铁磁材料动态磁滞回线实验
- 格式:doc
- 大小:243.50 KB
- 文档页数:7
一、实验目的1. 理解铁磁材料的磁滞现象及其在工程中的应用。
2. 学习使用示波器观察和测量动态磁滞回线。
3. 掌握磁滞回线中关键参数(如饱和磁感应强度、矫顽力、剩磁等)的测量方法。
4. 分析磁滞回线形状与材料特性之间的关系。
二、实验原理铁磁材料在外加磁场的作用下,其磁化强度B与磁场强度H之间的关系并非线性,而是呈现非线性关系。
当磁场强度H增加到一定值时,B几乎不再随H的增加而增加,此时的B值称为饱和磁感应强度(Bs)。
当外磁场去除后,铁磁材料仍保留一定的磁性,此时的B值称为剩磁(Br)。
矫顽力(Hc)是指使剩磁为零所需的反向磁场强度。
动态磁滞回线是指铁磁材料在交变磁场作用下,磁化强度B与磁场强度H之间的关系曲线。
通过测量动态磁滞回线,可以获得铁磁材料的磁性能参数,如饱和磁感应强度、矫顽力、剩磁等。
三、实验仪器1. 示波器2. 交流电源3. 铁磁材料样品4. 磁场发生器5. 测量装置四、实验步骤1. 将铁磁材料样品固定在磁场发生器上。
2. 接通电源,调节磁场发生器输出交变磁场。
3. 将示波器的X轴输入端连接到磁场发生器的输出端,Y轴输入端连接到测量装置的输出端。
4. 观察示波器屏幕上的动态磁滞回线,记录关键参数(如饱和磁感应强度、矫顽力、剩磁等)。
5. 改变磁场发生器的输出频率,重复上述步骤,观察磁滞回线形状的变化。
五、实验结果与分析1. 通过实验,我们观察到铁磁材料的动态磁滞回线呈现非线性关系,且存在饱和磁感应强度、矫顽力、剩磁等关键参数。
2. 随着磁场发生器输出频率的增加,磁滞回线形状发生变化,饱和磁感应强度和矫顽力降低,剩磁增加。
3. 分析磁滞回线形状与材料特性之间的关系,发现磁滞回线形状与材料的磁导率、矫顽力、剩磁等参数有关。
六、实验结论1. 动态磁滞回线实验可以有效地测量铁磁材料的磁性能参数,为工程应用提供重要依据。
2. 磁滞回线形状与材料特性密切相关,通过分析磁滞回线可以了解材料的磁性能。
铁磁材料的磁滞回线实验报告磁滞回线是描述铁磁材料磁化特性的重要参数之一,它反映了材料在外加磁场作用下磁化状态的变化规律。
本实验旨在通过测量铁磁材料在不同外加磁场下的磁感应强度,绘制出相应的磁滞回线曲线,从而研究铁磁材料的磁化特性。
实验仪器与材料:1. 信号发生器。
2. 交流电桥。
3. 励磁线圈。
4. 磁滞回线测试线圈。
5. 铁磁材料样品。
6. 示波器。
7. 直流电源。
8. 万用表。
实验步骤:1. 将交流电桥接通,调节信号发生器输出频率和幅度,使得电桥平衡。
2. 通过励磁线圈对铁磁材料进行励磁,同时接通示波器,观察磁感应强度随时间的变化曲线。
3. 逐渐增大励磁电流,记录不同外加磁场下的磁感应强度值。
4. 根据实验数据,绘制铁磁材料的磁滞回线曲线。
实验结果与分析:通过实验测得的数据,我们成功绘制出了铁磁材料的磁滞回线曲线。
从曲线图中可以看出,在外加磁场逐渐增大时,铁磁材料的磁感应强度也随之增大,但在去除外加磁场后,并不完全回到初始磁化状态,出现了磁感应强度残留的现象,这就是磁滞回线的特征之一。
通过对磁滞回线曲线的分析,我们可以得出铁磁材料的磁滞回线是一个闭合的环形曲线,表征了铁磁材料在周期性外加磁场作用下的磁化-去磁化过程。
磁滞回线的面积大小反映了铁磁材料的磁滞损耗,面积越大表示磁滞损耗越大,材料的磁化特性越差。
结论:本实验通过测量铁磁材料的磁滞回线,成功揭示了铁磁材料在外加磁场作用下的磁化特性。
磁滞回线曲线的绘制和分析为我们深入了解铁磁材料的磁化特性提供了重要的实验数据,对于材料的磁性能评价具有一定的参考价值。
综上所述,本实验取得了预期的实验结果,成功实现了铁磁材料的磁滞回线实验,并对实验结果进行了详细的分析和总结,为进一步研究铁磁材料的磁化特性奠定了基础。
〖实验三十〗用示波器观测动态磁滞回线〖目的要求〗1、学习使用示波器对动态磁滞回线进行观察和测量,了解磁感应强度和磁场强度的测量方法;2、学习应用RC 积分电路;3、了解铁磁性材料的动态磁化特性。
〖仪器用具〗动态磁滞回线测量仪(包括正弦波信号源、待测铁磁样品及绕组、积分电路所用的电阻和电容),双踪读出示波器,直流电源,数字多用表,滑线变阻器。
〖实验原理〗1、铁磁材料的磁化特性把物体放在外磁场H 中,物体就会被磁化,其内部产生磁场。
设其内部磁化强度为M ,磁感应强度为B ,可以定义磁化率m χ和相对磁导率r μ表征物质被磁化的难易程度:0m r M H B Hχμμ==物质的磁性按磁化率m χ可以分为抗磁性、顺磁性和铁磁性三种。
抗磁性物质的磁化率为负值,通常在5610~10--的量级,且几乎不随温度变化;顺磁性物质的磁化率通常为2410~10--之间,且随温度线性增大;而铁磁性物质的磁化率通常远大于1,且随温度增高而变小。
除了磁导率高以外,铁磁材料还具有特殊的磁化规律。
对一个处于磁中性状态(H=0且B=0)的铁磁材料加上由小变大的磁场H 进行磁化时,磁感应强度B 随H 的变化曲线称为起始磁化曲线,它大致分为三个阶段:①可逆磁化阶段,当H 很小的时候,B 随H 变化可逆,见图中OA 段,若减小H ,B 会沿AO返回至原点;②不可逆磁化阶段,见图中AS 段,若减小H ,B 不会沿SA 返回(比如当磁场从D 点的D H 减小到D H H -∆,再从D H H -∆增大到D H ,B-H 轨迹会是图中点线所示的回线样式);③饱和磁化阶段,见图中SC 段,在S 点材料已经被磁化至饱和状态,继续增大H ,磁化强度M 不再增大,由于0(M H)βμ=+,B 会随H 线性增大,但增量极小。
图中S H 和S B 表示M 刚刚达到饱和值时的H 和B 的值,分别称为饱和磁场强度和饱和磁感应强度。
如果将铁磁材料磁化到饱和状态(图中S 点)后再减小磁场H ,那么磁感应强度B 会随H 减小而减小,但并不沿起始磁化曲线SAO 减小,而会沿着SP 这条更缓慢的曲线减小。
实验5 动态磁滞回线一、实验目的1、掌握磁滞、磁滞回线和磁化曲线的概念,加深对铁磁材料的主要物理量:矫顽力、剩磁和磁导率的理解。
2、学会用示波法测绘基本磁化曲线和磁滞回线。
3、根据磁滞回线确定磁性材料的饱和磁感应强度Bs、剩磁Br和矫顽力Hc的数值。
4、研究不同频率下动态磁滞回线的区别,并确定某一频率下的磁感应强度Bs、剩磁Br和矫顽力Hc数值。
5、改变不同的磁性材料,比较磁滞回线形状的变化。
二、实验仪器动态磁滞回线测试仪及示波器。
动态磁滞回线测试仪由测试样品、功率信号源、可调标准电阻、标准电容和接口电路等组成。
三、实验原理1、磁化曲线如果在由电流产生的磁场中放入铁磁物质,则磁场将明显增强,此时铁磁物质中的磁感应强度比单纯由电流产生的磁感应强度增大百倍,甚至在千倍以上。
铁磁物质内部的磁场强度H与磁感应强度B有如下的关系:B=μH对于铁磁物质而言,磁导率μ并非常数,而是随H的变化而改变的物理量,即μ=ƒ(H),为非线性函数。
所以如图1所示,B与H也是非线性关系。
铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H与磁感应强度B也随之变大,其B-H 变化曲线如图1所示。
但当H增加到一定值(Hs)后,B几乎不再随H的增加而增加,说明磁化已达饱和,从未磁化到饱和磁化的这段磁化曲线称为材料的起始磁化曲线。
如图1中的OS端曲线所示。
图1 磁化曲线和μ~H曲线2、磁滞回线当铁磁材料的磁化达到饱和之后,如果将磁化场减少,则铁磁材料内部的B和H也随之减少,但其减少的过程并不沿着磁化时的OS段退回。
从图2可知当磁化场撤消,H=0时,磁感应强度仍然保持一定数值B=Br称为剩磁(剩余磁感应强度)。
若要使被磁化的铁磁材料的磁感应强度B减少到0,必须加上一个反向磁场并逐步增大。
当铁磁材料内部反向磁场强度增加到H=Hc时(图2上的c点),磁感应强度B才是0,达到退磁。
实验6-22 铁磁材料磁滞回线和磁化曲线的测量在交通、通讯、航天、自动化仪表等领域中,大量应用各种特性的铁磁材料。
常用的铁磁材料多数是铁和其它金属元素或非金属元素组成的合金以及某些包含铁的氧化物(铁氧体)。
铁磁材料的主要特性是磁导率μ非常高,在同样的磁场强度下铁磁材料中磁感应强度要比真空或弱磁材料中的大几百至上万倍。
磁滞回线和磁化曲线表征了磁性材料的基本磁化规律,反映了磁性材料的基本磁参数,对铁磁材料的应用和研制具有重要意义。
本实验利用交变励磁电流产生磁化场对不同性能的铁磁材料进行磁化,通过单片机采集实验数据,测绘磁滞回线和磁化曲线,研究铁磁材料的磁化性质。
实验目的1、了解用示波器显示和观察动态磁滞回线的原理和方法。
2、掌握测绘铁磁材料动态磁滞回线和基本磁化曲线的原理和方法,加深对铁磁材料磁化规律的理解。
3、学会根据磁滞回线确定矫顽力Hc 、剩余磁感应强度Br 、饱和磁感应强度Bm 、磁滞损耗][BH 等磁化参数。
4、学习测量磁性材料磁导率μ的一种方法,并测绘铁磁材料的μ—H 曲线,了解铁磁材料的主要特性。
实验仪器TH —MHC 型磁滞回线实验仪,智能磁滞回线测试仪,双踪示波器等。
实验原理1、铁磁材料的磁化特性及磁导率 1)初始磁化曲线和磁滞回线研究铁磁材料的磁化规律,一般是通过测量磁化场的磁场强度H 与磁感应强度B 之间的关系来进行的。
铁磁材料的磁化过程非常复杂,B 与H 之间的关系如图1所示。
当铁磁材料从未磁化状态(H=0且B=0)开始磁化时,B 随H 的增加而非线性增加。
当H 增大到一定值Hm 后,B 增加十分缓慢或基本不再增加,这时磁化达到饱和状态,称为磁饱和。
达到磁饱和时的Hm 和Bm 分别称为饱和磁场强度和饱和磁感应强度(对应图1中Q 点)。
B ~H 曲线OabQ 称为初始磁化曲线。
当使H 从Q 点减小时,B 也随之减小,但不沿原曲线返回,而是沿另一曲线QRD 下降。
当H 逐步较小至0时,B 不为0,而是Br ,说明铁磁材料中仍然保留一定的磁性,这种现象称为磁滞效应;Br 称为剩余磁感应强度,简称剩磁。
铁磁材料的磁滞回线实验报告一、实验目的。
本实验旨在通过实验方法测量铁磁材料的磁滞回线,了解铁磁材料的磁滞特性。
二、实验原理。
磁滞回线是指在磁场的作用下,材料磁化强度随着磁场的变化而发生变化,并且在去除磁场后,材料的磁化强度不完全回到零点,形成一个闭合的回线。
铁磁材料的磁滞回线特性是其重要的磁性能指标之一。
三、实验仪器与设备。
1. 电磁铁。
2. 电源。
3. 示波器。
4. 铁磁材料样品。
四、实验步骤。
1. 将铁磁材料样品放置在电磁铁中间位置。
2. 调节电源输出电压,使电磁铁通电,产生磁场。
3. 用示波器测量铁磁材料的磁感应强度随磁场变化的曲线。
4. 逐渐减小电磁铁的电流,观察示波器上的磁滞回线变化。
五、实验数据记录与分析。
根据实验测得的数据,我们绘制了铁磁材料的磁滞回线曲线图。
从曲线图中可以清晰地看出铁磁材料的磁化特性。
在磁场强度增加时,磁感应强度随之增加,但当磁场强度减小时,磁感应强度并不完全回到零点,而是形成一个闭合的回线。
六、实验结论。
通过本次实验,我们深入了解了铁磁材料的磁滞回线特性。
磁滞回线是铁磁材料在磁化过程中产生的一种特殊现象,对于材料的磁性能有着重要的影响。
通过测量和分析磁滞回线,可以更好地了解铁磁材料的磁化特性,为材料的应用提供重要参考。
七、实验注意事项。
1. 在实验中要注意安全,避免触电和磁场对身体造成的影响。
2. 实验过程中要注意仪器的正确使用和操作方法,保证实验数据的准确性和可靠性。
八、参考文献。
1. 《材料物理学实验指导》。
2. 《磁性材料与器件》。
以上为铁磁材料的磁滞回线实验报告。
铁磁材料的磁滞回线实验报告铁磁材料的磁滞回线实验报告引言铁磁材料是一类具有磁性的材料,其在外加磁场下会表现出磁化的特性。
磁滞回线实验是研究铁磁材料磁化行为的重要实验方法之一。
本实验旨在通过测量铁磁材料在不同外加磁场下的磁化强度,绘制磁滞回线曲线,并分析其中的物理规律。
实验步骤1. 实验仪器准备:准备好铁磁材料样品、电磁铁、磁场强度计等实验仪器。
2. 样品准备:将铁磁材料样品切割成适当大小,并清洗干净,以确保测量结果准确。
3. 实验装置搭建:将电磁铁与磁场强度计固定在实验台上,保证电磁铁与磁场强度计之间的距离合适。
4. 实验参数设置:设置电磁铁的电流大小,即外加磁场的强度,记录下每次改变电流的数值。
5. 实验数据测量:在每个电流值下,使用磁场强度计测量样品的磁场强度,并记录下来。
6. 数据处理与分析:根据实验数据,绘制磁滞回线曲线,并进行进一步的分析。
实验结果与讨论根据实验所得数据,我们绘制了铁磁材料的磁滞回线曲线。
磁滞回线曲线是描述铁磁材料在外加磁场作用下磁化行为的重要指标。
磁滞回线曲线呈现出一定的特征。
首先,在磁滞回线的起始点,也就是零磁场时,材料的磁化强度为零。
随着外加磁场的增加,材料的磁化强度逐渐增加,直到达到饱和磁化强度。
此时,外加磁场再增加,材料的磁化强度不再增加,保持在饱和磁化强度的数值。
当外加磁场减小时,材料的磁化强度也会相应减小,但并不会降为零,而是保持一个残余磁化强度。
当外加磁场减小到一定程度时,材料的磁化强度会迅速减小到零,形成一个闭合的磁滞回线。
磁滞回线的形状与铁磁材料的性质密切相关。
不同的铁磁材料具有不同的磁滞回线形状,这与材料的晶体结构、磁畴结构等有关。
通过对磁滞回线的分析,可以了解铁磁材料的磁化特性以及其在实际应用中的潜在问题。
实验中还可以通过改变外加磁场的强度来观察磁滞回线的变化。
当外加磁场强度增加时,磁滞回线的面积也会增大,这表明材料的磁化能力增强。
而当外加磁场强度减小时,磁滞回线的面积也会减小,这表明材料的磁化能力减弱。
铁磁质动态磁滞回线的测试 一.实验目的1.学会如何用示波器变相地测量非电压量的方法2.了解用示波法测铁磁物质动态磁滞回线的基本原理3.了解磁性材料的特性 二.实验原理 1.铁磁质和磁滞在磁场的作用下,能发变化并能反过来影响磁场的媒质叫做磁介质,磁介质按其磁特性可分为铁磁质和非铁磁质(包括顺磁质和抗磁质)。
工艺技术上广泛应用的磁性材料主要是铁磁性材料,铁,钴,镍及其许多合金以及含铁的氧化物(铁氧体)都属于铁磁质。
磁化性能(或磁化规律)是指M 与B 之间的依从关系。
由于M U B H-=0也可以说磁化性能是指M 与H 的关系或B与H的关系。
实验易于测量B和H,所以我们用实验来研究B与H的关系。
(图8-1)是一个典型的磁化曲线,表示磁化过程中磁化强度与磁场的变化关系。
OS表示对于未磁化的样品施加磁场H,随H增加磁化强度不断增加,当H增加到HS(称为饱和磁场强度)时磁化强度达到饱和强度M S,曲线OS称为起始磁化曲线。
这条曲线的显著特点是它的非线性。
达到饱和以后,再减小磁场,磁化强度并不是可逆地沿原始的磁化曲线下降,而是沿着图中SR变化,与起始磁化曲线并不重合在R点磁场已减为零,但磁化强度并没有消失。
比较曲线OS段与SR段可知,虽然H减少时B也随时减少,但是B的减少“跟不上”H的减少,这种现象叫做磁滞(磁性滞后),B R称为剩磁。
当磁场沿相反方向增加-H C到时,磁化才变为零,H C称为矫顽力。
继续增加反向磁场到-H S可以使磁化强度将完成如图所示的回线SRCS’R’C’S,称为磁滞回线,上面的磁滞回线是令H从饱和磁化强度H S出发得到的,实际上,从起始磁化曲线上的任一点M(H M<H S)开始减少磁场强度,都可得到一个磁滞回线,对同一个铁磁质存在无数个磁滞回线,如图(8-2)所示。
但是如果从起始磁化曲线上H值大于H S的一点(如图的N点)出发,减小H时,则磁化状态将先沿起始磁化曲线退到S然后沿磁滞回线上半段到S’,再沿反向的起始磁化曲线到N’,再沿同一曲线退回S’,再沿磁滞回线下半段S’S到S,最后回到N。
实验名称用示波器观测铁磁材料的动态磁滞回线实验目的:1.了解铁磁性材料的特性,理解磁滞回线的概念及其重要性。
实验原理:铁磁性材料在磁场的作用下会发生磁化,当磁场的方向发生改变时,材料内部的磁场也会跟着发生变化,这种对磁场变化的响应就是磁滞回线。
动态磁滞回线测量是通过在交变磁场中对材料进行磁化和去磁化,观察磁能的变化,得到材料的动态磁滞回线。
在实验中,我们需要将铁磁材料放置在电磁铁中,当电磁铁通电时,材料内部会发生磁化,此时可以用示波器观察电磁铁的电流和磁场强度的变化。
通过改变电磁铁的电流方向,可以获得材料的正、反磁化过程中的电流和磁场强度的变化,从而得到材料的动态磁滞回线。
设电流的方向为i,磁场的方向为H,磁化强度的方向为M,则有:H=i*N/L (N为匝数,L为电磁铁长度)M=(N/L)*S*μ0*B (S为铁磁材料的截面积,μ0为真空磁导率,B为磁场强度)磁滞回线的求取需要通过反演法或者差分法进行处理。
实验步骤:1.将电磁铁连接上电源并通电,调节电源电压,使电流在2A左右。
2.打开示波器电源,将示波器的探头连接到电磁铁两端,并调节示波器的时间和节数以及Y轴灵敏度。
3.调整电源的极性,使电磁铁反向磁化。
4.从示波器读取动态磁滞回线的数据,使用反演法或差分法处理数据,得到磁滞回线。
5.调整电源的极性,使电磁铁沿正向磁化,重复步骤4,得到另外一半的磁滞回线。
6.将两部分磁滞回线拼接,得到完整的磁滞回线。
实验注意事项:1.在实验前充分检查电磁铁和示波器的连接,确保安全。
2.在实验时要注意调节电源电压,避免电流过大造成的伤害。
3.在拼接磁滞回线时,要注意两部分的数据点数量和数据点之间距离的一致性。
4.实验结束后要关掉电源和示波器,并注意清理现场。
实验结果分析:通过实验可以得到铁磁材料的动态磁滞回线,由此可以了解到材料在磁场作用下的特性,以及对材料的磁学性质作出相应的改进。
此外,通过磁滞回线的测量,还可以得到一些物理量的参数,如矫顽力、剩磁、饱和磁化强度等等。
动态磁滞回线实验预习题1、磁性材料的分类?什么是动态磁滞回线?2、硬磁材料的交流磁滞回线与软磁材料的交流磁滞回线有何区别?磁性材料在通讯、计算机和信息存储、电力、电子仪器、交通工具等领域有着十分广泛的应用。
磁化曲线和磁滞回线反映磁性材料在外磁场作用下的磁化特性,根据材料的不同磁特性,可以用于电动机、变压器、电感、电磁铁、永久磁铁、磁记忆元件等。
铁磁材料分为硬磁和软磁两类。
硬磁材料(如模具钢)的磁滞回线宽,剩磁和矫顽磁力较大(120-20000安/米,甚至更高),因而磁化后,它的磁感应强度能保持,适宜制作永久磁铁。
软磁材料(如铁氧体)的磁滞回线窄,矫顽磁力小(一般小于120安/米),但它的磁导率和饱和磁感应强度大,容易磁化和去磁,故常用于制造电机、变压器和电磁铁。
可见,铁磁材料的磁化曲线和磁滞回线是该材料的重要特性,也是设计电磁机构或仪表的依据之一。
动态磁滞回线是磁性材料的交流磁特性,其在工业中有重要应用,因为交流电动机、变压器的铁芯都是在交流状态下使用的。
通过实验研究这些性质不仅能掌握用示波器观察磁滞回线以及基本磁化曲线的测绘方法,而且能从理论和实际应用上加深对材料磁特性的认识。
一.实验目的1. 了解磁性材料的磁滞回线和磁化曲线的概念,加深对铁磁材料的重要物理量矫顽力、剩磁和磁导率的理解。
2. 用示波器测量软磁材料(软磁铁氧体)的磁滞回线和基本磁化曲线,求该材料的饱和磁感应强度Bm、剩磁Br和矫顽力Hc。
3. 学习示波器的X轴和Y轴用于测量交流电压时,各自分度值的校准。
4. 用示波器显示硬铁磁材料(模具钢)的交流磁滞回线,并与软磁材料进行比较。
5. 学习精确测量电阻和电容的实验方法,测量不同阻值电阻和未知电容。
6. 学习用计算机测量磁性材料动态磁滞回线和磁化曲线的方法。
(选配计算机接口后完成)二. 实验原理1、铁磁物质的磁滞现象铁磁性物质的磁化过程很复杂,这主要是由于它具有磁性的原因。
一般都是通过测量磁化场的磁场强度H 和磁感应强度B 之间关系来研究其磁化规律的。
如下图1所示,当铁磁物质中不存在磁化场时,H 和B 均为零,在H −B 图中则相当于坐标原点O 。
随着磁化场H 的增加,B 也随之增加,但两者之间不是线性关系。
当H 增加到一定值时,B 不再增加或增加的十分缓慢,这说明该物质的磁化已达到饱和状态。
Hm 和Bm 分别为饱和时的磁场强度和磁感应强度(对应于图中A 点)。
如果再使H 逐步退到零,则与此同时B 也逐渐减小。
然而,其轨迹并不沿原AO 曲线,而是沿另一曲线AR 下降到Br ,这说明当H 下降为零时,铁磁物质中仍保留一定的磁性。
将磁化场反向,再逐渐增加其强度,直到H=−Hm ,这时曲线达到A′点(即反向饱和点),然后,先使磁化场退回到H=0;再使正向磁化场逐渐增大,直到饱和值Hm 为止。
如此就得到一条与AR A′对称的曲线A′R′A ,而自A 点出发又回到A 点的轨迹为一闭合曲线,称为铁磁物质的磁滞回线,此属于饱和磁滞回线。
其中,回线和H 轴的交点Hc 和Hc′称为矫顽力,回线与B 轴的交点Br 和Br ′,称为剩余磁感应强度。
2、利用示波器观测铁磁材料动态磁滞回线 电路原理图如图2所示。
将样品制成闭合环状,其上均匀地绕以磁化线圈及副线圈。
交流电压加在磁化线圈上,线路中串联了一取样电阻,将两端的电压加到示波器的X 轴输入端上。
副线圈与电阻和电容C 串联成一回路,将电容两端的电压加到示波器的Y 轴输入端,这样的电路,在示波器上可以显示和测量铁磁材料的磁滞回线。
图2 用示波器测动态磁滞回线的电路图(图中正弦交流电源浮地)1) 磁场强度H 的测量设环状样品的平均周长为l ,磁化线圈的匝数为1N ,磁化电流为交流正弦波电流1i ,由安培回路定律,11i N Hl =,而111i R u =,所以可得111R l u N H ⋅⋅=(1) 式中,1u 为取样电阻1R 上的电压。
由公式(1)可知,在已知1R 、l 、1N 的情况下,测得1u 的值,即可用公式(1)计算磁场强度H 的值。
2.磁感应强度B 的测量设样品的截面积为S ,根据电磁感应定律,在匝数为2N 的副线圈中感生电动势2E 为 dtdBSN E 22-= (2) (2)式中,dt dB 为磁感应强度B 对时间t 的导数。
若副线圈所接回路中的电流为2i ,且电容C 上的电量为Q ,则有 CQi R E +=222 (3) 在(3)式中,考虑到副线圈匝数不太多,因此自感电动势可忽略不计。
在选定线路参数时,将2R 和C 都取较大值,使电容C 上电压降22i R CQu C 〈〈=,可忽略不计,于是(3)式可写为 222i R E = (4)把电流dtdu C dt dQi C ==2代入(4)式得 dtdu CR E C22= (5) 把(5)式代入(2)式得 Sdtdu C R dt dBSN C 22=- 在将此式两边对时间积分时,由于B 和C u 都是交变的,积分常数项为零。
于是,在不考虑负号(在这里仅仅指相位差±π)的情况下,磁感应强度BSN Cu R B C22=(6) 式中,2N 、S 、2R 和C 皆为常数,通过测量电容两端电压幅值C u 代入公式(6),可以求得材料磁感应强度B 的值。
当磁化电流一个周期,示波器的光点将描绘出一条完整的磁滞回线,以后每个周期都重复此过程,形成一个稳定的磁滞回线。
3.B 轴(Y 轴)和H 轴(X 轴)的校准虽然示波器Y 轴和X 轴上有分度值可读数,但该分度值只是一个参考值,存在一定误差,且X 轴和Y 轴增益可微调会改变分度值。
所以,用数字交流电压表测量正弦信号电压,并且将正弦波输入X 轴或Y 轴进行分度值校准是必要的。
将被测样品(铁氧体)用电阻替代,从R1上将正弦信号输入X 轴,用交流数字电压表测量R1两端电压有效U ,从而可以计算示波器该档的分度值(单位V/cm),见图3。
须注意:1、 数字电压表测量交流正弦信号,测得值为有效有效U 。
而示波器显示的该正弦信号值为正弦波电压峰-峰值峰峰-U 。
两者关系是 有效峰峰U 22U -= (7)2、用于校准示波器X 轴档和Y 轴档分度值的波形必须为正弦波,不可用失真波形。
用上述方法可以对示波器Y 轴和X 轴的分度值进行校准。
三.实验仪器及装置动态磁滞回线实验仪由可调正弦信号发生器、交流数字电压表、示波器、待测样品(软磁铁氧体、硬磁Cr12模具钢)、电阻、电容、导线等组成。
其外型 结构如图4所示。
四.实验内容(一)观察和测量软磁铁氧体的动态磁滞回线1.按图2要求接好电路图。
2.把示波器光点调至荧光屏中心。
磁化电流从零开始,逐渐增大磁化电流,直至磁滞回线上的磁感应强度B达到饱和 (即H值达到足够高时,曲线有变平坦的趋势,这一状态属饱和)。
磁化电流的频率f取50Hz左右。
示波器的X轴和Y轴分度值调整至适当位置,使磁滞回线的Bm和Hm值尽可能充满整个荧光屏,且图形为不失真的磁滞回线图形。
3.记录磁滞回线的顶点Bm和Hm,剩磁Br和矫顽力Hc三个读数值(以长度为单位),在作图纸上画出软磁铁氧体的近似磁滞回线。
4.对X轴和Y轴进行校准。
计算软磁铁氧体的饱和磁感应强度Bm和相应的磁场强度Hm、剩磁Br 和矫顽力Hc。
磁感应强度以T为单位,磁场强度以A / m为单位。
5. 测量软磁铁氧体的基本磁化曲线。
现将磁化电流慢慢从大至小,退磁至零。
从零开始,由小到大测量不同磁滞回线顶点的读数值Bi和Hi,用作图纸作铁氧体的基本磁化曲线(B−H关系)(二) 观测硬磁Cr12模具钢(铬钢)材料的动态磁滞回线1. 将样品换成Cr12模具钢硬磁材料,经退磁后,从零开始电流由小到大增加磁化电流,直至磁滞回线达到磁感应强度饱和状态。
磁化电流频率约为f=50Hz 左右。
调节X 轴和Y 轴分度值使磁滞回线为不失真图形。
(注意硬磁材料交流磁滞回线与软磁材料有明显区别,硬磁材料在磁场强度较小时,交流磁滞回线为椭圆形回线,而达到饱和时为近似矩形图形,硬磁材料的直流磁滞回线和交流磁滞回线也有很大区别。
(见参考资料7)2. 对X 轴和Y 轴进行校准,并记录相应的Bm 和Hm, Br 和Hc 值,在作图纸上近似画出硬磁材料在达到饱和状态时的交流磁滞回线。
五.实验数据处理1、软磁铁氧体基本磁化曲线与磁滞回线的测量 (1)软磁铁氧体磁滞回线测量记录Hc 在示波器上显示 cm ,Br 在示波器上显示 cm ,Bm 在示波器上显示 cm , 在作图纸上画出软磁铁氧体的近似磁滞回线。
(2)软磁铁氧体磁化曲线已知铁氧体环状样品,外径mm 0.381=Φ,内径mm 0.232=Φ,高mm l H 0.10=,平均周长m l 321108.952/)(-⨯=Φ+Φ=π,磁环截面积262110752/)(m l S H -⨯=⋅Φ-Φ=。
注意由于基本磁化曲线各段的斜率并不相同,一条曲线至少20余个实验数据点,实验结果如表1所示。
(本示波器1div=1 cm ,估读至1/4小格,即0.05cm表1 软磁铁氧体基本磁化曲线的测量根据记录数据可以描画出样品的磁化曲线(坐标值作图):2、硬磁铁氧体基本磁化曲线与磁滞回线的测量(1)硬磁铁氧体磁滞回线测量记录Hc在示波器上显示 cm,Br在示波器上显示 cm,Bm在示波器上显示 cm,在作图纸上画出软磁铁氧体的近似磁滞回线。
(2)硬磁铁氧体磁化曲线表2 硬磁铁氧体基本磁化曲线的测量根据记录数据可以描画出样品的磁化曲线(坐标值作图):六、思考题:1. 在测量H−B曲线过程,为何不能改变X轴和Y轴的分度值?2. 示波器显示的正弦波电压值与交流电压表显示的电压值有何区别?两者之间如何换算?。