古典概型四类重点题型
- 格式:doc
- 大小:174.00 KB
- 文档页数:3
古典概型四类重点题型古典概型一种十分重要的概率模型,是学习概率与统计的起点,注意古典概型的两个特征:(1)所有的基本事件只有有限个;(2)每个基本事件的发生都是等可能的.只有在同时满足(1)、(2)的条件下,运用的古典概型计算公式P(A)=得出的结果才是正确的。
下面就古典概型的四种重要题型举例解析如下:一、概念辨析题例1.判断下列命题正确与否.(1)先后抛掷两枚均匀硬币,有人说一共出现“两枚正面”,“两枚反面”,“一枚正面,一枚反面”三种结果,因此出现“一枚正面,一枚反面”的概率是;(2)射击运动员向一靶心进行射击.试验的结果为:命中10环,命中9环,……,命中0环,这个试验是古典概型.(3)袋中装有大小均匀的四个红球,三个白球,两个黑球,那么每种颜色的球被摸到的可能性相同.【思路点拨】根据每一次试验的意义和每个基本事件的含义进行判断.【解】所有命题均不正确.(1)应为4种结果,还有一种是“一枚反面,一枚正面”.(2)不是古典概型,因为命中10环,命中9环,…命中0环不是等可能的.(3)摸到红球的概率为,白球的概率为,黑球的概率为.【方法技巧】弄清每一次试验的意义及每个基本事件的含义是解决问题的前提,正确把握各个事件的相互关系是解决问题的重要方面,判断一次试验中的基本事件,一定要从其可能性入手,加以区分而一个试验是否是古典概型要看其是否满足有限性和等可能性.二、写出基本事件且求其概率例2 做如下试验:“将一枚均匀硬币抛掷两次”.(1)试用列举法写出该试验所包含的基木事件;(2)事件A“两次都出现正面”包含几个基本事件?(3)事件B“一次出现正面,一次出现反面”含有的基本事件是什么?(4)计算P(A)和P(B).【思路点拨】试验“将一枚均匀硬币抛掷两次”中,由于出现的结果有限,每次只能有一种结果(一枚硬币要么正面朝上,要么反面朝上),且每种结果出现的可能性是相同的,所以该试验是古典概型.当试验的结果较少时,可用列举法将所有试验结果一一列出,这是最基本、最直观的方法.同样地可把事件A或事件B所含的基本事件一一列出.计算古典概型的概率关键是确定m,n.【解】(1)试验“将一枚均匀硬币抛掷两次”所出现的所有基本事件如下:(正,正)、(正,反)、(反,正)、(反,反)共4种等可能的结果.(2)事件A包含的基本事件只有一个,即(正,正).(3)事件B包含的基本事件有两个,即(正,反)和(反,正).(4)P(A)=,P(B)=.【方法技巧】本题在求试验的基本事件总数时,用枚举法将所有结果一一列举出来、直观而具体,但应把握列举的原则,不要出现重复和遗漏.三、求简单古典概型的概率例3 如图,在一个木制的棱长为3的正方体表面涂上颜色,将它的棱3等分,然后从等分点把正方体锯开,得到27个棱长为1的小正方体,将这些小正方体充分混合后,装入一个口袋中.(1)从这个口袋中任意取出1个小正方体,这个小正方体的表面恰好没有颜色的概率是多少?(2)从这个口袋中同时任意取出2个小正方体,其中1个小正方体恰好有1个面涂有颜色,另1个小正方体至少有2个面涂有颜色的概率是多少?【思路点拨】该模型为古典概型,基本事件个数是有限的,并且每个基本事件的发生是等可能的.【解】在27个小正方体中,恰好3个面都涂有颜色的共8个,恰好2个面涂有颜色的共12个,恰好1个面涂有颜色的共6个,表面没涂颜色的1个.(1)27个小正方体中任意取出1个,共有= 27种等可能的结果.因为在27个小正方体中,表面没涂颜色的只有1个,所以从这个口袋中任意取出1个小正方体,而这个小正方体的表面恰好没涂颜色的概率是.(2)从27个小正方体中,同时任取2个,共有种等可能的结果.在这些结果中,有1个小正方体恰好有1个面涂有颜色,另1个小正方体至少有2个面涂有颜色包含的结果有种.所以从这个口袋中同时任意取出2个小正方体,其中1个小正方体恰好有1个面涂有颜色,另1个小正方体至少有2个面涂有颜色的概率是.【方法技巧】(1)计算古典概型事件的概率可分三步:①算出基本事件的总个数n;②求出事件A所包含的基本事件个数m;③代入公式求出概率P.(2)含有“至多”“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,可考虑其反面,即对立事件,然后应用对立事件的性质进一步求解.四、复杂的古典概型的概率的求法例4 甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(I,j)分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.【思路点拨】因为共有4张牌,基本事件的总数是有限的,而且每张牌被抽到是等可能的,因此是古典概型,另外要注意牌是不放回摸牌,每次摸出的牌不能重复.【解】(1)甲、乙二人抽到的牌的所有情况(方片4用4’表示,其他用相应的数字表示)为:(2,3),(2,4),(2,4’),(3,2),(3,4),(3,4’),(4,2),(4,3),(4,4’),(4’,2),(4’,3),(4’,4)共12种不同情况.(2)甲抽到3,乙抽到的牌只能是2,4,4’,因此乙抽到的牌的牌面数字比3大的概率为.(3)甲抽到的牌的牌面数字比乙大的情况有(3,2,(4,2),(4,3),(4’,2),(4’,3)共5种,故甲胜的概率,同理乙胜的概率为.因为P1= P2,所以此游戏公平.【方法技巧】本题属于求较复杂事件的概率,关键是理解题目的实际含义,把实际问题转化为概率模型,联想掷骰子试验,把红桃2,红桃3,红桃4和方片4分别用数字2,3,4,4’表示,抽象出基本事件,把复杂事件用简单事件表示,列举出总体I包含的基本事件的个数n 及事件A包含的基本事件的个数m,用公式求解.必要时将所求事件转化成彼此互斥的事件的和,或者先去求对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求出所求事件的概率.。
教学过程【训练2】(2014·滨州一模)甲、乙两名考生在填报志愿时都选中
了A,B,C,D四所需要面试的院校,这四所院校的面试安排在同
一时间.因此甲、乙都只能在这四所院校中选择一所做志愿,假设
每位同学选择各个院校是等可能的,试求:
(1)甲、乙选择同一所院校的概率;
(2)院校A,B至少有一所被选择的概率.
1.古典概型计算三步曲
第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;
第三,事件A是什么,它包含的基本事物有多少个.
2.确定基本事件的方法
列举法、列表法、树形图法.
教
学
效
果
分
析。
古典概率模型分析例题和知识点总结在概率论的领域中,古典概率模型是一个重要的基础概念。
它为我们理解和解决许多概率问题提供了有力的工具。
接下来,我们将通过一些具体的例题来深入探讨古典概率模型,并对相关的知识点进行总结。
一、古典概率模型的定义和特点古典概率模型是指在一个试验中,所有可能的结果是有限的,并且每个结果出现的可能性相等。
例如,掷一枚均匀的骰子,其结果有 1、2、3、4、5、6 六种,且每种结果出现的概率都是 1/6。
古典概率模型具有以下特点:1、有限性:试验的可能结果是有限的。
2、等可能性:每个结果出现的可能性相等。
二、古典概率的计算公式若一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,则事件 A 发生的概率 P(A) = m / n 。
三、例题分析例 1:从装有 3 个红球和 2 个白球的口袋中随机取出 2 个球,求取出的 2 个球都是红球的概率。
解:总的取法有 C(5, 2) = 10 种(C 表示组合数)。
取出 2 个红球的取法有 C(3, 2) = 3 种。
所以取出 2 个球都是红球的概率为 3 / 10 。
例 2:一个盒子里有 5 个黑球和 3 个白球,从中任意取出 2 个球,求至少取出 1 个黑球的概率。
解:总的取法有 C(8, 2) = 28 种。
取出的 2 个球都是白球的取法有 C(3, 2) = 3 种。
所以至少取出 1 个黑球的概率为 1 3 / 28 = 25 / 28 。
例 3:在一次抽奖活动中,有 100 个号码,其中只有 10 个号码能中奖。
某人随机抽取一个号码,求他中奖的概率。
解:因为总共有 100 个号码,中奖号码有 10 个,所以中奖的概率为 10 / 100 = 1 / 10 。
四、常见的古典概率模型1、摸球问题:如上述的从口袋或盒子中摸球的问题。
2、抽奖问题:像上述的抽奖活动。
3、掷骰子问题:计算掷骰子出现特定点数或特定点数组合的概率。
古典概型与几何概型知识点与题型复习一、基础知识1.古典概型(1)古典概型的特征:①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;,②等可能性:每个基本事件出现的可能性是相等的.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性. (2)古典概型的概率计算的基本步骤:①判断本次试验的结果是否是等可能的,设出所求的事件为A ;②分别计算基本事件的总数n 和所求的事件A 所包含的基本事件个数m ; ③利用古典概型的概率公式P (A )=mn ,求出事件A 的概率.(3)频率的计算公式与古典概型的概率计算公式的异同(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个; ②每个基本事件出现的可能性相等. (3)计算公式:P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).几何概型应用中的关注点(1)关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. (2)确定基本事件时一定要选准度量,注意基本事件的等可能性.二、考点解析考点一 古典概型例、(1)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112B.114C.115D.118(2)将一枚质地均匀的骰子投掷两次,得到的点数依次记为a 和b ,则方程ax 2+bx +1=0有实数解的概率是( )A.736B.12C.1936D.518跟踪训练1.已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x +b 为减函数的概率是( ) A.310 B.35 C.25 D.152.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518B.49C.59D.793.将A ,B ,C ,D 这4名同学从左至右随机地排成一排,则“A 与B 相邻且A 与C 之间恰好有1名同学”的概率是( )A.12B.14C.16D.18 考点二 几何概型类型(一) 与长度有关的几何概型例1、在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215 B.715 C.35 D.1115 类型(二) 与面积有关的几何概型例2、(1)如图,六边形ABCDEF 是一个正六边形,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是( )A.14B.13C.23D.34(2)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2B.4π3C.2π2D.2π3类型(三) 与体积有关的几何概型例3、已知在四棱锥P ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O ABCD 的体积不小于23的概率为________.类型(四) 与角度有关的几何概型例4、如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.跟踪训练1.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF BCE 内自由飞翔,则它飞入几何体F AMCD 内的概率为( )A.34B.23C.13D.122.在区间[0,π]上随机取一个数x ,则事件“sin x +cos x ≥22”发生的概率为________. 3.向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________.课后作业1.2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径22 mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( ) A.363π10 mm 2 B.363π5 mm 2 C.726π5 mm 2 D.363π20mm 2 2.甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”,从上述回答分析,丙是第一名的概率是( )A.15B.13C.14D.163.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为( ) A.110 B.15 C.310 D.254.如图是一个边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A.π8B.π16C.1-π8D.1-π165.已知圆C :x 2+y 2=1,直线l :y =k (x +2),在[-1,1]上随机选取一个数k ,则事件“直线l 与圆C 相离”发生的概率为( )A.12 B.2-22 C.3-33 D.2-326.从1~9这9个自然数中任取7个不同的数,则这7个数的平均数是5的概率为________.7.一个三位数的百位,十位,个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称这个三位数为“好数”(如213,134),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“好数”的概率是________.8.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.9.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.10.在某大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加A 岗位服务的概率.提高训练1.甲、乙二人约定7:10在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是( )A.18B.14C.38D.582.如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A.17B.27C.37D.473.已知等腰直角△ABC 中,∠C =90°,在∠CAB 内作射线AM ,则使∠CAM <30°的概率为________.4.已知P 是△ABC 所在平面内一点,且PB ―→+PC ―→+2P A ―→=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A.14B.13C.12D.235.点集Ω={(x ,y )|0≤x ≤e ,0≤y ≤e},A ={(x ,y )|y ≥e x ,(x ,y )∈Ω},在点集Ω中任取一个元素a ,则a ∈A 的概率为( )A.1eB.1e 2 C.e -1e D.e 2-1e26.如图,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( ) A.p 1=p 2 B.p 1=p 3 C.p 2=p 3 D.p 1=p 2+p 37.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),其中a ∈{1,2,3,4},b ∈{1,2,3,4},且a ,b 取到其中每个数都是等可能的,则直线l :y =x 与双曲线C 的左、右支各有一个交点的概率为( ) A.14 B.38 C.12 D.588.在区间[0,1]上随机取两个数a ,b ,则函数f (x )=x 2+ax +14b 有零点的概率是________.。
古典概型一、基础知识:1、基本事件:一次试验中可能出现的每一个不可再分的结果称为一个基本事件。
例如:在扔骰子的试验中,向上的点数1点,2点,……,6点分别构成一个基本事件2、基本事件空间:一次试验,将所有基本事件组成一个集合,称这个集合为该试验的基本事件空间,用Ω表示。
3、基本事件特点:设一次试验中的基本事件为12,,,n A A A(1)基本事件两两互斥(2)此项试验所产生的事件必由基本事件构成,例如在扔骰子的试验中,设i A 为“出现i 点”,事件A 为“点数大于3”,则事件456A A A A =(3)所有基本事件的并事件为必然事件 由加法公式可得:()()()()()1212n n P P A A A P A P A P A Ω==+++因为()1P Ω=,所以()()()121n P A P A P A +++=4、等可能事件:如果一项试验由n 个基本事件组成,而且每个基本事件出现的可能性都是相等的,那么每一个基本事件互为等可能事件。
5、等可能事件的概率:如果一项试验由n 个基本事件组成,且基本事件为等可证明:设基本事件为12,,,n A A A ,可知()()()12n P A P A P A ===()()()121n P A P A P A +++= 6、古典概型的适用条件:(1)试验的所有可能出现的基本事件只有有限多个 (2)每个基本事件出现的可能性相等当满足这两个条件时,事件A 发生的概率就可以用事件A 所包含的基本事件个7、运用古典概型解题的步骤:① 确定基本事件,一般要选择试验中不可再分的结果作为基本事件,一般来说,试验中的具体结果可作为基本事件,例如扔骰子,就以每个具体点数作为基本事件;在排队时就以每种排队情况作为基本事件等,以保证基本事件为等可能事件 ② ()(),n A n Ω可通过计数原理(排列,组合)进行计算③ 要保证A 中所含的基本事件,均在Ω之中,即A 事件应在Ω所包含的基本事件中选择符合条件的 二、典型例题:例1:从16-这6个自然数中随机取三个数,则其中一个数是另外两个数的和的概率为________思路:事件Ω为“6个自然数中取三个”,所以()3620n C Ω==,事件A 为“一个数是另外两个数的和”,不妨设a b c =+,则可根据a 的取值进行分类讨论,列举出可能的情况:{}{}{}{}{}{}3,2,1,4,3,1,5,4,1,5,3,2,6,5,1,6,4,2,所以()6n A =。
高考数学冲刺古典概型考点全面解析高考对于每一位学子来说,都是人生中的一次重要挑战。
而数学作为其中的关键学科,更是备受关注。
在数学的众多考点中,古典概型是一个不容忽视的重要部分。
在高考冲刺阶段,对古典概型进行全面且深入的复习,对于提高数学成绩具有重要意义。
一、古典概型的基本概念古典概型是一种概率模型,具有两个重要特征:有限性和等可能性。
有限性指的是试验中所有可能出现的基本事件只有有限个;等可能性则表示每个基本事件出现的可能性相等。
例如,掷一枚质地均匀的骰子,出现的点数就是一个古典概型问题。
因为骰子的点数只有 1、2、3、4、5、6 这六种可能,且每种点数出现的可能性相同。
二、古典概型的概率计算公式在古典概型中,事件 A 的概率可以通过以下公式计算:P(A) =事件 A 包含的基本事件个数/试验中所有可能的基本事件个数例如,从装有 3 个红球和 2 个白球的口袋中随机取出一个球,求取出红球的概率。
这里试验中所有可能的基本事件个数为 5(3 个红球和2 个白球),取出红球的基本事件个数为 3,所以取出红球的概率为3/5。
三、古典概型的常见题型1、摸球问题这是古典概型中常见的一类问题。
例如,一个袋子里装有 5 个红球和 3 个白球,从中随机摸出 2 个球,求摸出一红一白的概率。
解决这类问题时,首先要确定总的基本事件个数,即从 8 个球中选2 个的组合数。
然后计算摸出一红一白的基本事件个数,可以分两步考虑,先选一个红球,再选一个白球,两者相乘即为摸出一红一白的基本事件个数。
2、掷骰子问题掷骰子问题常常会与其他条件相结合。
比如,同时掷两枚质地均匀的骰子,求点数之和大于 8 的概率。
对于这种问题,需要列出所有可能的基本事件,然后找出点数之和大于 8 的基本事件个数,最后计算概率。
3、抽样问题抽样问题可以分为有放回抽样和无放回抽样。
例如,从 10 件产品中抽取 3 件,有放回抽样和无放回抽样时,抽到特定产品的概率是不同的。
人教版高中数学必修三知识点梳理重点题型(常考知识点)巩固练习古典概型【学习目标】1.正确理解古典概型的特点;2.掌握古典概型的概率计算公式;3.了解整数型随机数的产生与随机模拟实验.【要点梳理】要点一、古典概型1.基本事件:试验结果中不能再分的最简单的随机事件称为基本事件.基本事件的特点:(1)每个基本事件的发生都是等可能的.(2)因为试验结果是有限个,所以基本事件也只有有限个.(3)任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.(4)基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.2.古典概型的定义:(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.3.计算古典概型的概率的基本步骤为:(1)计算所求事件A所包含的基本事件个数m;(2)计算基本事件的总数n;(3)应用公式()mP An=计算概率.4.古典概型的概率公式:()AP A=包含的基本事件的个数基本事件的总数.应用公式的关键在于准确计算事件A所包含的基本事件的个数和基本事件的总数.要点诠释:古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段AB上任取一点C,求AC>BC 的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.要点二、随机数的产生1.随机数的产生方法:一般用试验的方法,如把数字标在小球上,搅拌均匀,用统计中的抽签法等抽样方法,可以产生某个范围内的随机数.在计算器或计算机中可以应用随机函数产生某个范围的伪随机数,当作随机数来应用.2.随机模拟法(蒙特卡罗法):用计算机或计算器模拟试验的方法,具体步骤如下:(1)用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;(2)统计代表某意义的随机数的个数M和总的随机数个数N;(3)计算频率()n Mf AN作为所求概率的近似值.要点诠释:1.对于抽签法等抽样方法试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.2.随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数.3.随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中.【典型例题】类型一:等可能事件概念的理解例1.判断下列说法是否正确,并说明理由。
古典概型四类重点题型
古典概型一种十分重要的概率模型,是学习概率与统计的起点,注意古典概型的两个特征:
(1)所有的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的.
只有在同时满足(1)、(2)的条件下,运用的古典概型计算公式P (A )=n m 得出的结果才是正确的。
下面就古典概型的四种重要题型举例解析如下:
一、概念辨析题
例1.判断下列命题正确与否.
(1)先后抛掷两枚均匀硬币,有人说一共出现“两枚正面”,“两枚反面”,“一枚正面,一枚反面”三种结果,因此出现“一枚正面,一枚反面”的概率是3
1; (2)射击运动员向一靶心进行射击.试验的结果为:命中10环,命中9环,……,命中0环,这个试验是古典概型.
(3)袋中装有大小均匀的四个红球,三个白球,两个黑球,那么每种颜色的球被摸到的可能性相同.
【思路点拨】根据每一次试验的意义和每个基本事件的含义进行判断.
【解】所有命题均不正确.
(1)应为4种结果,还有一种是“一枚反面,一枚正面”.
(2)不是古典概型,因为命中10环,命中9环,…命中0环不是等可能的.
(3)摸到红球的概率为94,白球的概率为31,黑球的概率为9
2. 【方法技巧】弄清每一次试验的意义及每个基本事件的含义是解决问题的前提,正确把握各个事件的相互关系是解决问题的重要方面,判断一次试验中的基本事件,一定要从其可能性入手,加以区分而一个试验是否是古典概型要看其是否满足有限性和等可能性.
二、写出基本事件且求其概率
例2 做如下试验:“将一枚均匀硬币抛掷两次”.
(1)试用列举法写出该试验所包含的基木事件;
(2)事件A “两次都出现正面”包含几个基本事件?
(3)事件B “一次出现正面,一次出现反面”含有的基本事件是什么?
(4)计算P(A)和P(B).
【思路点拨】试验“将一枚均匀硬币抛掷两次”中,由于出现的结果有限,每次只能有一种结果(一枚硬币要么正面朝上,要么反面朝上),且每种结果出现的可能性是相同的,所以该试验是古典概型.当试验的结果较少时,可用列举法将所有试验结果一一列出,这是最基本、最直观的方法.同样地可把事件A 或事件B 所含的基本事件一一列出.计算古典概型的概率关键是确定m,n.
【解】(1)试验“将一枚均匀硬币抛掷两次”所出现的所有基本事件如下: (正,正)、(正,反)、(反,正)、(反,反)共4种等可能的结果.
(2)事件A 包含的基本事件只有一个,即(正,正).
(3)事件B 包含的基本事件有两个,即(正,反)和(反,正). (4)P(A)=41,P(B)=2
142 .
【方法技巧】本题在求试验的基本事件总数时,用枚举法将所有结果一一列举出来、直观而具体,但应把握列举的原则,不要出现重复和遗漏.
三、求简单古典概型的概率
例3 如图,在一个木制的棱长为3的正方体表面涂上颜色,将它的棱3等分,然后从等分点把正方体锯开,得到27个棱长为1的小正方体,将这些小正方体充分混合后,装入一个口袋中.
(1)从这个口袋中任意取出1个小正方体,这个小正方体的表面恰好没有颜色的概率是多少?
(2)从这个口袋中同时任意取出2个小正方体,其中1个小正方体恰好有1个面涂有颜色,另1个小正方体至少有2个面涂有颜色的概率是多少?
【思路点拨】该模型为古典概型,基本事件个数是有限的,并且每个基本事件的发生是等可能的.
【解】在27个小正方体中,恰好3个面都涂有颜色的共8个,恰好2个面涂有颜色的共12个,恰好1个面涂有颜色的共6个,表面没涂颜色的1个.
(1)27个小正方体中任意取出1个,共有127C = 27种等可能的结果.
因为在27个小正方体中,表面没涂颜色的只有1个,所以从这个口袋中任意取出1个小正方体,而这个小正方体的表面恰好没涂颜色的概率是271=
P . (2)从27个小正方体中,同时任取2个,共有227C 种等可能的结果.在这些结果中,有
1个小正方体恰好有1个面涂有颜色,另1个小正方体至少有2个面涂有颜色包含的结果有)(1811216C C C +种.
所以从这个口袋中同时任意取出2个小正方体,其中1个小正方体恰好有1个面涂有颜
色,另1个小正方体至少有2个面涂有颜色的概率是11740)(227
1811216=+=C C C C P . 【方法技巧】(1)计算古典概型事件的概率可分三步:
①算出基本事件的总个数n;②求出事件A 所包含的基本事件个数m ;③代入公式求出概率P.
(2)含有“至多”“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,可考虑其反面,即对立事件,然后应用对立事件的性质)(1)(A P A P -=进一步求解.
四、复杂的古典概型的概率的求法
例4 甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(I,j)分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?
(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.
【思路点拨】因为共有4张牌,基本事件的总数是有限的,而且每张牌被抽到是等可能的,因此是古典概型,另外要注意牌是不放回摸牌,每次摸出的牌不能重复.
【解】(1)甲、乙二人抽到的牌的所有情况(方片4用4’表示,其他用相应的数字表示)为:(2,3),(2,4),(2,4’),(3,2),(3,4),(3,4’),(4,2),(4,3),(4,4’),(4’,2),(4’,
3),(4’,4)共12种不同情况.
(2)甲抽到3,乙抽到的牌只能是2,4,4’,因此乙抽到的牌的牌面数字比3大的概率为3
2. (3)甲抽到的牌的牌面数字比乙大的情况有(3,2,(4,2),(4,3),(4’,2),(4’,3)共5种,故甲胜的概率1251=P ,同理乙胜的概率为12
52=P .因为P 1= P 2,所以此游戏公平. 【方法技巧】本题属于求较复杂事件的概率,关键是理解题目的实际含义,把实际问题转化为概率模型,联想掷骰子试验,把红桃2,红桃3,红桃4和方片4分别用数字2,3,4,4’表示,抽象出基本事件,把复杂事件用简单事件表示,列举出总体I 包含的基本事件的个数n 及事件A 包含的基本事件的个数m ,用公式n
m I card A card A P ==)()()(求解.必要时将所求事件转化成彼此互斥的事件的和,或者先去求对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求出所求事件的概率.。