八年级数学勾股定理全章测试
- 格式:doc
- 大小:123.50 KB
- 文档页数:6
人教版数学八年级第十七章勾股定理单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分 一、单选题1.如图所示:已知两个正方形的面积,则字母A 所代表的正方形的面积为( )A .4B .8C .64D .16【答案】C 2.如图,在Rt ABC ∆中, 90ACB ︒∠=,以AB ,AC ,BC 为边作等边ABD ∆,等边ACE ∆.等边CBF ∆.设AEH ∆的面积为1S ,ABC ∆的面积为2S ,BFG ∆的面积为3S ,四边形DHCG 的面积为4S ,则下列结论正确的是( )A .2143S S S S =++B .1234S S S S +=+C .1423S S S S +=+D .1324S S S S+=+【答案】D 3.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是5、7、3、5,则最大的正方形E 的面积是( )试卷第2页,总15页A .108B .50C .20D .12【答案】C 4.下列命题中,是假命题的是( )A .在△ABC 中,若∠A :∠B :∠C =1:2:3,则△ABC 是直角三角形B .在△ABC 中,若a 2=(b +c) (b -c),则△ABC 是直角三角形C .在△ABC 中,若∠B =∠C =∠A ,则△ABC 是直角三角形D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形【答案】C5.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B ′.则这根芦苇的长度是( )A .10尺B .11尺C .12尺D .13尺【答案】D 6.下列命题中正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形【答案】C7.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .1.5,2,2.5C .2,3,4D .1, 3【答案】B8.如图,在Rt ABC ∆中,其中90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,DE 是BC 的垂直平分线,点E 是垂足.已知5,2DC AD ==21有( )A .1条B .2条C .3条D .4条【答案】C 9.如图,一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端的滑动距离( )A .等于1米B .大于1米C .小于1米D .不能确定【答案】B 10.如图,在四边形ABCD 中,AB =BC =2,CD =1,AD =3,∠ABC =90°,则四边形ABCD 的面积为( )A .72B .4C .122+D .22+【答案】D11.已知以下三个数, 不能组成直角三角形的是 ( )A .9、12、15B 33、3C .0.3、0.4、0.5;D .222345、、【答案】D12.如果a b c 、、是直角三角形的三边长,那么222a b c 、、为边长的三角形是( )试卷第4页,总15页A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A 13.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,点D 在AB 上,AD =AC ,AF ⊥CD 交CD 于点E ,交CB 于点F ,则CF 的长是( )A .1.5B .1.8C .2D .2.5【答案】A 14.小明想做一个直角三角形的木架,以下四组木棒中,哪一组的三条能够刚好做成( )A .13、14、15B .5、12、13C .4、5、6D .1、2【答案】B15.如图是一个底面为等边三角形的三棱镜,在三棱镜的侧面上,从顶点A 到顶点A ′镶有一圈金属丝,已知此三棱镜的高为5cm ,底面边长为4cm ,则这圈金属丝的长度至少为( )A .8cmB .13cmC .12cmD .15cm【答案】B 16.如图,一根垂直于地面的旗杆在离地面5m 处撕裂折断,旗杆顶部落在离旗杆底部12m 处,旗杆折断之前的高度是( )A .5mB .12mC .13mD .18m 【答案】D二、填空题17.如图,D 为△ABC 外一点,BD ⊥AD ,BD 平分△ABC 的一个外角,∠C=∠CAD ,若AB=5,BC=3,则BD 的长为_______.【答案】318.满足下列条件时,ABC V 不是直角三角形的是( )A .41AB =4BC =,5AC = B .::3:4:5AB BC AC =C .::3:4:5A B C ∠∠∠=D .22A B C ∠=∠=∠ 【答案】C19.如图,等边OAB V 的边长为3B 的坐标为__________.【答案】)3,3 20.如图,在ABC V 中,90ACB ∠=︒,以点B 为圆心,BC 为半径画弧,交线段AB 于点D ;以点A 为圆心,AD 长为半径画弧,交线段AC 于点E .设BC a =,AC b =,若AD EC =,则a =__________(用含b 的式子表示).【答案】34b 21.已知等腰△ABC 中,底边BC =20,D 为AB 上一点,且CD =16,BD =12,则△ABC 的周长为____.【答案】160322.如图,已知等腰直角三角形 ABC 的直角边长为 1,以 Rt △ABC 的斜边 AC 为试卷第6页,总15页直角 边,画第二个等腰直角三角形 ACD ,再以 Rt △ACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE……依此类推,直到第五个等腰直角三角形 AFG ,则由这五个等腰直角三角形所构成的图形的面积为__________.【答案】15.523.《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC 中,∠ACB =90°,AC +AB =10,BC =3,求AC 的长,如果设AC =x ,则可列方程求出AC 的长为____________.【答案】9120. 24.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′= _______.【答案】1.525.如图,在△ABC 中,线段AE ,BF ,CG 分别为中线,且相交于点M ,若AM =15,BM =9,GM =6,则△ABM 的面积为_____.【答案】5426.如图,等腰△ABC 底边上的高AD =12BC ,AB =2,那么△ABC 的周长为_____.【答案】227.如图,一个无盖的正方体,一只蚂蚁想从盒底的点A 沿盒的表面爬到盒顶的点B ,经过计算发现,它的最短路径是20cm ,则这个正方体的棱长为_____cm .【答案】528.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 【答案】6029.在平面直角坐标系中,点A (1,4)与点B (4,0)的距离是_________.【答案】530.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为______. 344031.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,DE 的长=________________.【答案】5试卷第8页,总15页三、解答题32.为了积极响应国家新农村建设,某市镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN 的一侧点A 处有一村庄,村庄A 到公路MN 的距离为800米,假使宣讲车P 周围1000米以内能听到广播宣传,宣讲车P 在公路MN 上沿PN 方向行驶时:(1)请问村庄能否听到宣传,并说明理由;(2)如果能听到,已知宣讲车的速度是每分钟300米,那么村庄总共能听到多长时间的宣传?【答案】(1)村庄能听到宣传. 理由见解析;(2)村庄总共能听到4分钟的宣传. 33.在Rt ABC △中,90BAC ∠=︒,2AB AC ==,AD BC ⊥于点D .(1)如图1所示,点,M N 分别在线段,AD AB 上,且90BMN ∠=︒,当30AMN =︒∠时,求线段AM 的长;(2)如图2,点M 在线段AD 的延长线上,点N 在线段AC 上,(1)中其他条件不变.①线段AM 的长为 ;②求线段AN 的长.【答案】(162;(2)62,23 34.如图,在△ABC 中,AC =21,BC =13,D 是AC 边上一点,BD =12,AD =16.(1)求证:BD ⊥AC .(2)若E 是边AB 上的动点,求线段DE 的最小值.【答案】(1)证明见解析;(2)线段DE 使得最小值为9.6.35.已知:如图,在△ABC 中,∠B =90°,AB =5cm ,BC =7cm.点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动. (1)若P 、Q 分别从A 、B 同时出发,那么几秒后△PBQ 的面积等于4cm 2? (2)如果P 、Q 分别从A 、B 同时出发,那么几秒后,PQ 的长度等于5cm ? (3)在(1)中,△PBQ 的面积能否等于7cm 2? 请说明理由.【答案】(1)1s ;(2)2s;(3)△POB 的面积不能等于7cm 2.36.如图,AD 是△ABC 的中线,DE 是△ADC 的高,DF 是△ABD 的中线,且CE =1,DE =2,AE =4.(1)∠ADC 是直角吗?请说明理由.试卷第10页,总15页 (2)求DF 的长.【答案】(1)∠ADC 是直角,理由详见解析;(2)52. 37.如图,小区有一块四边形空地ABCD ,其中AB AC ⊥.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点A 作了垂直于BC 的小路AE .经测量,4AB CD m ==,9BC m =,7AD m =.(1)求这块空地ABCD 的面积;(2)求小路AE 的长.(答案可含根号)【答案】(1)()m 2;(2)938.(1)已知:如图1,ABC ∆为等边三角形,点D 为BC 边上的一动点(点D 不与B 、C 重合),以AD 为边作等边ADE ∆,连接CE .求证:①BD CE =,②120DCE ∠=o ;(2)如图2,在ABC ∆中,90BAC ∠=o ,AC AB =,点D 为BC 上的一动点(点D 不与B 、C 重合),以AD 为边作等腰Rt ADE ∆,90DAE ∠=o (顶点A 、D 、E 按逆时针方向排列),连接CE ,类比题(1),请你猜想:①DCE ∠的度数;②线段BD、CD 、DE 之间的关系,并说明理由;(3)如图3,在(2)的条件下,若D 点在BC 的延长线上运动,以AD 为边作等腰Rt ADE ∆,90DAE ∠=o (顶点A 、D 、E 按逆时针方向排列),连接CE . ①则题(2)的结论还成立吗?请直接写出,不需论证;②连结BE ,若10BE =,6BC =,直接写出AE 的长.【答案】(1)①见解析;②∠DCE =120°;(2)∠DCE =90°, BD 2+CD 2=DE 2.证明见解析;(3)①(2)中的结论还成立,②AE 3439510的大小,小伍和小陆两名同学对这个问题分别进行了研究. (15 2.236≈10 3.162≈5+1 10 (填“>”或“<”或“=”)(2)小陆同学受到前面学习在数轴上用点表示无理数的启发,构造出所示的图形,其中∠C=90°,BC=3,D 在BC 上且BD=AC=1.请你利用此图进行计算与推理,帮小陆同510的大小做出准确的判断.【答案】(1)> ;(2)见解析.40.如图,已知ABC ∆与EFC ∆都是等腰直角三角形,其中90ACB ECF ∠=∠=︒,E 为AB 边上一点.(1)试判断AE 与BF 的大小关系,并说明理由;(2)求证:222AE BE EF +=.【答案】(1)AE BF =,理由见解析;(2)见解析.41.正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【答案】作图见解析.42.如图,在平面直角坐标系中,点(1,3)A ,点(3,1)B ,点(4,5)C .(1)画出ABC ∆关于y 轴的对称图形111A B C ∆,并写出点A 的对称点1A 的坐标; (2)若点P 在x 轴上,连接PA 、PB ,则PA PB +的最小值是 ; (3)若直线//MN y 轴,与线段AB 、AC 分别交于点M 、N (点M 不与点A 重合),若将AMN ∆沿直线MN 翻折,点A 的对称点为点'A ,当点'A 落在ABC ∆的内部(包含边界)时,点M 的横坐标m 的取值范围是 .【答案】(1)详见解析;1A 的坐标(-1,3);(2)(3)1<m≤1.2543.如图,在ABC ∆中,4AB =,8BC =,AC 的垂直平分线交AC 于点D ,交BC 于点E ,3CE =,连接AE .(1)求证:ABE ∆是直角三角形;(2)求ACE ∆的面积.【答案】(1)详见解析;(2)185. 44.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=o ,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=o ,连接AD ,若45CAB ∠=o ,求AD AB的值.【答案】(1)详见解析;(241(33.45.如图,△ABC 中,A 90∠=︒,C 30∠=︒,AB=4,BD=5,求AD 和BC 的长.【答案】846.在正方形网格中,四边形ABCD的每个顶点都在格点上,已知小正方形的边长为1,求这个四边形ABCD的周长和面积.【答案】7.5.47.如图,在四边形ABCD中,AB=4,AD=3,AB⊥AD ,BC=12.(1)求BD的长;(2)当CD为何值时,△BDC是以CD为斜边的直角三角形?(3)在(2)的条件下,求四边形ABCD的面积.【答案】(1)BD的长度是5;(2)CD为13时△BDC为直角三角形;(3)四边形ABCD 的面积是36.48.如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5m (踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1m,离秋千支柱AD的水平距离BE为1.5m(不考虑支柱的直径).求秋千支柱AD的高.【答案】秋千支柱AD的高为3m.49.如图,在Rt△ABC中,∠ACB=90°,AC=16,AB=20,CD⊥AB于点D.(1)求BC的长;(2)求CD的长.【答案】(1)12;(2)9.6.50.如图,每个小方格都是边长为1的小正方形,△ABC的位置如图所示,你能判断△ABC是什么三角形吗?请说明理由.【答案】△ABC是直角三角形,理由见解析.。
八年级初二数学勾股定理测试试题含答案一、选择题1.如图,等边ABC ∆的边长为1cm ,D ,E 分别是AB ,AC 上的两点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为( )A .1cmB .1.5cmC .2cmD .3cm 2.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm3.如图,□ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B′,则DB′的长为( )A .1B 2C .32D 34.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB 30=a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB =( )A.6 B.8 C.10 D.125.圆柱形杯子的高为18cm,底面周长为24cm,已知蚂蚁在外壁A处(距杯子上沿2cm)发现一滴蜂蜜在杯子内(距杯子下沿4cm),则蚂蚁从A处爬到B处的最短距离为()A.813B.28 C.20 D.1226.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( )A.(-2,23)B.(-2,-23)C.(-2,-2)D.(-2,2)7.下列各组线段能构成直角三角形的一组是()A.30,40,60B.7,12,13C.6,8,10D.3,4,68.下列命题中,是假命题的是( )A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形9.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3 B.5 C.4或5 D.3或5110.已知一个直角三角形的两边长分别为3和5,则第三边长是()A.5 B.4 C34D.434二、填空题11.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.12.如图是由边长为1的小正方形组成的网格图,线段AB ,BC ,BD ,DE 的端点均在格点上,线段AB 和DE 交于点F ,则DF 的长度为_____.13.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.14.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.15.如图,△ABC 中,∠ABC =45°,∠BCA =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则AB BD 的值为____________.16.如图,在等边△ABC 中,AB =6,AN =2,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,则BM +MN 的最小值是_____.17.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.18.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________19.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连接CN .若△CDN 的面积与△CMN 的面积比为1:3,则22MN BM的值为______________.20.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.三、解答题21.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A、B、C三点的位置如图,请在网格图中标出所有的格点.......D.,使得以A、B、C、D为顶点的四边形为邻和四边形.(3)如图3,△ABC中,∠ABC=90°,AB=2,BC=23,若存在一点D,使四边形ABCD是邻和四边形,求邻和四边形ABCD的面积.22.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB≌△AEC(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为:(不写证明过程)23.在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.24.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值;(2)若点P 恰好在∠BAC 的角平分线上,求t 的值;(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.25.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.=成立,求v关于t的函数表达式,并写出自②若在运动过程中存在某一时刻,使CP BQ变量t的取值范围.26.如图,点A是射线OE:y=x(x≥0)上的一个动点,过点A作x轴的垂线,垂足为B,过点B作OA的平行线交∠AOB的平分线于点C.(1)若OA=52,求点B的坐标;(2)如图2,过点C作CG⊥AB于点G,CH⊥OE于点H,求证:CG=CH.(3)①若点A的坐标为(2,2),射线OC与AB交于点D,在射线BC上是否存在一点P 使得△ACP与△BDC全等,若存在,请求出点P的坐标;若不存在,请说明理由.②在(3)①的条件下,在平面内另有三点P1(2,2),P2(2,22),P3(2+2,2﹣2),请你判断也满足△ACP与△BDC全等的点是.(写出你认为正确的点)27.如图1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A 运动,同时动点N从点A出发以每秒1cm速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.图1 图2 备用图28.如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系.(2)把图1中的正方形DEFG绕点D顺时针旋转45︒,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.29.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形.(2)如图1,求AF 的长.(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,点P 的速度为每秒1cm ,设运动时间为t 秒.①问在运动的过程中,以A 、P 、C 、Q 四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t 和点Q 的速度;若不可能,请说明理由.②若点Q 的速度为每秒0.8cm ,当A 、P 、C 、Q 四点为顶点的四边形是平行四边形时,求t 的值.30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度;(2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ;(3)点E 在边AC 上运动时,求∠EDF 的度数;(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据折叠的性质可得AD=A'D,AE=A'E,易得阴影部分图形的周长为=AB+BC+AC,则可求得答案.【详解】解:因为等边三角形ABC的边长为1cm,所以AB=BC=AC=1cm,因为△ADE沿直线DE折叠,点A落在点A'处,所以AD=A'D,AE=A'E,所以阴影部分图形的周长=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm).故选:D.【点睛】此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用以及折叠前后图形的对应关系.2.C解析:C【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,由折叠的性质知,BC′=BC=3cm,∴AC′=AB-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.3.B解析:B【解析】【分析】如图,连接BB′.根据折叠的性质知△BB′E是等腰直角三角形,则BB′=2BE.又B′E是BD 的中垂线,则DB′=BB′.【详解】∵四边形ABCD是平行四边形,BD=2,∴BE=12BD=1.如图2,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,则BB′=2BE=2,又∵BE=DE,B′E⊥BD,∴DB′=BB′=2.故选B.【点睛】考查了平行四边形的性质以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.4.B解析:B【解析】【分析】MN表示直线a与直线b之间的距离,是定值,只要满足AM+NB的值最小即可.过A作直线a的垂线,并在此垂线上取点A′,使得AA′=MN,连接A'B,则A'B与直线b的交点即为N,过N作MN⊥a于点M.则A'B为所求,利用勾股定理可求得其值.【详解】过A作直线a的垂线,并在此垂线上取点A′,使得AA′=4,连接A′B,与直线b交于点N,过N作直线a的垂线,交直线a于点M,连接AM,过点B作BE⊥AA′,交射线AA′于点E,如图,∵AA′⊥a,MN⊥a,∴AA′∥MN.又∵AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM=A′N.由于AM+MN+NB要最小,且MN固定为4,所以AM+NB最小.由两点之间线段最短,可知AM+NB的最小值为A′B.∵AE=2+3+4=9,AB230=,∴BE2239=-=.AB AE∵A′E=AE﹣AA′=9﹣4=5,∴A′B22=+=8.'A E BE所以AM+NB的最小值为8.故选B.【点睛】本题考查了勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M、点N的位置,难度较大,注意掌握两点之间线段最短.5.C解析:C【解析】分析:将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.详解:如图所示,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B2222'++ (cm)A D BD=1216故选C.点睛:本题考查了勾股定理、最短路径等知识.将圆柱侧面展开,化曲面为平面并作出A关于EF的对称点A′是解题的关键.6.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=3A(-2,-3,故选B.7.C解析:C【分析】根据勾股定理的逆定理解答即可.【详解】A 、∵222304060+≠,∴该选项的三条线段不能构成直角三角形;B 、∵22271213+≠,∴该选项的三条线段不能构成直角三角形;C 、∵2226810+=,∴该选项的三条线段能构成直角三角形;D 、∵222346+≠,∴该选项的三条线段不能构成直角三角形;故选:C .【点睛】此题考查勾股定理的逆定理,掌握勾股定理的逆定理的计算法则及正确计算是解题的关键.8.C解析:C【分析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A. △ABC 中,若∠B=∠C -∠A ,则∠C =∠A+∠B ,则△ABC 是直角三角形,本选项正确;B. △ABC 中,若a 2=(b+c)(b -c),则a 2=b 2-c 2,b 2= a 2+c 2,则△ABC 是直角三角形,本选项正确;C. △ABC 中,若∠A ∶∠B ∶∠C=3∶4∶5,则∠,故本选项错误; D. △ABC 中,若a ∶b ∶c=5∶4∶3,则△ABC 是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形. 9.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x +-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.10.D解析:D【详解】解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x ,则由勾股定理得到:x;②当5是此直角三角形的直角边时,设另一直角边为x ,则由勾股定理得到:x故选:D二、填空题11.(0,21009)【解析】【分析】本题点A 坐标变化规律要分别从旋转次数与点A 所在象限或坐标轴、点A 到原点的距离与旋转次数的对应关系.【详解】∵∠OAA 1=90°,OA=AA 1=1,以OA 1为直角边作等腰Rt △OA 1A 2,再以OA 2为直角边作等腰Rt △OA 2A 3,…,∴OA 1,OA 2=)2,…,OA 2018=)2018,∵A 1、A 2、…,每8个一循环,∵2018=252×8+2∴点A 2018的在y 轴正半轴上,OA 2018=2018=21009,故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.12.2【分析】连接AD 、CD ,由勾股定理得:22435AB DE ==+=,224225BD =+=,22125CD AD ==+=,得出AB =DE =BC ,222BD AD AB +=,由此可得△ABD 为直角三角形,同理可得△BCD 为直角三角用形,继而得出A 、D 、C 三点共线.再证明△ABC ≌△DEB ,得出∠BAC =∠EDB ,得出DF ⊥AB ,BD 平分∠ABC ,再由角平分线的性得出DF =DG =2即可的解.【详解】连接AD 、CD ,如图所示:由勾股定理可得,22435AB DE ==+=,224225BD =+=22125CD AD ==+, ∵BE=BC=5,∴AB=DE =AB =BC ,222BD AD AB +=,∴△ABD 是直角三角形,∠ADB =90°,同理可得:△BCD 是直角三角形,∠BDC =90°,∴∠ADC =180°,∴点A 、D 、C 三点共线,∴225AC AD BD ===,在△ABC 和△DEB 中,AB DE BC EB AC BD =⎧⎪⎨⎪=⎩=,∴△ABC ≌△DEB(SSS),∴∠BAC =∠EDB ,∵∠EDB+∠ADF =90°,∴∠BAD+∠ADF =90°,∴∠BFD =90°,∴DF ⊥AB ,∵AB=BC ,BD ⊥AC ,∴BD 平分∠ABC ,∵DG ⊥BC ,∴DF =DG =2.【点睛】本题考查全等三角形的性质与判定以及勾股定理的相关知识,解题的关键是熟练掌握勾股定理和过股定理的逆定理.13.71-【分析】分别找到两个极端,当M 与A 重合时,AP 取最大值,当点N 与C 重合时,AP 取最小,即可求出线段AP 长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--, ∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71--71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索. 14.258【分析】先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出FA 的长,根据相似三角形的判定定理得出△AFD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.【详解】∵Rt △ABC 中,∠ABC=90°,AB=3,BC=4,∴2222AB +BC =3+4=5;∵DE 垂直平分AC ,垂足为F ,∴FA=12AC=52,∠AFD=∠B=90°, ∵AD ∥BC ,∴∠A=∠C ,∴△AFD ∽△CBA ,∴ADAC=FABC,即AD5=2.54,解得AD=258;故答案为258.【点睛】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.2【解析】【分析】过A点作BC的垂线,E点作AC的垂线,构造全等三角形,利用对应角相等计算得出∠DAM=15°,在AM上截取AG=DG,则∠DGM=30°,设DM=a,通过勾股定理可得到DG=AG=2a,2)a,1)a,1)a,代入计算即可.【详解】过A点作AM⊥BC于M点,过E点EN⊥AC于N点.∵∠BCA=30°,AE=EC∴AM=12AC,AN=12AC∴AM=AN又∵AD=AE∴R t∆ADM≅ R t∆AEN(HL)∴∠DAM=∠EAN又∵∠MAC=60°,AD⊥AE∴∠DAM=∠EAN=15°在AM上截取AG=DG,则∠DGM=30°设DM=a,则 DG=AG=2a,根据勾股定理得:∵∠ABC=45°∴2)a∴1)a,2)a,∴2aABBD==【点睛】本题主要考查等于三角形的性质、含30°角的直角三角形的性质,勾股定理等知识,关键是能根据已知条件构建全等三角形及构建等腰三角形将15°角转化为30°角,本题有较大难度.16.7【解析】【分析】通过作辅助线转化BM,MN的值,从而找出其最小值求解.【详解】解:连接CN,与AD交于点M.则CN就是BM+MN的最小值.取BN中点E,连接DE,如图所示:∵等边△ABC的边长为6,AN=2,∴BN=AC﹣AN=6﹣2=4,∴BE=EN=AN=2,又∵AD是BC边上的中线,∴DE是△BCN的中位线,∴CN=2DE,CN∥DE,又∵N为AE的中点,∴M为AD的中点,∴MN是△ADE的中位线,∴DE=2MN,∴CN=2DE=4MN,∴CM=34 CN.在直角△CDM中,CD=12BC=3,DM=12AD33,∴CM2237 2CD MD+=∴CN=43727 32=.∵BM +MN =CN ,∴BM +MN 的最小值为27. 故答案是:27.【点睛】考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.17.169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512+=169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.18.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式.19.12【解析】如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:MA=MC ,NA=NC ,∠AMN=∠CMN.因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.所以∠AMN=∠ANM,所以AM=AN.所以AM=AN=CM=CN.因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,由勾股定理可得=,所以MN 2=()()222312x x x +-=,BM 2=()()2223x x -=.所以222212MN x BM x==12. 枚本题应填12.点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解. 20.4913【解析】【分析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点GAD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,13AC ===13CE AB AC ==∴=由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅即1110121322CF⨯⨯=⨯⋅,解得12013CF=12049131313EF CE CF∴=-=-=故答案为:49 13.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.三、解答题21.(1)见解析;(2)见解析;(3)363【分析】(1)先由三角形的内角和为180°求得∠ACB的度数,从而根据等腰三角形的判定证得AB=AC=AD,按照邻和四边形的定义即可得出结论.(2)以点A为圆心,AB长为半径画圆,与网格的交点,以及△ABC外侧与点B和点C组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC的长,再分类计算即可:①当DA=DC=AC时;②当CD=CB=BD时;③当DA=DC=DB或AB=AD=BD时.【详解】(1)∵∠ACB=180°﹣∠ABC﹣∠BAC=70°,∴∠ACB=∠ABC,∴AB=AC.∵∠ACD=∠ADC,∴AC=AD,∴AB=AC=AD.∴四边形ABCD是邻和四边形;(2)如图,格点D、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23, ∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==, 22224223DG AD AG =-=-=,∴S △ADC =1423432⨯⨯=,S △ABC =12AB×BC =23, ∴S 四边形ABCD =S △ADC +S △ABC =63;②当CD =CB =BD =23时,如图所示:∴△BDC 为等边三角形,过D 作DE ⊥BC 于E ,则∠BDE =160302⨯︒=︒,∴12BE BD ==3DE ===,∴S △BDC =132⨯= 过D 作DF ⊥AB 交AB 延长线于F ,∵∠FBD=∠FBC -∠DBC =90︒-60︒=30︒,∴DF=12S △ADB =122⨯=,∴S 四边形ABCD =S △BDC +S △ADB =;③当DA =DC =DB 或AB =AD =BD 时,邻和四边形ABCD 不存在.∴邻和四边形ABCD 的面积是或【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.22.(1)见解析;(2)CD AD +BD ,理由见解析;(3)CD +BD【分析】(1)由“SAS ”可证△ADB ≌△AEC ;(2)由“SAS ”可证△ADB ≌△AEC ,可得BD =CE ,由直角三角形的性质可得DE AD ,可得结论;(3)由△DAB ≌△EAC ,可知BD =CE ,由勾股定理可求DH ,由AD =AE ,AH ⊥DE ,推出DH =HE ,由CD =DE +EC =2DH +BD AD +BD ,即可解决问题;【详解】证明:(1)∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );(2)CD AD +BD ,理由如下:∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,又∵AB =AC ,AD =AE ,∴△ADB ≌△AEC (SAS );∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH3,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.23.(1)①见解析;②DE=297;(2)DE的值为517【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=综上所述,DE 的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.24.(1) 2516;(2)83t =或6;(3)当153,5,210t =或194时,△BCP 为等腰三角形. 【分析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程2234352t --=⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,4AC cm ∴=,(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB 中,222PC CB PB +=,即:222(42)3(2)t t -+=,解得:2516t =,∴当2516t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP 中,222PE BE BP +=,即:222(24)1(72)t t -+=-,解得:83t =, 当6t =时,点P 与A 重合,也符合条件,∴当83t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,PC BC ∴=,即423t -=,12t ∴=, 当P 在AB 上时,BCP 为等腰三角形,CP PB =①,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194t =, PB BC =②,即2343t --=,解得:5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,12BF BP ∴=, 90ACB ∠=︒,由射影定理得;2BC BF AB =⋅,即2234352t --=⨯, 解得:5310t =, ∴当15319,5,2104t =或时,BCP 为等腰三角形. 【点睛】本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.25.(1)CD=8;(2)t=4;(3)12-=t v t (26t ≤<) 【分析】(1)作AE ⊥BC 于E ,根据等腰三角形三线合一的性质可得BE=12BC ,然后利用勾股定理求出AE ,再用等面积法可求出CD 的长;(2)①过B 作BF ⊥AC 于F ,易得BF=CD ,分别讨论Q 点在AF 和FC 之间时,根据△BQF ≌△CPD ,得到PD=QF ,建立方程即可求出t 的值;(3)同(2)建立等式关系即可得出关系式,再根据Q 在FC 之间求出t 的取值范围即可.【详解】解:(1)如图,作AE ⊥BC 于E ,∵AB=AC ,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)∴PD=QF在Rt△ACD中,CD=8,AC=AB=10∴22AD=AC CD=6-同理可得AF=6∴PD=AD=AP=6-t,QF=AF-AQ=6-2t 由PD=QF得6-t=6-2t,解得t=0,∵t>0,∴此种情况不符合题意,舍去;当Q点在FC之间时,如图所示,此时PD=6-t ,QF=2t-6由PD=QF 得6-t=2t-6,解得t=4,综上得t 的值为4.(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6, 整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤< 所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.26.(1)(5,0);(2)见解析;(3)①P (4,2),②满足△ACP 与△BDC 全等的点是P 1、P 2,P 3.理由见解析【分析】(1)由题意可以假设A (a ,a )(a >0),根据AB 2+OB 2=OA 2,构建方程即可解决问题; (2)由角平分线的性质定理证明CH=CF ,CG=CF 即可解决问题;(3)①如图3中,在BC 的延长线上取点P ,使得CP=DB ,连接AP .只要证明△ACP ≌△CDB (SAS ),△ABP 是等腰直角三角形即可解决问题;②根据SAS 即可判断满足△ACP 与△BDC 全等的点是P 1、P 2,P 3;【详解】解:(1)∵点A 在射线y =x (x ≥0)上,故可以假设A (a ,a )(a >0),∵AB⊥x轴,∴AB=OB=a,即△ABO是等腰直角三角形,∴AB2+OB2=OA2,∴a2+a2=(52)2,解得a=5,∴点B坐标为(5,0).(2)如图2中,作CF⊥x轴于F.∵OC平分∠AOB,CH⊥OE,∴CH=CF,∵△AOB是等腰直角三角形,∴∠AOB=45°,∵BC∥OE,∴∠CBG=∠AOB=45°,得到BC平分∠ABF,∵CG⊥BA,CF⊥BF,∴CG=CF,∴CG=CH.(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.由(2)可知AC平分∠DAE,∴∠DAC=12∠DAE=12(180°﹣45°)=67.5°,由OC平分∠AOB得到∠DOB=12∠AOB=22.5°,∴∠ADC=∠ODB=90°﹣22.5°=67.5°,∴∠ADC=∠DAC=67.5°,∴AC=DC,∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,在△ACP和△CDB中,AC ADACP DB CP DB=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△CDB(SAS),∴∠CAP=∠DCB=22.5°,∴∠BAP=∠CAP+∠DAC=22.5°+67.5°=90°,∴△ABP是等腰直角三角形,∴AP=AB=OB=2,∴P(4,2).②满足△ACP与△BDC全等的点是P1、P2,P3.理由:如图4中,由题意:AP1=BD,AC=CD,∠CAP1=∠CDB,根据SAS可得△CAP1≌△CDB;AP2=BD,AC=CD,∠CAP2=∠CDB,根据SAS可得△CAP2≌△CDB;AC=CD,∠ACP3=∠BDC,BD=CP3根据SAS可得△CAP3≌△DCB;故答案为P1、P2,P3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
八年级下册 数学第17章《勾股定理》单元测试题(含答案)一、选择题(共10小题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三角形为()A.锐角三角形B.直角三角形C.纯角三角形D.等腰直角三角形3.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸7.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为()A.10mB.11mC.12mD.13m8.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF =90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以10米/秒的速度行驶时,A处受噪音影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米二、填空题(共8小题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直角三角形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为.15.已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于.16.如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A,B,P是网格线交点).17.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了米.(假设绳子是直的)三、解答题(共4小题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求利用S△ABC解过程:(3)请结合小明和小亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?22.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案一、选择题(共10小题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满足两小边的平方和等于最长边的平方.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三角形为()A.锐角三角形B.直角三角形C.纯角三角形D.等腰直角三角形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直角三角形,故选:B.3.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正方形的面积和勾股定理即可求解.【解答】解:设全等的直角三角形的两条直角边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直角三角形AHB中,利用勾股定理进行解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,∴HG=EF=4,∴BH=16,∴在直角三角形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸【分析】画出直角三角形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101寸.故选:B.7.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为()A.10mB.11mC.12mD.13m【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平方=x2+12,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF =90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长BE、CF相交于D,则EFD构成直角三角形,运用勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直角三角形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以10米/秒的速度行驶时,A处受噪音影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵火车在铁路MN上沿ON方向以10米/秒的速度行驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米【分析】首先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17米,得出EF=EM﹣FM=AC﹣BD=7米,求出BF=OE=5米,OF=12米,得出CM=CD﹣DM=CD﹣BF=12米,OM=OF+FM=15米,由勾股定理求出ON=OA=13米,进而求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所示:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(米)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(米),∵OE+OF=2EO+EF=17米,∴2OE=17﹣7=10(米),∴BF=OE=5米,OF=12米,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(米),OM=OF+FM=12+3=15(米),由勾股定理得:ON=OA===13(米),∴MN=OM﹣OF=15﹣13=2(米).故选:A.二、填空题(共8小题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,又其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,又其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直角三角形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,一是把两边长都看作直角边,二是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直角边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三角形ABC为直角三角形,利用勾股定理列出关系式,结合正方形面积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直角三角形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为100.【分析】根据正方形的面积可得两个正方形的边长分别为13和7,再根据勾股定理可求得直角三角形的两条直角边长,进而求解.【解答】解:∵正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,∴AE=BF,∠AEB=90°,∵正方形ABCD与正方形EFCH的面积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所用细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于.【分析】根据勾股定理的逆定理,△ABC是直角三角形,利用它的面积:斜边×高÷2=短边×短边÷2,就可以求出最长边的高.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直角三角形,最长边是13,设斜边上的高为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所示的网格是正方形网格,则∠PAB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9米.(假设绳子是直的)【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(米),∴AD===6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米.故答案为:9.三、解答题(共4小题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直角三角形的性质解答;(2)作PF⊥AC于F,根据角平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求利用S△ABC解过程:(3)请结合小明和小亮得到的结论验证勾股定理.【分析】(1)根据全等三角形的性质和线段的和差即得结论;(2)根据大三角形的面积等于三个小三角形的面积和即可求解;(3)综合(1)和(2)的结论进行推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600米<1000米,于是得到结论;(2)根据勾股定理得到BP=BQ=800米,求得PQ=1600米,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600米<1000米,∴村庄能听到宣传;(2)如图:假设当宣讲车行驶到P点开始影响村庄,行驶QD点结束对村庄的影响,则AP=AQ=1000米,AB=600米,∴BP=BQ=米,∴PQ=1600米,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD的长度.【分析】设秋千的绳索长为xm,根据题意可得AC=(x﹣3)m,利用勾股定理可得x2=62+(x ﹣3)2.【解答】解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x﹣3)m,故x2=62+(x﹣3)2,解得:x=7.5,答:绳索AD的长度是7.5m.。
八年级数学下册《勾股定理》单元测试卷(带答案解析)一、单选题1.如图,在△ABC中,∠C=90°,AC=3,点D在BC上,∠ADC=2∠B,AD=√10,则BC的长为()A. 3√3B. √5+1C. √10−1D. √10+12.下列长度的线段中,能组成直角三角形的一组是()A. 1,√3,2B. 2,3,4C. 4,5,6D. 5,6,73.如图,在ΔABC中,三边a,b,c的大小关系是()A. a<b<cB. c<a<bC. c<b<aD. b<a<c4.下列各组数中,能成为直角三角形的三条边长的是()A. 3,5,7B. 5,7,8C. 4,6,7D. 1,√3,2,则AC的长为()5.如图,点A,B都在格点上,点C在线段AB上,每个小格长度为1,若BC=2√133A. √13B. 4√13C. 2√13D. 3√1336.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=√2,则线段BN的长为()B. √2C. 1D. 2−√2A. √227.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 38.等腰三角形的一边长为4,另一边长为6,则这个等腰三角形的面积是()A. 3√7B. 8√2C. 6√7D. 3√7或8√29.如图,一只蚂蚁从长宽高分别是3,2,6的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是()A. √61B. 11C. 7D. 810.若一个三角形的三边长分别为a,b,c,满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题11.如图,直角三角形的两直角边长分别为6 cm和8 cm,分别以三边为直径作半圆,则阴影部分的面积为_______________.12.已知直角三角形的三边长分别为6,7,x,则x2=_______________.13.△ABC中,∠C=90°,AB=8,BC=6,则AC的长是 ______.14.如图,在△ABC 中,点D 是BC 上一点,已知:AB =15,AD =12,AC =13,CD =5,则BC 的长为 ______.15.如图,学校有一块长方形花圈,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了 ______步路.(假设2步为1米)16.ΔABC 中,∠ACB =90°,∠BAC =30°,BC =3.以BC 为边作等边ΔBCD ,连接AD ,则AD 的长为____.17.如图,P 是∠AOB 的平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,垂足分别为D ,E ,若PD =3,则PE 的长是 ______.18.如图,等腰ΔABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则ΔCDF 周长的最小值为______.三 、解答题19.在数轴上表示下列各数,并用“<”连接.−12,0,√3,√−83,(−1)2.20.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“奇妙三角形”.(1)如图,在△ABC中,AB=AC=2√5,BC=4,求证:△ABC是“奇妙三角形”;(2)在Rt△ABC中,∠C=90°,AC=2√3,若△ABC是“奇妙三角形”,求BC的长.21.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为√13,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.22.如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点O.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.23.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.BE平分∠ABC交AC于点E.求CE的长.24.如图,矩形ABCD是一个底部直径BC为12cm的杯子的示意图,在它的正中间竖直放一根筷子EG,筷子漏出杯子外2cm,当筷子倒向杯壁时(筷子底端E不动),筷子顶端正好触到杯口,求筷子EG的长度.25.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE= 45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.参考答案与解析1.【答案】D;【解析】解:在Rt△ACD中,由勾股定理得:CD=√AD2−AC2=√10−9=1,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=2∠B,∴∠B=∠BAD,∴BD=AD=√10,∴BC=√10+1.故选:D.由勾股定理求出CD=1,再根据∠ADC是△ABD的外角,证出∠B=∠BAD,从而有BD=AD,即可求出BC的长.此题主要考查了勾股定理、三角形外角的性质等知识,利用外角证出∠B=∠BAD是解答该题的关键.2.【答案】A;【解析】解:A、∵12+(√3)2=22,∴能构成直角三角形,故本选项符合题意;B、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;C、∵42+52≠62,∴不能构成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能构成直角三角形,故本选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.此题主要考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答该题的关键.3.【答案】D;【解析】解:根据勾股定理,得a=√1+9=√10;b=√1+4=√5;c=√4+9=√13.∵5<10<13,∴b<a<c.故选:D.先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.此题主要考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.4.【答案】D;【解析】解:A、因为32+52≠72,所以不能构成直角三角形,此选项错误;B、因为52+72≠82,所以不能构成直角三角形,此选项错误;C、因为42+62≠72,所以不能构成直角三角形,此选项错误;D、因为12+(√3)2=22,能构成直角三角形,此选项正确.故选D.分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.此题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.5.【答案】B;【解析】解:∵点A,B都在格点上,点C在线段AB上,每个小格长度为1,∴AB=√62+42=2√13,∵BC=2√133,∴AC=AB−BC=2√13−2√133=4√133,即AC的长为4√133,故选:B.由勾股定理求出AB的长,即可得出结论.此题主要考查了勾股定理,由勾股定理求出AB的长是解答该题的关键.6.【答案】C;【解析】解:过M点作MH⊥AC于H点,∵四边形ABCD是正方形,∴∠HAM=45°.∴ΔHAM是等腰直角三角形,∴HM=√22AM=1.∵CM平分∠ACB,MH⊥AC,MB⊥CB,∴BM=HM=1,∠ACM=∠BCN.∵∠BMN=45°+∠ACM,∠BNM=45°+∠BCM,∴∠BMN=∠BNM.∴BN=BM=1.故选:C.过M点作MH⊥AC于H点,在等腰直角ΔHAM中可求HM=√22AM=1,根据角平分线的性质可得BM=MH=1,再证明BN=BM即可.这道题主要考查了正方形的性质、角平分线的性质,解决这类问题一般会利用到正方形对角线平分90°得到等腰直角三角形,涉及角平分线时作角两边的垂线段是常见辅助线.7.【答案】B;【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,ΔAOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由ΔAOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;该题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解答该题的关键;8.【答案】D;【解析】该题考查了勾股定理,等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答该题的关键.因为已知长度为4和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当4为底时,其它两边都为6,4、6、6可以构成三角形,底边上的高为√62−22=4√2,∴等腰三角形的面积=12×4×4√2=8√2;②当4为腰时,其它两边为4和6,∵4+4>6,∴4、4、6能构成三角形.∴底边上的高为=√42−32=√7,∴等腰三角形的面积=1×√7×6=3√7.2故选D.9.【答案】A;【解析】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=(3+2)2+62=61;(2)展开前面上面由勾股定理得AB2=(2+6)2+32=73;(3)展开左面上面由勾股定理得AB2=(3+6)2+22=85.所以最短路径的长为AB=√61(cm).故选:A.把此长方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.此题主要考查了平面展开−最短路径问题及勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.10.【答案】B;【解析】解:∵(a−3)2+√b−4+|c−5|=0,∴a−3=0,b−4=0,c−5=0,解得:a=3,b=4,c=5,则a2+b2=c2,故这个三角形的形状是直角三角形;故选:B.利用绝对值以及偶次方的性质和二次根式的性质得出a,b,c的值,进而判断出三角形的形状即可.此题主要考查了勾股定理逆定理,关键是掌握两边的平方和等于第三边的平方,这个三角形是直角三角形.11.【答案】24cm2;【解析】略12.【答案】85或13;【解析】略13.【答案】2√7;【解析】解:在Rt△ABC中,∠C=90°,AB=8,BC=6,则AC=√AB2−BC2=√82−62=2√7,故答案为:2√7.根据勾股定理计算即可.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.【答案】14;【解析】解:∵AD=12,AC=13,CD=5,∴AC2=169,AD2+CD2=144+25=169,即AD2+CD2=AC2,∴△ADC为直角三角形,且∠ADC=90°,∴∠ADB=90°,∵AB=15,AD=12,∴BD=√AB2−AD2=√152−122=9,∴BC=BD+CD=9+5=14.故答案为:14.在△ADC中,由三边长,利用勾股定理的逆定理判断出△ADC为直角三角形,可得出AD与BC垂直,在直角三角形ABD中,由勾股定理求出BD,再根据线段的和差关系即可求解.此题主要考查了勾股定理,以及勾股定理的逆定理;熟练掌握勾股定理及逆定理是解本题的关键.15.【答案】4;【解析】解:由勾股定理,得路长=√32+42=5(m),少走(3+4−5)×2=4步,故答案为:4.根据勾股定理,可得答案.此题主要考查了勾股定理,利用勾股定理得出路的长是解题关键.16.【答案】3或3√7;【解析】该题考查了勾股定理、等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质是解答的关键.本题分两种情况,①D在AB边上,由直角三角形的性质解答即可;②D在三角形外面,由等边三角形的性质得出三角形ΔBCE和ΔDCA全等的条件,得出ΔBCE≌ΔDCA,推出BE=AD,由勾股定理得出BE,也就得出AD 了.解:分两种情况:①如图所示:D在AB边上,∵∠ACB=90°,∠BAC=30°,BC=3,∴AD=CD=BC=3;②D在三角形外面,以AC为边做等边ΔACE,连接BE,如图所示:∵ΔBCD和ΔACE是等边三角形,∴BC=DC,CE=CA,∠BCD=∠ACE=60°,∴∠BCE=∠DCA=60°+90°=150°,∴ΔBCE≌ΔDCA,∴BE=AD,∵在RtΔABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,AC=√AB2−BC2=3√3,∵ΔACE为等边三角形,∴∠CAE=60°,AE=3√3,∴∠BAE=∠BAC+∠CAE=30°+60°=90°,∴BE=√AB2+AE2=√62+(3√3)2=3√7,∴AD=BE=3√7,综上所述,AD=3或3√7.故答案为3或3√7.17.【答案】3;【解析】解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.根据角平分线的性质定理可得答案.此题主要考查角平分线的性质定理,熟练掌握角平分线的性质是解题关键.18.【答案】18;【解析】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵1⋅BC⋅AH=120,2∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF=√AH2+HF2=√122+52=13,∴DF+DC的最小值为13.∴ΔCDF周长的最小值为13+5=18;故答案为18.如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;该题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解答该题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.19.【答案】解:√3≈1.73,√−83=-2,(-1)2=1,在数轴上表示如下:∴√−83<-12<0<(-1)2<√3.; 【解析】根据实数的符号和绝对值,在数轴上表示即可;依据数轴表示数的特征,右边的数总比左边的大,比较大小.此题主要考查数轴表示数的意义和方法,理解符号和绝对值是确定实数的两个必要条件.20.【答案】(1)证明:过点A 作AD ⊥BC 于D ,∵AB=AC ,AD ⊥BC ,∴BD=12BC=2,由勾股定理得,AD=√AB 2−BD 2=4,∴AD=BC ,即△ABC 是“奇妙三角形”;(2)解:当AC 边上的中线BD 等于AC 时,BC=√BD 2−CD 2=3,当BC 边上的中线AE 等于BC 时,AC 2=AE 2-CE 2,即BC 2-(12BC )2=(2√3)2, 解得BC=4.综上所述,BC 的长是3或4.;【解析】(1)过点A 作AD ⊥BC 于D ,根据等腰三角形的性质求出BD ,根据勾股定理求出AD ,根据“奇妙三角形”的定义证明;(2)分AC 边上的中线BD 等于AC ,BC 边上的中线AE 等于BC 两种情况,根据勾股定理计算.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.21.【答案】null;【解析】解:(1)线段AB的长是:√12+22=√5;故答案为:√5;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=(√5)2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.(1)直接利用勾股定理得出AB的长;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.22.【答案】解:由题意得:∠DCE=90°,BF=DE=2.5m,CE=0.7m,DF=0.4m,在Rt△DCE中,由勾股定理得:DC=√DE2−CE2=√2.52−0.72=2.4(m),∴CF=DC-DF=2.4-0.4=2(m)在Rt△BCF中,由勾股定理得:CF=√BF2−CF2=√2.52−22=1.5(m),∴BE=BC-CE=1.5-0.7=0.8(m),答:梯子底端E向后滑动的距离BE的长为0.8m.;【解析】由勾股定理得DC=2.4m,再由勾股定理得BC=1.5m,即可得出结论.此题主要考查了勾股定理的应用,解答本题的关键是两次运用勾股定理.23.【答案】解:如图,过E作ED⊥AB于D,∵∠ACB=90°,AB=10,BC=6,∴EC⊥BC,AC=√AB2−BC2=√102−62=8,∵BE平分∠ABC,ED⊥AB,∴CE=DE,在Rt△BDE和Rt△BCE中,{DE=CEBE=BE,∴Rt△BDE≌Rt△BCE(HL),∴BD=BC=6,∴AD=AB-BD=10-6=4,设CE=DE=x,则AE=AC-CE=8-x,在Rt△ADE中,由勾股定理得:42+x2=(8-x)2,解得:x=3,即CE的长为3.;【解析】过E作ED⊥AB于D,由勾股定理得AC=8,再证Rt△BDE≌Rt△BCE(HL),得BD=BC=6,则AD= AB−BD=10−6=4,设CE=DE=x,则AE=AC−CE=8−x,然后在Rt△ADE中,由勾股定理得出方程,解方程即可.此题主要考查了勾股定理、全等三角形的判定与性质以及角平分线的性质等知识,熟练掌握全等三角形的判定与性质,由勾股定理得出方程是解答该题的关键.24.【答案】解:设杯子的高度是x cm,则筷子的高度为(x+2)cm,∵杯子的直径为12cm,∴DF=6cm,在Rt△DEF中,由勾股定理得:x2+62=(x+2)2,解得x=8,∴筷子EG=8+2=10cm.;【解析】设杯子的高度是xcm,则筷子的高度为(x+2)cm,在RtΔDEF中,利用勾股定理列出方程:x2+62=(x+ 2)2,解方程即可.此题主要考查了勾股定理的应用,运用方程思想是解答该题的关键,属于常考题.25.【答案】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°∴∠DFE=∠AFD-∠AFE=135°-45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.;【解析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD−∠AFE=135°−45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD=DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.。
八年级数学下册第十七章《勾股定理》测试题-人教版(含答案)一、单选题(共30分)1.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A3,4,5B.2,3C.6,7,8D.2,3,42.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m3.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和4.如图,在△ABC中,△ACB=90°,分别以点A和点B为圆心,以相同的长(大AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于于12点E.若AC=3,AB=5,则DE等于()A .2B .103C .158D .1525.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为( )A .()22610x x =--B .()222610x x =-- C .()22610x x +=- D .()222610x x +=- 6.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A .5B .25C 7D .577.如图所示,圆柱的高AB =3,底面直径BC =3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .31π+B .32C 234π+D .231π+8.在Rt △ABC 中,两条直角边的长分别为5和12,则斜边的长为( ) A .6 B .7 C .10 D .13 9.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A 7B .38C .78D .5810.在Rt ABC △中,90C ∠=︒,9AC =,12BC =,则点C 到 AB 的距离是( )A .94B .1225C .365D 33二、填空题(共30分)11.在△ABC 中,AB =c ,AC =b ,BC =a ,当a 、b 、c 满足_______时,△B =90°. 12.如图,等腰直角ABC 中,90,4ACB AC BC ∠=︒==,D 为BC 的中点,5AD =,若P 为AB 上一个动点,则PC PD +的最小值为_________.13.如图,在Rt ABC △中,90A ∠=︒,3AB =,4AC =,现将ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD =__________.14.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,几分钟后船到达点D 的位置,此时绳子CD 的长为10米,问船向岸边移动了__米.15.已知:如图,ABC 中,△ACB =90°,AC =BC 2,ABD 是等边三角形,则CD 的长度为______.16.如图,在四边形ABCD 中,22AD =27AB =10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.17.如图,“以数轴的单位长度为边长作一个正方形,以数轴的原点O为圆心,以正方形的对角线长为半径画弧交数轴于一点A”,该图说明数轴上的点并不都表示________.18.在Rt△ACB中,△ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=3,BE=1,则DE的长是_____.19.如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.20.我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽问绳索长是多少?”示意图如下图所示,设绳索AC的长为x尺,根据题意,可列方程为__________.三、解答题(共60分)21.如图,一张长8cm ,宽6cm 的矩形纸片,将它沿某直线折叠使得A 、C 重合,求折痕EF 的长.22.一架云梯长25m ,如图所示斜靠在一而墙上,梯子底端C 离墙7m .(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向滑动了多少米?23.如图,把一块直角三角形(ABC ,90ACB ∠=︒)土地划出一个三角形(ADC )后,测得3CD =米,4=AD 米,12BC =米,13AB =米.(1)求证:90ADC ∠=︒;(2)求图中阴影部分土地的面积.24.如图,在四边形ABCD 中,AB=20cm ,BC=15cm ,CD=7cm ,AD=24cm ,△ABC=90°.(1)求△ADC 的度数;(2)求出四边形ABCD 的面积.25.如图,在△ABC 和△DEB 中,AC △BE ,△C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC △△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.26.勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD△CD,AE△BD于点E,且△ABE△△BCD.求证:AB2=BE2+AE2.27.一艘轮船从A港向南偏西48°方向航行100km到达B岛,再从B岛沿BM方向航行125km到达C岛,A港到航线BM的最短距离是60km.(1)若轮船速度为25km/小时,求轮船从C岛沿CA返回A港所需的时间.(2)C岛在A港的什么方向?参考答案1.B2.C3.C4.C5.D6.D7.C8.D9.C10.C11.a2+c2= b212.513.5 214.9.1531 16.14 17.有理数18.15 719.0.820.x2−(x−3)2=8221.EF的长为15 222.(1)这个梯子的顶端A距地面有24m高;(2)梯子的底部在水平方向滑动了8m.23.2424.(1)△ADC=90°;(2)四边形ABCD的面积为2234cm252527.(1)从C岛返回A港所需的时间为3小时;(2)C岛在A港的北偏西42°。
八年级数学下册第18章勾股定理章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1C.6,8,13 D.5,12,152、如图,数轴上点A所表示的数是()A B C D 13、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为()A.10m B.12m C.15m D.18m4、如图,在Rt△ABC中,∠C=90°,AC=12,AB=13,AB边的垂直平分线分别交AB、AC于N、M两点,则△BCM的周长为()A.18 B.16 C.17 D.无法确定5、如图,在△ABC中,∠A=90°,AB=6,BC=10,EF是BC的垂直平分线,P是直线EF上的任意一点,则PA+PB的最小值是()A.6 B.8 C.10 D.126、下列条件中,能判断△ABC是直角三角形的是()A.a:b:c=3:4:4 B.a=1,b,cC.∠A:∠B:∠C=3:4:5 D.a2:b2:c2=3:4:57、下列命题中,逆命题不正确的是()A.如果关于x的一元二次方程ax2+bx+c=0(a≠0)没有实数根,那么b2﹣4ac<0B.线段垂直平分线上的任意一点到这条线段两个端点的距离相等C.全等三角形对应角相等D.直角三角形的两条直角边的平方和等于斜边的平方8、下列命题属于假命题的是()A.3,4,5是一组勾股数B.内错角相等,两直线平行C.三角形的内角和为180°D.9的平方根是39、下列各组数中,能作为直角三角形三边长的是()A.1,2B.8,9,10 C D10、如图所示,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD,则BC的长为()A B C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、圆锥体的高为4cm,圆锥的底面半径为3cm,则该圆锥的表面积为___________.2、如图,△ABC中,∠ACB=90°,AC=4,BC=3,射线CD与边AB交于点D,点E、F分别为AD、BD中点,设点E、F到射线CD的距离分别为m、n,则m+n的最大值为________.3、禅城区某一中学现有一块空地ABCD如图所示,现计划在空地上种草皮,经测量90∠,B= ====,若每种植1平方米草皮需要300元,总共需投入______元AB BC m CD AD3m,4,13m,12m4、如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”:当AC=6,BC=8时,则阴影部分的面积为_____.5、如图,点A为等边三角形BCD外一点,连接AB、AD且AB=AD,过点A作AE∥CD分别交BC、BD 于点E、F,若3BD=5AE,EF=6,则线段AE的长 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,∠C 90°.(1)用尺规作图,保留作图痕迹,不写作法:在边BC 上求作一点D ,使得点D 到AB 的距离等于DC 的长;(2)在(1)的条件下,若AC =6,AB =10,求CD 的长.2、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.3、在Rt ACB ∆中,90ACB ∠=︒,6CA CB ==,点P 是线段CB 上的一个动点(不与点B ,C 重合),过点P 作直线l CB ⊥交AB 于点Q .给出如下定义:若在AC 边上存在一点M ,使得点M 关于直线l 的对称点N 恰好在.ACB △的边上...,则称点M 是ACB △的关于直线l 的“反称点”.例如,图1中的点M 是ACB △的关于直线l 的“反称点”.(1)如图2,若1CP =,点1M ,2M ,3M ,4M 在AC 边上且11AM =,22AM =,34AM =,46AM =.在点1M ,2M ,3M ,4M 中,是ACB △的关于直线l 的“反称点”为______;(2)若点M 是ACB △的关于直线l 的“反称点”,恰好使得ACN △是等腰三角形,求AM 的长;(3)存在直线l 及点M ,使得点M 是ACB △的关于直线l 的“反称点”,直接写出线段CP 的取值范围.4、如图,在△ABC 和△DEB 中,AC ∥BE ,∠C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC ≌△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.5、如图,ABC 是边长为6cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,点P 沿射线AB 运动,点Q 沿折线BC CA -运动,且它们的速度都为1cm/s .当点Q 到达点A 时,点P 随之停止运动连接PQ ,PC ,设点P 的运动时间为(s)t .(1)当点Q在线段BC上运动时,BQ的长为_______(cm),BP的长为_______(cm)(用含t的式子表示);(2)当PQ与ABC的一条边垂直时,求t的值;(3)在运动过程中,当CPQ是等腰三角形时,直接写出t的值.-参考答案-一、单选题1、B【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、52+42≠62,不能构成直角三角形,故不符合题意;B、12+122,能构成直角三角形,故符合题意;C、62+82≠132,不能构成直角三角形,故不符合题意;D、122+52≠152,不能构成直角三角形,故不符合题意.故选:B.【点睛】本题考查勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.2、D【分析】先根据勾股定理计算出BC BA=BC AD的长,接着计算出OA的长,即可得到点A所表示的数.【详解】解:如图,BD=1﹣(﹣1)=2,CD=1,∴BC∴BA=BC∴AD2,∴OA=21,∴点A1.故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键.3、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗【详解】解:根据题意画出图形如下所示:则BC=8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+2)2,解得x=15,故AB=15m,即旗杆的高为15m.故选:C.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4、C【分析】根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可.解:在Rt△ABC中,∠C=90°,AC=12,AB=13,∴由勾股定理得,5BC=,∵MN是AB的垂直平分线,∴MB=MA,∴△BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选C.【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,熟知线段垂直平分线的性质是解题的关键.5、B【分析】如图,由线段垂直平分线的性质可知PB=PC,则有PA+PB=PA+PC,然后可知当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长.【详解】解:如图,连接PC,∵EF是BC的垂直平分线,∴PB=PC,∴PA +PB =PA +PC ,∴PA +PB 的最小值即为PA +PC 的最小值,当点A 、P 、C 三点共线时,PA +PB 取得最小值,即为AC 的长,∴在Rt △ABC 中,∠A =90°,AB =6,BC =10,由勾股定理可得:8AC ,∴PA +PB 的最小值为8;故选B .【点睛】本题主要考查垂直平分线的性质及勾股定理,熟练掌握垂直平分线的性质及勾股定理是解题的关键.6、B【分析】根据勾股定理的逆定理,以及三角形的内角等于180︒逐项判断即可.【详解】A ,设3a x =,4b x ,4=c x ,此时()()()222344x x x +≠,故ABC 不能构成直角三角形,故不符合题意;B ,2221+=,故ABC 能构成直角三角形,故符合题意 C ,::3:4:5A B C ∠∠∠=且180A B C ∠+∠+∠=︒,设3A x ∠=,4B x ∠=,5C x ∠=,则有12180x =︒,所以15x =︒,则75C ∠=︒,故ABC 不能构成直角三角形,故不符合题意;D ,设23a x =,24b x =,25c x =,则345x x x +≠,即222a b c +≠,故ABC 不能构成直角三角形,故不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,和三角形的内角和等知识,能熟记勾股定理的逆定理内容和三角形内角和等于180 是解题关键.7、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】解:A.逆命题为:如果一元二次方程ax2+bx+c=0(a≠0)中b2﹣4ac<0,那么它没有实数根,正确,不符合题意;B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;C.逆命题为:对应角相等的两三角形全等,错误,符合题意;D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.故选:C【点睛】本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.8、D【分析】利用勾股数的定义、平行线的判定、三角形的内角和及平方根的定义分别判断后即可确定正确的选项.【详解】解:A、3,4,5是一组勾股数,正确,是真命题,不符合题意;B、内错角相等,两直线平行,正确,是真命题,不符合题意;C、三角形的内角和为180°,正确,是真命题,不符合题意;D、9的平方根是±3,故原命题是假命题,符合题意.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解勾股数的定义、平行线的判定、三角形的内角和及平方根的定义,难度不大.9、A【分析】比较较小的两边的平方和是否等于较长边的平方来判定即可.【详解】解:A、222+=,能构造直角三角形,故符合题意;12B、222081,不能构造直角三角形,故不符合题意;9C、222+≠,不能构造直角三角形,故不符合题意;D、222+≠,不能构造直角三角形,故不符合题意;故选:A.【点睛】此题考查勾股定理的逆定理,三角形的两边的平方和等于第三边的平方,则此三角形为直角三角形,熟练运用这个定理是解题关键.10、B【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【详解】解:∵∠ADC =2∠B ,∠ADC =∠B +∠BAD ,∴∠B =∠DAB ,∴BD =AD ,在Rt△ADC 中,∠C =90°,∴DC,∴BC =BD +DC 故选:B .【点睛】本题考查了等角对等边,勾股定理,求得BD AD =是解题的关键.二、填空题1、224cm π【分析】先利用勾股定理求出SA 的长,再根据表面积公式进行求解即可.【详解】解:∵圆锥体的高为4cm ,圆锥的底面半径为3cm ,∴5cm SA =,∴该圆锥的表面积22=15924cm rl r πππππ+=+=,故答案为:224cm π.【点睛】本题主要考查了圆锥的表面积,勾股定理,求出母线长是解题的关键.2、2.5【分析】连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,首先根据中线的性质和三角形面积公式得出132FCE ABC S S ∆∆==,然后证明出当CD 的长度最小时,m +n 的值最大,然后根据垂线段最短和等面积法求出CD 的最小值,即可求出m +n 的最大值.【详解】解:连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,∵点E 是AD 的中点,点F 是BD 的中点,∴CE 是ACD ∆中AD 边上的中线,CF 是BCD ∆中BD 边上的中线, ∴12ACE DCE ACD S S S ∆∆∆==,12BCF DCF BCD S S S ∆∆∆==, ∴11111322222FCE DCE DCF ACD BCD ABC S S S S S S AC BC ∆∆∆∆∆∆=+=+==⨯⨯⨯=, ∴11322CD EM CD FN ++=,∴()132CD EM FN +=,即()132CD m n +=, ∴()6CD m n +=,∴当CD 的长度最小时,m +n 的值最大,∴当CD AB ⊥时,CD 的长度最小,此时m +n 的值最大,∵△ABC 中,∠ACB =90°,AC =4,BC =3,∴AB 5, ∴162CD AB ⨯⨯=,解得:125CD =, ∴将125CD =代入()6CD m n +=得: 2.5m n +=. 故答案为:2.5.【点睛】此题考查了勾股定理,中线的性质,三角形面积的应用,垂线段最短等知识,解题的关键是根据题意作出辅助线,正确分析出当CD AB ⊥时m +n 的值最大.3、10800【分析】仔细分析题目,需要求得四边形的面积才能求得结果,在直角三角形ABC 中可求得AC 的长,由AC 、AD 、DC 的长度关系可得ACD △为直角三角形,CD 为斜边;由此可知,四边形ABCD 由t R ABC 和Rt ACD △构成,即可求解.【详解】解:在t R ABC 中,∵222222=345AC AB BC +=+=,∴AC =5.在ACD △中,2213CD =,2212AD =,而22212513+=,即222AC AD CD +=,∴90DAC ∠=︒, 即:11=22BAC DAC ABCD S SS BC AB CD AC +=+四边形 =11431253622⨯⨯+⨯⨯=.所以需费用:3630010800⨯=(元).故答案为10800.【点睛】本题考查了勾股定理,逆定理的相关知识,以及割补法求图形的面积,熟练掌握勾股定理及其逆定理是解答本题的关键.4、24【分析】根据勾股定理求出AB ,分别求出三个半圆的面积和△ABC 的面积,两小半圆与直角三角形的和减去大半圆即可得出答案.【详解】解:在Rt △ACB 中∠ACB =90°,AC =6,BC =8,由勾股定理得:AB =10,阴影部分的面积2221618111068242222222S πππ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯+⨯⨯-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为:24.【点睛】本题主要考查勾股定理和圆有关的不规则图形的阴影面积.利用规则图形面积的和差关系求阴影面积是这类题型的关键.勾股定理是解决三角形中线段问题最有效的方法之一.5、9【分析】连接AC交BD于点O,可得AC是BD的垂直平分线,设BD=5x,则AE=3x,求出OF=OB-BF=52x-6,AF=AE-EF=3x-6,证明△BOE是等边三角形,得30AFE∠=︒,利用AF=2OF列出方程求出x的值,进而可得AE的长.【详解】解:如图,连接AC交BD于点O,∵3BD=5AE,∴53 BDAE=,设BD=5x,则AE=3x,∵△BCD是等边三角形,∴BC=CD=BD=5x,∠DCB=∠DBC=60°,∵AB=AD,BC=CD,∴AC是BD的垂直平分线,∴OB=OD=52x,OC平分∠BCD,∴∠DCO=12∠DCB=30°,∵AE ∥CD ,∴∠DCO =30°,∴OC ==, ∵AE ∥CD ,∴∠AEB =∠BCD =60°,∴∠AEB =∠FBE =∠BFE =60°,∴△BEF 是等边三角形,∴BE =BF =EF =6,∴OF =OB -BF =52x -6,AF =AE -EF =3x -6,∵60BFE ∠=︒∴30AFE ∠=︒∴2AF OF = ∴5362(6)2x x -=-解得x =3,∴AE =AF +EF =3x -6+6=3x =9.故答案为:9.【点睛】本题考查了垂直平分线的判定与性质,勾股定理,等边三角形的判定与性质,直角三角形的性质,解决本题的关键是得到AF =2OF 列出方程求解.三、解答题1、(1)图见详解;(2)3.【分析】(1)根据题意作∠BAC 的平分线交BC 于D ,根据角平分线的性质得到点D 满足条件;(2)根据题意作DE ⊥AB 于E ,先根据勾股定理计算出BC =8,再根据角平分线性质得到DC =DE ,通过证明Rt △ACD ≌Rt △AED 得到AE =AC =6,则EB =4,设CD =x ,则BD =8-x ,在Rt △BED 中,利用勾股定理得到x 2+42=(8-x )2,解方程求出即可.【详解】解:(1)如图,点D 即为所作;(2)作DE ⊥AB 于E ,如上图,在Rt △ABC 中,BC ,∵AD 为角平分线,∴DC =DE ,在Rt △ACD 和Rt △AED 中AD AD DC DE =⎧⎨=⎩, ∴Rt △ACD ≌Rt △AED (HL ),∴AE =AC =6,∴EB =AB -AE =10-6=4设CD =x ,则DE =x ,则BD =8-x ,在Rt△BED中,x2+42=(8-x)2,解得x=3,∴CD=3.【点睛】本题考查作图-复杂作图以及全等三角形判定和角平分线定理、勾股定理,注意掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.2、(1)见解析;(2)x<-3;x>-3;(3)BC=【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x <-3时,一次函数y =-2x -6的图象在x 轴上方;当x >-3时,一次函数y =-2x -6的图象在x 轴下方.∴不等式-2x -6>0的解集是x <-3;不等式-2x -6<0的解集是x >-3.故答案是:x <-3,x >-3;(3)∵B (-3,0),C (0,-6),∴OB =3,OC =6,∴BC =【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x 轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.3、(1)2M 和4M ;(2)3或6;(3)03CP <≤【分析】(1)根据反称点的定义进行判断即可;(2)ACN △是等腰三角形分三种情况讨论求解即可;(3)根据“反称点的定义”判断出CP 的取值范围即可.【详解】解:(1)∵CP =1∴M 点到PQ 的距离为1∵M 、N 关于PQ 对称,∴N 点到PQ 的距离为1∴MN =2如图,1N 在ABC ∆外部,3N 在ABC ∆内部,均不符合题意,∵90ACB ∠=︒,6CA CB ==,∴ABC ∆是等腰直角三角形,∴45A B ∠=∠=︒∵222222,2,AM M N M N AC ==⊥∴2N 在AB 边上,∵46AM =,∴4M 与点C 重合,4M 与4N 关于PQ 对称,4N 在BC 上,∴点1M ,2M ,3M ,4M 中,是ACB △的关于直线l 的“反称点”为2M 和4M故答案为:2M 和4M(2)ACN △是等腰三角形分三种情况:如图,①当11AN CN =时,∵ABC ∆是等腰直角三角形∴1N 是AB 边的中点,1116322AM AC ==⨯= ②当2AC AN =时,此时2=6AN∵22M N //BC∴2290AM N ∠=︒∵45A ∠=︒∴22AM N ∆是等腰直角三角形,且222AM M N =∴2222222AM M N AN +=∴22226AM =∴2AM =③当3AC CN =时,此时,3N 与点B 重合,3M 与点C 重合,∴3AM =AC =6综上,AM 的长为3或6;(3)如图,∵M 是AC 边上的点,CB =6∴当03CP <≤时,在AC 边上至少有一个点M 关于PQ 的对称点在AB 边上,当3CP '>时,如图所示,此时AC 上的所有点到P Q ''的距离都大于3,即6MN >,M 关于P Q ''的对称点都在ABC ∆的外部,∴03CP <≤【点睛】本题主要考查了等腰直角三角形的性质,勾股定理,对称的性质等知识,正确理解反对称点的定义是解答本题的关键4、(1)见解析;(2)【分析】(1)根据平行可得∠DBE =90°,再由HL 定理证明直角三角形全等即可;(2)构造Rt AHE ,利用矩形性质和勾股定理即可求出AE 长.【详解】(1)∵AC ∥BE ,∴∠C +∠DBE =180°.∴∠DBE =180°-∠C =180°-90°=90°.∴△ABC 和△DEB 都是直角三角形.∵点D 为BC 的中点,12AC BC =,∴AC =DB . ∵AB =DE ,∴Rt △ABC ≌Rt △DEB (HL ).(2)AE =过程如下:连接AE 、过A 点作AH ⊥BE ,∵∠C =90°,∠DBE =90°.∴AC BH ∥,AH BC ∥,∴AH =BC =4, 122BH AC BC ===,∴2EH EB EH =-=,在Rt AHE 中,AE =【点睛】本题主要考查了直角三角形全等的判定和勾股定理解三角形,解题关键是构造直角三角形,利用用平行线间的距离处处相等得线段AH =BC ,从而利用勾股定理求AE .5、(1)t ;()6t -;(2)当2t =或4t =或8t =时,PQ 与ABC 的一条边垂直;(3)当3t =或9t =时,ΔΔΔΔ为等腰三角形.【分析】(1)根据点的位置及运动速度可直接得出;(2)根据题意分三种情况讨论:①当PQ CB ⊥时,90PQB ∠=︒;②当PQ AB ⊥时,90QPB ∠=︒;③当PQ AC ⊥时,90AQP ∠=︒;作出图形,分别应用直角三角形中30︒角的特殊性质求解即可得;(3)根据题意,分四种情况进行讨论:①当点Q 在BC 边上时,CQ PQ =时;②当点Q 在BC 边上时,CP CQ =时;③当点Q 在BC 边上时,CP PQ =时;④当点Q 在AC 边上时,只讨论CP PQ =情况;分别作出四种情况的图形,然后综合运用勾股定理及解一元二次方程求解即可.【详解】解:(1)点Q 从点B 出发,速度为1/cm s ,点P 从点A 出发,速度为1/cm s ,∴BQ tcm =,AP tcm =,∴()6BP t cm =-,故答案为:t ;()6t -;(2)根据题意分三种情况讨论:①如图所示:当PQ CB ⊥时,90PQB ∠=︒,∵三角形ABC 为等边三角形,∴60A ACB ABC ∠=∠=∠=︒,∴30QPB ∠=︒, ∴12QB PB =,由(1)可得:()162t t =-, 解得:2t =;②如图所示:当PQ AB ⊥时,90QPB ∠=︒,∵60ABC ∠=︒,∴30BQP ∠=︒,∴2QB PB =,由(1)可得:()26t t =-,解得:4t =;③如图所示:当PQ AC ⊥时,90AQP ∠=︒,∵60A ∠=︒,∴30APQ ∠=︒,∴2AP QA =,由(1)可得:()212t t =-,解得:8t =;综上可得:当2t =或4t =或8t =时,PQ 与ABC 的一条边垂直;(3)根据题意,分情况讨论:①当点Q 在BC 边上时,CQ PQ =时,如图所示:过点Q 作QE AB ⊥,∵60ABC ∠=︒,∴30BQE ∠=︒, ∴1122BE BQ t ==,∴QE =, 6CQ t =-,136622PE t t t =--=-,∴PQ ==∵CQ PQ =,∴()2223662t t ⎫⎛⎫-=-+⎪ ⎪⎪⎝⎭⎝⎭,解得:3t =或0t =(舍去);②当点Q 在BC 边上时,CP CQ =时,如图所示:过点P 作PF AC ⊥,∵60CAB ∠=︒,∴30APF ∠=︒, ∴1122AF AP t ==,∴PF =, 6CQ t =-,162CF t =-,∴CP ==∵CP CQ =,∴()2221662t t ⎫⎛⎫-=-+⎪ ⎪⎪⎝⎭⎝⎭, 解得: 0t =(舍去);③当点Q 在BC 边上时,CP PQ =时,如图所示:由图可得:60CQP ∠>︒,60QCP ∠<︒,CQP QCP ∠≠∠,∴这种情况不成立;④当点Q 在AC 边上时,只讨论CP PQ =情况,如图所示:过点Q 作QE AB ⊥,过点C 作CF AB ⊥,∵60CAB ∠=︒,ABC ∆为等边三角形,∴30AQE ∠=︒,3AF BF ==,∴CF =12AQ t =-, ∴162AE t =-,∴)12QE t =-, ∴136622EP t t t ⎛⎫=--=- ⎪⎝⎭,∴PQ ==∵CF =3PF t =-,∴PC =∵PC PQ =,∴()(()222233126342t t t ⎛⎫-+-=+- ⎪⎝⎭, 解得:19t =或26t =(舍去),综上可得:当3t =或9t =时,ΔΔΔΔ为等腰三角形.【点睛】题目主要考查三角形与动点问题,包括勾股定理的应用,含30︒角的直角三角形的特殊性质,等腰三角形的判定和性质,求解一元二次方程等,根据题意,作出相应图形,然后利用勾股定理求解是解题关键.。
人教版八年级下册数学第十七章 勾股定理 单元测试一.单选题(本大题共12小题,每小题3分,共36分)1.在△ABC 中,∠C =90°,AB =3,则222AB BC AC ++的值为( )A .24B .18C .12D .92.已知点M 的坐标为()3,4-,则下列说法正确的是( )A .点M 在第二象限内B .点M 到x 轴的距离为3C .点M 关于y 轴对称的点的坐标为()3,4D .点M 到原点的距离为53.如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿AB 竖直插到水底,此时竹竿AB 离岸边点C 处的距离0.8CD =米.竹竿高出水面的部分AD 长0.2米,如果把竹竿的顶端A 拉向岸边点C 处,竿顶和岸边的水面刚好相齐,则人工湖的深度BD 为( )A .1.5米B .1.7米C .1.8米D .0.6米4.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .4.75 cmC .6 cmD .5cm5.《九章算术》中有一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:如图,一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?若设折断处离地面x 尺,则下面所列方程正确的是( )A .2223(1)x x +=-B .222(1)3x x +-=C .222(10)3x x +-=D .2223(10x)x +=-6.如图,x 轴、y 轴上分别有两点A(3,0)、B(0,2),以点A 为圆心,AB 为半径的弧交x 轴负半轴于点C ,则点C 的坐标为( )A .(﹣1,0)B .(20) C .3,0) D .(30)7.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE V 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254D .748.如图,Rt ABC 中,8,6,90AB BC B ==∠=︒,M ,N 分别是边,AC AB 上的两个动点.将ABC 沿直线MN 折叠,使得点A 的对应点D 落在BC 边的三等分点处,则线段BN 的长为( )A .3B .53C .3或53D .3或1549.△ABC 的三边长a ,b ,c(b ﹣12)2+|c ﹣13|=0,则△ABC 的面积是( )A .65B .60C .30D .2610.如图,斜靠在墙上的一根竹竿,AB =10m ,BC =6m ,若A 端沿垂直于地面的方向AC 下移2m ,则B 端将沿CB 方向移动的距离是( )米.A .1.6B .1.8C .2D .2.211.中国古代称直角三角形为勾股形,如果勾股形的三边长为三个正整数,则称三边长叫“勾股数”;如果勾股形的两直角边长为正整数,那么称斜边长的平方叫“整弦数”对于以下结论:①20是“整弦数”;②两个“整弦数”之和一定是“整弦数”;③若c 2为“整弦数”,则c 不可能为正整数;④若m =a 12+b 12,n =a 22+b 22,11a b ≠22a b ,且m ,n ,a 1,a 2,b 1,b 2均为正整数,则m 与n之积为“整弦数”;⑤若一个正奇数(除1外)的平方等于两个连续正整数的和,则这个正奇数与这两个连续正整数是一组“勾股数”.其中结论正确的个数为( )A .1个B .2个C .3个D .4个12.如图所示,ABCD 是长方形地面,长20AB =,宽10AD =,中间整有一堵砖墙高2MN =,一只蚂蚁从A 点爬到C 点,它必须翻过中间那堵墙,则它至少要走( )A .20B .24C .25D .26二.填空题(本大题共8小题,每小题3分,共24分)13.一根直立于水中的芦节(BD )高出水面(AC )2米,一阵风吹来,芦苇的顶端D 恰好到达水面的C 处,且C 到BD 的距离AC =6米,水的深度(AB )为________米14.如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为_________.15.如图所示,在四边形ABCD 中,AB =5,BC =3,DE ⊥AC 于E ,DE =3,S △DAC =6,则∠ACB 的度数等于 _____.16.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草.则他们仅仅少走了 _____步路.(假设2步为1米)17.观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑥组勾股数为______.18.如图,AB ⊥BC 于点B ,AB ⊥AD 于点A ,点E 是CD 中点,若BC =5,AD =10,BE =132,则AB 的长是 _____.19.如图,Rt △ABC ≌Rt △FDE ,∠ABC =∠FDE =90°,∠BAC =30°,AC =4,将Rt△FDE 沿直线l 向右平移,连接BD 、BE ,则BD+BE 的最小值为___.20.如图所示的是我国古代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由4个全等的直角三角形与1个小正方形拼成的一个大正方形,若大正方形的边长为5,小正方形的边长为1.(1)如图1,若用a ,b 表示直角三角形的两条直角边(a<b ),则ab=______.(2)如图2,若拼成的大正方形为正方形ABCD ,中间的小正方形为正方形EFGH ,连接AC ,交BG 于点P ,交DE 于点M ,AFP CGP S S -△△=______.三.解答题(本大题共5小题,每小题8分,共40分)21.在ABC 中,90C =∠,3AC =,4CB =,CD 是斜边AB 上高.(1)求ABC 的面积;(2)求斜边AB ;(3)求高CD .22.如图,在△ABC 中,∠B =45°,∠C =30°,边AC 的垂直平分线分别交边BC 、AC 于点D 、E ,DC =6.求AB 的长.23.琪琪与婷婷进行遥控赛车游戏,终点为点A ,琪琪的赛车从点C 出发,以4米/秒的速度由西向东行驶,同时婷婷的赛车从点B 出发,以3米/秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于25米时,遥控信号会产生相互干扰,40AC =米,30AB =米,(1)出发3秒钟时,遥控信号是否会产生相互干扰?(2)当两赛车距A 点的距离之和为35米时,遥控信号是否会产生相互干扰?24.先阅读下列一段文字,再解答问题:已知在平面内有两点111222(,),(,)P x y P x y ,其两点间的距离公式为12PP 同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -(1)已知点M (2,4),N (3,8),试求M ,N 两点间的距离;(2)已知点(0,6)(3,2),(3,,2)A B C -,判断线段AB ,BC ,AC 中哪两条是相等的?并说明理由.25.在平面直角坐标系xOy中,对于点A,规定点A的α变换和β变换.α变换:将点A向左平移一个单位长度,再向上平移两个单位长度;β变换:将点A向右平移三个单位长度,再向下平移一个单位长度(1)若对点B进行α变换,得到点(1,1),则对点B进行β变换后得到的点的坐标为.=,求m的值.(2)若对点C(m,0)进行α变换得到点P,对点C(m,0)进行β变换得到点Q,OP OQ(3)点D为y轴的正半轴上的一个定点,对点D进行α变换后得到点E,点F为x轴上的一个动点,对点+的最小值为D的坐标.F进行β变换之后得到点G,若DG EF。
中考数学试题分类汇编:北师版数学八年级上册第1章《勾股定理》考点一:勾股定理1.(•滨州)在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦的平方为32+42=25,弦长为5.故选:A.2.(•模拟)如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4B.8C.16D.64【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.3.(•模拟)如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15﹣3)2+(20﹣4)2=122+162=400,所以BC=20.则剪去的直角三角形的斜边长为20cm.故选:D.4.(•模拟)如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD=()A.3B.4C.5D.6【分析】先判定△ABC为等腰三角形,利用等腰三角形的性质可求得BD,在Rt△ABD中利用勾股定理可求得AD的长.【解答】解:∵∠B=∠C,∴AB=AC,∵AD平分∠BAC,∴AD⊥BC,BD=CD=12BC=3,在Rt△ABD中,AB=5,BD=3,∴AD=4,故选:B.考点二:勾股定理得证明1.(•泸州)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.3【分析】由题意可知:中间小正方形的边长为:a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故选:D.2.(•期中)如图是著名的赵爽弦图,它是由四个全等的直角三角形拼成,每个直角三角形的两直角边的长分别为a和b,斜边长为c,请你用它验证勾股定理.【分析】通过图中小正方形面积证明勾股定理.【解答】解:S小正方形=(b﹣a)2=b2﹣2ab+a2,另一方面S小正方形=c2﹣4×ab=c2﹣2ab,即b2﹣2ab+a2=c2﹣2ab,∴a2+b2=c2.3.(•期中)如图:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.【分析】由图知,梯形的面积等于三个直角三角形的面积之和,用字母表示出来,化简后,即证明勾股定理.【解答】证明:∵∠C=90°,∠D=90°,AC=BD=a,BC=DE=b,AB=BE=c,∵Rt△ACB≌Rt△BDE,∴∠ABC=∠BED,∠BAC=∠EBD,∵∠ABC+∠DBE=90°,∴∠ABE=90°,三个Rt△其面积分别为12ab,12ab和12c2.直角梯形的面积为12(a+b)(a+b).由图形可知:12(a+b)(a+b)=12ab+12ab+12c2,整理得(a+b)2=2ab+c2,a2+b2+2ab=2ab+c2,∴a2+b2=c2.4.(•模拟)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a),∴12b2+12ab=12c2+12a(b﹣a),∴a2+b2=c2.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【分析】首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S五边形ACBED,两者相等,整理即可得证.【解答】证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b﹣a),∴12ab+12b2+12ab=12ab+12c2+12a(b﹣a),∴a2+b2=c2.考点三:勾股定理的逆定理1.(•南通)下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,12【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.2.(•模拟)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD2=AC2+CD2=25,CD=5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选:A.3.(•期中)下列各组数中,不能作为直角三角形的三边长的是()A.1.5,2,3B.6,8,10C.5,12,13D.15,20,25【分析】只要验证两小边的平方和等于最长边的平方即可判断三角形是不是直角三角形,据此进行判断.【解答】解:A、(1.5)2+22≠32,不能构成直角三角形,故本选项符合题意;B、62+82=100=102,能构成直角三角形,故本选项不符合题意;C、52+122=169=132,能构成直角三角形,故本选项不符合题意;D、152+202=252,能构成直角三角形,故本选项符合题意;故选:A.4.(•期末)满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:15【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:A.b2﹣c2=a2,则b2=a2+c2,△ABC是直角三角形;B.a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;C.∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;D.∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.5.(•期中)已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.48【分析】因为△ABC的三边分别是6,8,10,根据勾股定理的逆定理可求出此三角形为直角三角形,根据三角形面积公式可求出面积.【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.6.(•期中)已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.【分析】对原式进行变形,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵a+b=10,ab=18,c=8,∴(a+b)2﹣2ab=100﹣36=64,c2=64,∴a2+b2=c2,∴此三角形是直角三角形.故答案为:直角.7.(•期末)观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:.【分析】勾股定理和了解数的规律变化是解题关键.【解答】解:从上边可以发现第一个数是奇数,且逐步递增2,故第5组第一个数是11,又发现第二、第三个数相差为一,故设第二个数为x,则第三个数为x+1,根据勾股定理得:112+x2=(x+1)2,解得x=60,则得第5组数是:11、60、61.故答案为:11、60、61.8.(•期中)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【分析】根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【解答】解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD2=AC2-AD2=225,CD=15,∴S△ABC=12BC•AD=12(BD+CD)•AD=12×21×8=84,因此△ABC的面积为84.答:△ABC的面积是84.考点四:勾股定理的应用1.(•期末)如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.125【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.2.(•模拟)一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m的小明()A.没有危险B.有危险C.可能有危险D.无法判断【分析】由勾股定理求出BC=4>3.9,即可得出结论.【解答】解:如图所示:AB=9﹣4=5,AC=4﹣1=3,由勾股定理得:BC=4>3.9,∴此时在3.9m远处耍的身高为1m的小明有危险,故选:B.3.(•模拟)如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm【分析】首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【解答】解:∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC﹣FC=32﹣25=7cm,在直角△ADF中,AD=24(cm).故选:C.4.(•湘潭)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为.【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.故答案为:x2+32=(10﹣x)2.5.(•包头)如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为.【分析】根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长.【解答】解:根据勾股定理得:AC=5,由网格得:S△ABC=12×2×4=4,且S△ABC=12AC•BD=12×5BD,∴12×5BD=4,解得:BD=85.故答案为:8 56.(•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B2=A′D2+BD2=400,A′B=20(cm).故答案为20.7.(•期中)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方两丈,葭生其,出水两尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池是边长为2丈(1丈=10尺)的正方形,在水池正长有一根芦苇,芦苇露出水面2尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度分别是多少?”答:这个水池的深度和这根芦苇的长度分别是.【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理可得x2+(102)2=(x+1)2,再解答即可.【解答】解;设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:水池深12尺,芦苇长13尺.故答案是:12尺;13尺.8.(•期中)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,求EB′的长.【分析】根据折叠得到BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,根据勾股定理求得AC的值,再由勾股定理可得方程x2+22=(4﹣x)2,再解方程即可算出答案.【解答】解:根据折叠可得BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4﹣x,∵∠B=90°,AB=3,BC=4,∴在Rt△ABC中,由勾股定理得,AC=5,∴B′C=5﹣3=2,在Rt△B′EC中,由勾股定理得,x2+22=(4﹣x)2,解得x=1.5.11/ 11。
八年级数学上册《第十四章勾股定理》单元测试卷及答案-华东师大版(考试时间:60分钟 总分:100分)一、选择题1.以下四组数中,是勾股数的是( )A .1,2,3B .12,13,4C .8,15,17D .4,5,62.在下列以线段a 、b 、c 的长为三边的三角形中,不能构成直角三角形的是( )A . 1.5a = 2b = 3c =B .7a = 24b = 25c =C .345a b c =::::D .9a = 12b = 15c =3.如图,一根长为5m 的竹竿AB 斜靠在竖直的墙壁上,竹竿底端B 离墙壁距离3m ,则该竹竿的顶端A 离地竖直高度为( )A .2mB .3mC .4mD 3m4.如图,在△ABC 中,△B=90°,AB=1,BC=2.四边形ADEC 是正方形,则正方形ADEC 的面积是( )A .3B .4C .5D .65.如图,在ABC 中5AB AC ==,按以下步骤作图:①以C 为圆心,CB 的长为半径作弧,交AB 于点D ;②分别以点D ,B 为圆心,大于12BD 的长为半径作弧,两弧交于点E ;③作射线CE ,交边AB 于点F .若4CF =,则线段AD 的长为( )A 3B .1C .22D .126.由下列各组线段围成的三角形中,是直角三角形的是()A .1,2,2B .2,3,4C .12 3 D .22 37.用反证法证明“a b <”时应假设( )A .a b >B .a b ≥C .a b =D .a b ≤8.我国明代有一位杰出的数学家提出一道“荡秋千”的数学问题:“平地秋千未起,踏板一尺离地,送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉,良工高士素好奇,算出索长有几?”其意思为:如图所示,当秋千静止在地面上时,秋千的踏板离地的距离为一尺(1CE =尺),将秋千的踏板往前推两步(每一步合五尺,即10EF =尺),秋千的踏板与人一样高,这个人的身高为五尺(5DF =尺),求这个秋千的绳索AC 有多长?( )A .12尺B .13.5尺C .14.5尺D .15.5尺二、填空题9.在Rt ABC 中1390BC AC B ==∠=︒,,,则AB 的长是 .10.在△ABC 中,AB=5,BC=a ,AC=b ,如果a ,b 满足(a+5)(a-5)-b 2=0,那么△ABC 的形状是 .11.用反证法证明:一个三角形中至少有一个角不小于60°,应先假设 .12.如图,长方体木箱的长、宽、高分别为12cm ,4cm ,3cm ,则能放进木箱中的直木棒最长为cm .三、解答题13.如图,在ABC 中,CD 是高,BC=7,BD=6.若DE BC ,DEC DCB ∠=∠求CE 的长.14.已知ABC 的三边长为a 、b 、c ,且a-b=8,ab=2,17c =ABC 的形状,并说明理由.15.已知:如图,直线a ,b 被c 所截,△1,△2是同位角,且△1≠△2.求证:a 不平行于b.16.在Rt ABC 中90C ∠=︒,若34a b =::,10c =求a ,b 的长.四、综合题17.如图,在四边形ABCD 中=60A ∠︒,=90B D ∠=∠︒和BC=6,CD=4,求:(1)AB 的长;(2)四边形ABCD 的面积.18.如图,在ABC 中,AB 长比AC 长大1,15BC =,D 是AB 上一点9BD =和12CD =.(1)求证:CD AB ⊥; (2)求AC 长.19.如图,点A 是网红打卡地诗博园,市民可在云龙湖边的游客观光车站B 或C 处乘车前往,且AB=BC,因市政建设,点C到点A段现暂时封闭施工,为方便出行,在湖边的H处修建了一临时车站(点H在线段BC上),由H处亦可直达A处,若AC=1km,AH=0.8km,CH=0.6km.(1)判断△ACH的形状,并说明理由;(2)求路线AB的长.20.阅读材料,解答下面问题:我们新定义一种三角形,两边的平方和等于第三边平方2倍的三角形叫做奇异三角形.(1)理解并填空:①根据奇异三角形的定义,请你判断:等边三角形一定(填“是”或“不是”)奇异三角形;②若某三角形的三边长分别为17,2,则该三角形(填“是”或“不是”)奇异三角形;(2)探究:在Rt ABC中,两边长分别是a,c,且250c=则这个三角形是否是奇异a=,2100三角形?请说明理由.参考答案与解析1.【答案】C【解析】【解答】解:A 、12+22=5,32=9,5≠9,故不是勾股数;B 、42+122=160,132=169,160≠169,故不是勾股数;C 、82+152=189=172,故是勾股数;D 、42+52=41,62=36,41≠36,故不是勾股数. 故答案为:C.【分析】勾股数就是可以构成一个直角三角形三边的一组正整数,据此判断.2.【答案】A【解析】【解答】解:A 、∵a=1.5,b=2,c=3∴a 2+b 2=1.52+22=6.25≠c 2=9∴以线段a 、b 、c 的长为三边的三角形不是直角三角形,故此选项符合题意; B 、∵a=7,b=24,c=25 ∴a 2+b 2=72+242=625=c 2=252=625∴以线段a 、b 、c 的长为三边的三角形是直角三角形,故此选项不符合题意; C 、∵a△b△c=3△4△5,设a=3x ,b=4x ,c=5x ∴a 2+b 2=(3x )2+(4x )22=25x 2=c 2=(5x )2=25x 2∴以线段a 、b 、c 的长为三边的三角形是直角三角形,故此选项不符合题意; B 、∵a=9,b=12,c=15 ∴a 2+b 2=92+122=225=c 2=152=225∴以线段a 、b 、c 的长为三边的三角形是直角三角形,故此选项不符合题意. 故答案为:A.【分析】根据勾股定理的逆定理,如果三条线段的长度满足较小两条长的平方和等于最大一条长的平方,则该三角形就是直角三角形,据此一一判断得出答案.3.【答案】C【解析】【解答】解:由题意得:5m AB = 3m BC = AC BC ⊥则224m AC AB BC =-=即该竹竿的顶端A 离地竖直高度为4m 故答案为:C .【分析】直角利用勾股定理计算即可.4.【答案】C【解析】【解答】解:在△ABC 中,△B=90°由勾股定理得:AC 2=AB 2+BC 2=12+22=5 ∵四边形ADEC 是正方形 ∴S 正方形ADEC =AC 2=5 故答案为:C .【分析】利用勾股定理求出AC 2=AB 2+BC 2=12+22=5,再利用正方形的面积公式可得S 正方形ADEC =AC 2=5。
八年级第十八章《勾股定理》检测题一一.选择题:(每题3分,共30分)1.在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ).A .3B .4C .5D .72.在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ).A .5B .10C .25D .53、一艘小船早晨8:00出发,以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,上午10:00两小船相距( )海里. A 、15 B 、12 C 、13 D 、204.如图,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形。
如果大正方形的面积为13,小正方形的面积为1,直角三角形的较短直角边为a,较长直角边为b ,那么(a+b)2的值为( )A.13B.19C.25D.1695.把直角三角形两条直角边同时扩大为原来的2倍,则其斜边扩大为原来的( ) A.2 倍 B.4倍 C.2倍 D.不能确定6.如图1,中字母A 所代表的正方形的面积为( )A. 4B. 8C. 16D. 64 7、下列叙述中,错误的是( ) A .△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形.B .△ABC 中,若a 2=(b +c )(b -c ),则△ABC 是直角三角形.C .△ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5则△ABC 是直角三角形.D .△ABC 中,若a ∶b ∶c =5∶4∶3则△ABC 是直角三角形. 8. 适合下列条件的△ABC 中, 直角三角形的个数为( ) ①;51,41,31===c b a ②,6=a ∠A=450; ③;25,24,7===c b a ④.4,2,2===c b a A. 2个 B. 3个 C. 4个 D. 5个9.在Rt △ABC 中,∠C =90°,若a +b =3cm ,c =7cm , 则Rt △ABC 的面积是( )A.1cm 2B.2cm 2C.21cm 2 D. 5cm 2 10、如图,ΔABC 中∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P 到各边的距离相等,则这个距离是( )A.1B.3C.6D.非以上答案 二.填空题:(每题3分,共30分)1.请写出三组勾股数:____________,_____________,_____________.2.直角三角形有两条边长分别为8 cm ,17cm ,第三边长是__________3.△ABC 的三边长a,b,c 满足03018)602(2=-+-+-+c b b a ,△ABC 是 _三角形. 4.等边三角形的边长是8cm ,它一边上的高是 .5.有只鸟在一棵高4米的树梢上,它的伙伴在离该树12米,高20米的一棵大树的树梢上,它立刻以4米/秒的速度飞向大树树梢.那么这只鸟_____秒才能到达大树. 6、如图所示,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. 7、如图3,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长度是为h cm ,则h 的取值范围是 。
第十八章勾股定理全章测试
一、填空题
1.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.2.若等边三角形的边长为2,则它的面积为______.
3.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是10cm2,则其中最大的正方形的边长为______cm.
3题图
4.如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC =60米,则点A到岸边BC的距离是______米.
4题图
5.已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D,E,F分别是垂足,且BC=8cm,CA=6cm,则点O到三边AB,AC和BC的距离分别等于______cm.
5题图
6.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.
6题图
7.△ABC中,AB=AC=13,若AB边上的高CD=5,则BC=______.
8.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.
8题图
二、选择题
9.下列三角形中,是直角三角形的是( )
(A)三角形的三边满足关系a +b =c (B)三角形的三边比为1∶2∶3
(C)三角形的一边等于另一边的一半 (D)三角形的三边为9,40,41
10.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已
知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ).
10题图
(A)450a 元 (B)225a 元
(C)150a 元 (D)300a 元
11.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD
的面积为8,则BE =( ).
(A)2
(B)3 (C)22 (D)32
12.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则AC +BC 等于( ).
(A)5
(B)135 (C)1313
(D)59
三、解答题
13.已知:如图,△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足,求AD 的长.
14.如图,已知一块四边形草地ABCD,其中∠A=45°,∠B=∠D=90°,AB=20m,CD =10m,求这块草地的面积.
15.△ABC中,AB=AC=4,点P在BC边上运动,猜想AP2+PB·PC的值是否随点P位置的变化而变化,并证明你的猜想.
16.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,求BC.
17.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过四个侧面缠绕一圈到达点B,那么所用细线最短需要多长?如果从点A开始经过四个侧面缠绕n圈到达点B,那么所用细线最短需要多长?
18.如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长都
为3,另一种纸片的两条直角边长分别为1和3.图1、图2、图3是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.
图1 图2 图3
(1)请用三种方法(拼出的两个图形只要不全等就认为是不同的拼法)将图中所给四块直
角三角形纸片拼成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,并把你所拼得的图形按实际大小画在图1、图2、图3的方格纸上(要求:所画图形各顶点必须与方格纸中的小正方形顶点重合;画图时,要保留四块直角三角形纸片的拼接痕迹);
(2)三种方法所拼得的平行四边形的面积是否是定值?若是定值,请直接写出这个定值;
若不是定值,请直接写出三种方法所拼得的平行四边形的面积各是多少;
(3)三种方法所拼得的平行四边形的周长是否是定值?若是定值,请直接写出这个定值;
若不是定值,请直接写出三种方法所拼得的平行四边形的周长各是多少.
19.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.
参考答案
第十八章 勾股定理全章测试
1.8. 2..3 3..10 4.30. 5.2.
6.3.提示:设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6,
CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程.
7.26或.265
8.6.提示:延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为Rt △.
9.D . 10.C 11.C . 12.B
13..217
2 提示:作CE ⊥AB 于E 可得,5,3==BE CE 由勾股定理得,72=BC 由三角形面积公式计算AD 长.
14.150m 2.提示:延长BC ,AD 交于E .
15.提示:过A 作AH ⊥BC 于H
AP 2+PB ·PC =AH 2+PH 2+(BH -PH )(CH +PH )
=AH 2+PH 2+BH 2-PH 2
=AH 2+BH 2=AB 2=16.
16.14或4.
17.10; .16922n +
18.(1)略; (2)定值, 12;(3)不是定值,.10226,1028,268+++
19.在Rt △ABC 中,∠ACB =90°,AC =8,BC =6
由勾股定理得:AB =10,扩充部分为Rt △ACD ,扩充成等腰△ABD ,应分以下三种情况.
①如图1,当AB =AD =10时,可求CD =CB =6得△ABD 的周长为32m .
图1
②如图2,当AB =BD =10时,可求CD =4
图2 由勾股定理得:54=AD ,得△ABD 的周长为.m )5420(+.
③如图3,当AB 为底时,设AD =BD =x ,则CD =x -6,
图3 由勾股定理得:325 x ,得△ABD 的周长为.m 380。