23.-2×17×33;24.0;25.(1)1(2)五(3)12.3;26.我劝你做题要答案干嘛,要答案是害了自己!希望能解决您的问题.。
整式概念练习题一、选择题:1. 下列哪个选项不是整式?A. 2x^2+3x+1B. 3x-1C. √xD. 4x^32. 整式是指由数和字母的乘积以及数和字母的和组成的代数式,以下哪个选项是整式?A. 2x/3B. (x+1)^2C. x^(1/2)D. log(x)3. 计算下列表达式的结果,哪个是正确的?A. (2x+1)^2 = 4x^2 + 2x + 1B. (3x-2)^2 = 9x^2 - 6x + 4C. (x+2)(x-2) = x^2 - 4D. (x-3)^2 = x^2 - 6x + 9二、填空题:1. 整式中的单项式是指由______和______相乘组成的代数式。
2. 多项式是由若干个单项式的______组成的代数式。
3. 整式中的同类项是指______相同,而系数不同的项。
三、计算题:1. 计算下列表达式的值:(1) 3x^2 - 2x + 1(2) (x+3)(x-2)2. 将下列表达式展开:(1) (2x+1)(3x-1)(2) (x-1)^3四、解答题:1. 已知多项式f(x) = ax^3 + bx^2 + cx + d,其中a, b, c, d是常数。
如果f(x)是一个整式,那么a, b, c, d必须满足什么条件?2. 证明:如果一个多项式是整式,那么它的任何系数都是整数或有理数。
五、应用题:1. 某工厂生产一批产品,每件产品的成本为c元,售价为p元。
如果生产了x件产品,那么工厂的总利润可以表示为一个整式,求出这个整式,并说明它代表的意义。
2. 一个长方形的长为l米,宽为w米。
如果长和宽都是整数,那么它的面积可以表示为一个整式。
请写出这个整式,并解释它的意义。
六、探索题:1. 试找出一个多项式,使得它的各项系数之和为1,且这个多项式是一个整式。
2. 考虑一个多项式f(x) = x^3 - 3x^2 + 2x + 1,证明它是一个整式,并找出它的系数和。
整式练习题及答案整式练习题及答案数学是一门需要不断练习的学科,而整式是数学中的重要概念之一。
整式是由常数、变量及它们的乘积与幂次的和或差组成的代数式。
在学习整式的过程中,练习题是必不可少的。
下面将给出一些整式练习题及其答案,希望能够帮助大家更好地理解和掌握整式的相关知识。
1. 将下列各式化为最简整式:a) 3x + 2y - 5x + 4yb) 2a^2 - 3b^2 + 4a^2 + b^2c) 5x^3 - 2x^2 + 3x^3 + 4x^2解答:a) 3x + 2y - 5x + 4y = -2x + 6yb) 2a^2 - 3b^2 + 4a^2 + b^2 = 6a^2 - 2b^2c) 5x^3 - 2x^2 + 3x^3 + 4x^2 = 8x^3 + 2x^22. 计算下列各式的值:a) 2x^2 + 3y^2,其中x = 2,y = 1b) 4a^3 - 2b^3,其中a = 3,b = 2c) 5x^2 - 3y^2,其中x = -1,y = 2解答:a) 2(2)^2 + 3(1)^2 = 2(4) + 3(1) = 8 + 3 = 11b) 4(3)^3 - 2(2)^3 = 4(27) - 2(8) = 108 - 16 = 92c) 5(-1)^2 - 3(2)^2 = 5(1) - 3(4) = 5 - 12 = -73. 将下列各式进行合并化简:a) 3x^2 - 2x + 4x^2 + 5x - 7b) 2a^3 + 3a^2 - 4a^3 - 5a^2 + 6a^3c) 5x^2 + 2x - 3x^2 - 4x + 7解答:a) 3x^2 - 2x + 4x^2 + 5x - 7 = 7x^2 + 3x - 7b) 2a^3 + 3a^2 - 4a^3 - 5a^2 + 6a^3 = 4a^3 - 2a^2c) 5x^2 + 2x - 3x^2 - 4x + 7 = 2x^2 - 2x + 74. 将下列各式进行展开:a) (2x + 3y)^2b) (3a - 4b)(3a + 4b)c) (5x - 2y)(5x + 2y)解答:a) (2x + 3y)^2 = (2x + 3y)(2x + 3y) = 4x^2 + 6xy + 6xy + 9y^2 = 4x^2 + 12xy + 9y^2b) (3a - 4b)(3a + 4b) = (3a)^2 - (4b)^2 = 9a^2 - 16b^2c) (5x - 2y)(5x + 2y) = (5x)^2 - (2y)^2 = 25x^2 - 4y^2通过以上的练习题,我们可以加深对整式的理解和运用。
整式的练习题及解答一、填空题1. 化简以下整式:(3x² - 2)(x - 4) + 5(x² + 2x - 1)解:将括号内的整式进行分配律展开,并合并同类项,得到:3x³ - 14x² + 7x - 182. 将以下整式写成乘积形式:4x² - 9y²解:根据差平方公式,将整式分解为(2x - 3y)(2x + 3y)3. 将以下整式写成乘积形式:a³ - b³解:根据差立方公式,将整式分解为(a - b)(a² + ab + b²)4. 计算以下整式的值:(x - 3)²,当x = 4时解:将整式展开,得到(x - 3)² = x² - 6x + 9。
当x = 4时,代入得到:4² - 6 × 4 + 9 = 25二、选择题1. 化简整式 (2x + 3)² - (3x - 4)²结果为:A. -x² - 2x - 7B. -x² - x - 7C. -x² + 2x - 7D. -x² - 2x + 7答案:B2. 将整式 a²b + b²a - ab²写成乘积形式得到:A. (a + b)²B. (a + b)(ab - b²)C. (a² - ab + b²)(a + b)D. a²b + ab²答案:B三、解答题1. 将以下整式写成乘积形式:x⁴ - y⁴解:根据差平方公式可以将整式分解为(x² - y²)(x² + y²)。
其中,x² -y²可再分解为(x - y)(x + y)。
因此,整式的乘积形式为(x - y)(x + y)(x² + y²)2. 化简整式 (3a + b)² - (a - 2b)²解:展开整式得到 (3a + b)² - (a - 2b)² = 9a² + 6ab + b² - (a² - 4ab + 4b²) 合并同类项得到 9a² + 6ab + b² - a² + 4ab - 4b²化简得到 8a² + 10ab - 3b²综上所述,整式的练习题及解答包括了填空题、选择题和解答题,涵盖了整式的简化、展开、分解等运算。
整式练习题及答案一、选择题1、B2、C3、B4、D5、B6、C7、D8、C二、填空题1、-4/3,32、二次四项式,x,-y,1,03、-3a,-3,14、5个5、都是代数式6、m+n7、24a+2a=26a8、(a+b)^2=a^2+2ab+b^2,(a+b)^2-a^2=a^2+2ab+b^2-a^2=2ab+b^2三、解答题1、单项式:ab,-6,1/m,5/2,2x,-p^3q;多项式:m^2-2m+1,x^3+3x,-p^3q;整式:m+n,52x,x^3+3x+372、ab-6.-1/m。
5/2.2x。
-p^3q是单项式;m^2-2m+1.x^3+3x。
-p^3q是多项式;m+n。
52x。
x^3+3x+37是整式。
1、求比a的一半大3的数。
答案:(a/2)+32、求a与b的差的c倍。
答案:c(a-b)3、求a与b的倒数的和。
答案:1/a + 1/b4、求a与b的和的平方的相反数。
答案:-(a+b)^25、当y=3时,单项式-πy^(1/3)n(2n-1)的值为-π3^(1/3)n(2n-1)。
6、满足条件的五次四项式只能是a^5-b^5或a^5+b^5,因为每一项的系数只能为1或-1且不含常数项,同时含有字母a 和b,不含有其他字母。
7、由题意可得:-5x-(2m-1)x+(2-3n)x-1 = ax^0,去掉二次项和一次项后,只剩下常数项-1,所以a=1.代入原式可得:-5x-(2m-1)x+(2-3n)x-1 = x^0,整理得:2m+3n=3.因为m和n都是整数,所以m=1,n=1.8、三种方案调价的结果不一样。
方案(1)和方案(2)都会使商品的售价降低1%,而方案(3)会使商品的售价降低4%。
最后都无法恢复原价。