高中物理二轮复习 (1)
- 格式:doc
- 大小:350.50 KB
- 文档页数:8
高三物理二轮复习方法有什么(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高三物理二轮复习方法有什么高三第一轮复习以后,同学们对教材内容,进行了查漏补缺,扫除了知识结构中,理解上的障碍。
高中物理二轮的复习重点高中物理二轮的复习重点总结高考物理二轮复习重点是重新认识整体高度学习的知识,抓住重点,了解知识之间的纵横联系,形成知识结构。
认真对待各个阶段性考试。
以下是关于高中物理二轮的复习重点总结的相关内容,供大家参考!高中物理二轮的复习重点总结一、力学部分力学从总体上可分为运动学和动力学两大部分,静力学只是运动学中当速度为零时的特殊情况。
运动学所研究的是物体的运动状态,描述的物理现象是:物体的平衡、直线运动、曲线运动、振动和波、反冲运动、碰撞等。
而动力学所研究的则是改变物体运动状态的原因。
因此想要把力学问题学好,就要深刻理解力、速度、加速度、功、功率、能量、动量、冲量等重要概念;熟练掌握力学中的重要规律;加强思维方法训练,例如合成与分解法、图像法、整体法、隔离法等等。
二、电磁学部分电磁学部分比较抽象,虽然源于生活,但有许多概念是抽象出的理想模型,因此做好类比工作对概念的掌握很有帮助,例如用水势类比电势。
同时对图像要有深刻的理解,对比理解也很不错,如电场线与磁场线,电场线与等势线,安培定则与左手定则等。
同时也可以归纳基本模型,以不变应万变。
三、其他部分热光原是非重点知识,最重要的是识记和理解,体会不同说法中的细微差别。
高中物理怎么学才能更快提分1、重视预习。
高中物理想要提升成绩,想学好物理一定要养成提前预习的习惯,每次在上课之前一定要认认真真的预习,这样才可以知道哪里是自己不懂的知识点,等到课堂中老师上课的时候重点听这一部分,理解的好成绩提升自然也比较快。
2、高中物理学习课后的复习是很重要的,在课堂上听懂是一回事,如果不及时复习会很快遗忘,最好把老师上课教的例题自己给做一遍,这样才是掌握了上课老师所教的知识点,再遇到同类型的题才能答对,对成绩提升很有帮助。
3、要养成记录错题的习惯,这是学好每门课都必须要做的,高中物理也不例外。
错题肯定是我们没有学好的地方,常把错题拿出来看看,在错题中多总结思考,这有助于我们快速提高物理成绩。
全册教案导学案说课稿试题高三物理二轮总复习全册教学案高三物理第二轮总复习目录第1专题力与运动 (1)第2专题动量和能量 (46)第3专题圆周运动、航天与星体问题 (76)第4专题带电粒子在电场和磁场中的运动 (94)第5专题电磁感应与电路的分析 (120)第6专题振动与波、光学、执掌、原子物理 (150)第7专题高考物理实验 (177)第8专题 (202)第9专题高中物理常见的物理模型 (221)第10专题计算题的答题规范与解析技巧 (240)第1专题 力与运动知识网络考点预测本专题复习三个模块的内容:运动的描述、受力分析与平衡、牛顿运动定律的运用.运动的描述与受力分析是两个相互独立的内容,它们通过牛顿运动定律才能连成一个有机的整体.虽然运动的描述、受力平衡在近几年都有独立的命题出现在高考中但由于理综考试题量的局限以及课改趋势,独立考查前两模块的命题在2013年高考中出现的概率很小,大部分高考卷中应该都会出现同时考查三个模块知识的试题,而且占不少分值.在综合复习这三个模块内容的时候,应该把握以下几点:1.运动的描述是物理学的重要基础,其理论体系为用数学函数或图象的方法来描述、推断质点的运动规律,公式和推论众多.其中,平抛运动、追及问题、实际运动的描述应为复习的重点和难点.2.无论是平衡问题,还是动力学问题,一般都需要进行受力分析,而正交分解法、隔离法与整体法相结合是最常用、最重要的思想方法,每年高考都会对其进行考查.3.牛顿运动定律的应用是高中物理的重要内容之一,与此有关的高考试题每年都有,题型有选择题、计算题等,趋向于运用牛顿运动定律解决生产、生活和科技中的实际问题.此外,它还经常与电场、磁场结合,构成难度较大的综合性试题.一、运动的描述 要点归纳(一)匀变速直线运动的几个重要推论和解题方法1.某段时间内的平均速度等于这段时间的中间时刻的瞬时速度,即v -t =v t 2. 2.在连续相等的时间间隔T 内的位移之差Δs 为恒量,且Δs =aT 2.3.在初速度为零的匀变速直线运动中,相等的时间T 内连续通过的位移之比为:s1∶s2∶s3∶…∶s n=1∶3∶5∶…∶(2n-1)通过连续相等的位移所用的时间之比为:t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶…∶(n-n-1).4.竖直上抛运动(1)对称性:上升阶段和下落阶段具有时间和速度等方面的对称性.(2)可逆性:上升过程做匀减速运动,可逆向看做初速度为零的匀加速运动来研究.(3)整体性:整个运动过程实质上是匀变速直线运动.5.解决匀变速直线运动问题的常用方法(1)公式法灵活运用匀变速直线运动的基本公式及一些有用的推导公式直接解决.(2)比例法在初速度为零的匀加速直线运动中,其速度、位移和时间都存在一定的比例关系,灵活利用这些关系可使解题过程简化.(3)逆向过程处理法逆向过程处理法是把运动过程的“末态”作为“初态”,将物体的运动过程倒过来进行研究的方法.(4)速度图象法速度图象法是力学中一种常见的重要方法,它能够将问题中的许多关系,特别是一些隐藏关系,在图象上明显地反映出来,从而得到正确、简捷的解题方法.(二)运动的合成与分解1.小船渡河设水流的速度为v1,船的航行速度为v2,河的宽度为d.(1)过河时间t仅由v2沿垂直于河岸方向的分量v⊥决定,即t=dv⊥,与v1无关,所以当v2垂直于河岸时,渡河所用的时间最短,最短时间t min=dv2.(2)渡河的路程由小船实际运动轨迹的方向决定.当v1<v2时,最短路程s min=d;当v1>v2时,最短路程s min=v1v2 d,如图1-1 所示.图1-12.轻绳、轻杆两末端速度的关系(1)分解法把绳子(包括连杆)两端的速度都沿绳子的方向和垂直于绳子的方向分解,沿绳子方向的分运动相等(垂直方向的分运动不相关),即v 1cos θ1=v 2cos_θ2.(2)功率法通过轻绳(轻杆)连接物体时,往往力拉轻绳(轻杆)做功的功率等于轻绳(轻杆)对物体做功的功率.3.平抛运动如图1-2所示,物体从O 处以水平初速度v 0抛出,经时间t 到达P 点.图1-2(1)加速度⎩⎪⎨⎪⎧ 水平方向:a x =0竖直方向:a y=g (2)速度⎩⎪⎨⎪⎧水平方向:v x =v 0竖直方向:v y =gt合速度的大小v =v 2x +v 2y =v 20+g 2t 2设合速度的方向与水平方向的夹角为θ,有:tan θ=v y v x =gt v 0,即θ=arctan gt v 0. (3)位移⎩⎪⎨⎪⎧ 水平方向:s x =v 0t 竖直方向:s y =12gt2 设合位移的大小s =s 2x +s 2y =(v 0t )2+(12gt 2)2 合位移的方向与水平方向的夹角为α,有: tan α=s y s x =12gt 2v 0t =gt 2v 0,即α=arctan gt 2v 0要注意合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即θ≠2α,而是tan θ=2tan α.(4)时间:由s y =12gt 2得,t =2s y g,平抛物体在空中运动的时间t 只由物体抛出时离地的高度s y 决定,而与抛出时的初速度v 0无关.(5)速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(g =Δv Δt)相等,且必沿竖直方向,如图1-3所示.图1-3任意两时刻的速度与速度的变化量Δv 构成直角三角形,Δv 沿竖直方向.注意:平抛运动的速率随时间并不均匀变化,而速度随时间是均匀变化的.(6)带电粒子(只受电场力的作用)垂直进入匀强电场中的运动与平抛运动相似,出电场后做匀速直线运动,如图1-4所示.图1-4故有:y =(L ′+L 2)·tan α=(L ′+L 2)·qUL dm v 20. 热点、重点、难点(一)直线运动高考中对直线运动规律的考查一般以图象的应用或追及问题出现.这类题目侧重于考查学生应用数学知识处理物理问题的能力.对于追及问题,存在的困难在于选用哪些公式来列方程,作图求解,而熟记和运用好直线运动的重要推论往往是解决问题的捷径.●例1 如图1-5甲所示,A 、B 两辆汽车在笔直的公路上同向行驶.当B 车在A 车前s =84 m 处时,B 车的速度v B =4 m/s ,且正以a =2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车的加速度突然变为零.A 车一直以v A =20 m/s 的速度做匀速运动,从最初相距84 m 时开始计时,经过t 0=12 s 后两车相遇.问B 车加速行驶的时间是多少?图1-5甲【解析】设B 车加速行驶的时间为t ,相遇时A 车的位移为:s A =v A t 0B 车加速阶段的位移为:s B 1=v B t +12at 2 匀速阶段的速度v =v B +at ,匀速阶段的位移为:s B 2=v (t 0-t )相遇时,依题意有:s A =s B 1+s B 2+s联立以上各式得:t 2-2t 0t -2[(v B -v A )t 0+s ]a =0 将题中数据v A =20 m/s ,v B =4 m/s ,a =2 m/s 2,t 0=12 s ,代入上式有:t 2-24t +108=解得:t 1=6 s ,t 2=18 s(不合题意,舍去)因此,B 车加速行驶的时间为6 s .[答案] 6 s【点评】①出现不符合实际的解(t 2=18 s)的原因是方程“s B 2=v (t 0-t )”并不完全描述B 车的位移,还需加一定义域t ≤12 s .②解析后可以作出v A -t 、v B -t 图象加以验证.图1-5乙根据v -t 图象与t 围成的面积等于位移可得,t =12 s 时,Δs =[12×(16+4)×6+4×6] m =84 m .(二)平抛运动平抛运动在高考试题中出现的几率相当高,或出现于力学综合题中,如2008年北京、山东理综卷第24题;或出现于带电粒子在匀强电场中的偏转一类问题中,如2008年宁夏理综卷第24题、天津理综卷第23题;或出现于此知识点的单独命题中,如2009年高考福建理综卷第20题、广东物理卷第17(1)题、2008年全国理综卷Ⅰ第14题.对于这一知识点的复习,除了要熟记两垂直方向上的分速度、分位移公式外,还要特别理解和运用好速度偏转角公式、位移偏转角公式以及两偏转角的关系式(即tan θ=2tan α).●例2 图1-6甲所示,m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮.已知皮带轮的半径为r ,传送带与皮带轮间不会打滑.当m 可被水平抛出时,A 轮每秒的转数最少为( )图1-6甲A .12πg rB .g rC .grD .12πgr 【解析】解法一 m 到达皮带轮的顶端时,若m v 2r≥mg ,表示m 受到的重力小于(或等于)m 沿皮带轮表面做圆周运动的向心力,m 将离开皮带轮的外表面而做平抛运动又因为转数n =ω2π=v 2πr所以当v ≥gr ,即转数n ≥12πg r时,m 可被水平抛出,故选项A 正确. 解法二 建立如图1-6乙所示的直角坐标系.当m 到达皮带轮的顶端有一速度时,若没有皮带轮在下面,m 将做平抛运动,根据速度的大小可以作出平抛运动的轨迹.若轨迹在皮带轮的下方,说明m 将被皮带轮挡住,先沿皮带轮下滑;若轨迹在皮带轮的上方,说明m 立即离开皮带轮做平抛运动.图1-6乙又因为皮带轮圆弧在坐标系中的函数为:当y 2+x 2=r 2初速度为v 的平抛运动在坐标系中的函数为:y =r -12g (x v )2 平抛运动的轨迹在皮带轮上方的条件为:当x >0时,平抛运动的轨迹上各点与O 点间的距离大于r ,即y 2+x 2>r 即[r -12g (x v )2]2+x 2>r 解得:v ≥gr又因皮带轮的转速n 与v 的关系为:n =v 2πr 可得:当n ≥12πg r时,m 可被水平抛出. [答案] A【点评】“解法一”应用动力学的方法分析求解;“解法二”应用运动学的方法(数学方法)求解,由于加速度的定义式为a =Δv Δt ,而决定式为a =F m,故这两种方法殊途同归. ★同类拓展1 高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性.某滑雪轨道的完整结构可以简化成如图1-7所示的示意图.其中AB 段是助滑雪道,倾角α=30°,BC 段是水平起跳台,CD 段是着陆雪道,AB 段与BC 段圆滑相连,DE 段是一小段圆弧(其长度可忽略),在D 、E 两点分别与CD 、EF 相切,EF 是减速雪道,倾角θ=37°.轨道各部分与滑雪板间的动摩擦因数均为μ=0.25,图中轨道最高点A 处的起滑台距起跳台BC 的竖直高度h =10 m .A 点与C 点的水平距离L 1=20 m ,C 点与D 点的距离为32.625 m .运动员连同滑雪板的总质量m =60 kg .滑雪运动员从A 点由静止开始起滑,通过起跳台从C 点水平飞出,在落到着陆雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿着陆雪道的分速度而不弹起.除缓冲外运动员均可视为质点,设运动员在全过程中不使用雪杖助滑,忽略空气阻力的影响,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图1-7(1)运动员在C 点水平飞出时的速度大小.(2)运动员在着陆雪道CD 上的着陆位置与C 点的距离. (3)运动员滑过D 点时的速度大小.【解析】(1)滑雪运动员从A 到C 的过程中,由动能定理得:mgh -μmg cos αhsin α-μmg (L 1-h cot α)=12m v 2C解得:v C =10 m/s .(2)滑雪运动员从C 点水平飞出到落到着陆雪道的过程中做平抛运动,有: x =v C t y =12gt 2 yx=tan θ 着陆位置与C 点的距离s =x cos θ解得:s =18.75 m ,t =1.5 s .(3)着陆位置到D 点的距离s ′=13.875 m ,滑雪运动员在着陆雪道上做匀加速直线运动.把平抛运动沿雪道和垂直雪道分解,可得着落后的初速度v 0=v C cos θ+gt sin θ加速度为:mg sin θ-μmg cos θ=ma运动到D 点的速度为:v 2D =v 20+2as ′ 解得:v D =20 m/s .[答案] (1)10 m/s (2)18.75 m (3)20 m/s 互动辨析 在斜面上的平抛问题较为常见,“位移与水平面的夹角等于倾角”为着落条件.同学们还要能总结出距斜面最远的时刻以及这一距离.二、受力分析要点归纳(一)常见的五种性质的力(二)力的运算、物体的平衡1.力的合成与分解遵循力的平行四边形定则(或力的三角形定则).2.平衡状态是指物体处于匀速直线运动或静止状态,物体处于平衡状态的动力学条件是:F合=0或F x=0、F y=0、F z=0.注意:静止状态是指速度和加速度都为零的状态,如做竖直上抛运动的物体到达最高点时速度为零,但加速度等于重力加速度,不为零,因此不是平衡状态.3.平衡条件的推论(1)物体处于平衡状态时,它所受的任何一个力与它所受的其余力的合力等大、反向.(2)物体在同一平面上的三个不平行的力的作用下处于平衡状态时,这三个力必为共点力.物体在三个共点力的作用下而处于平衡状态时,表示这三个力的有向线段组成一封闭的矢量三角形,如图1-8所示.图1-84.共点力作用下物体的平衡分析热点、重点、难点(一)正交分解法、平行四边形法则的应用1.正交分解法是分析平衡状态物体受力时最常用、最主要的方法.即当F合=0时有:F x合=0,F y合=0,F z合=0.2.平行四边形法有时可巧妙用于定性分析物体受力的变化或确定相关几个力之比.●例3举重运动员在抓举比赛中为了减小杠铃上升的高度和发力,抓杠铃的两手间要有较大的距离.某运动员成功抓举杠铃时,测得两手臂间的夹角为120°,运动员的质量为75 kg,举起的杠铃的质量为125 kg,如图1-9甲所示.求该运动员每只手臂对杠铃的作用力的大小.(取g=10 m/s2)图1-9甲【分析】由手臂的肌肉、骨骼构造以及平时的用力习惯可知,伸直的手臂主要沿手臂方向发力.取手腕、手掌为研究对象,握杠的手掌对杠有竖直向上的弹力和沿杠向外的静摩擦力,其合力沿手臂方向,如图1-9乙所示.图1-9乙【解析】手臂对杠铃的作用力的方向沿手臂的方向,设该作用力的大小为F,则杠铃的受力情况如图1-9丙所示图1-9丙由平衡条件得:2F cos 60°=mg解得:F=1250 N.[答案] 1250 N●例4两个可视为质点的小球a和b,用质量可忽略的刚性细杆相连放置在一个光滑的半球面内,如图1-10甲所示.已知小球a和b的质量之比为3,细杆长度是球面半径的 2 倍.两球处于平衡状态时,细杆与水平面的夹角θ是[2008年高考·四川延考区理综卷]()图1-10甲A.45°B.30°C.22.5°D.15°【解析】解法一设细杆对两球的弹力大小为T,小球a、b的受力情况如图1-10乙所示图1-10乙其中球面对两球的弹力方向指向圆心,即有: cos α=22R R =22解得:α=45°故F N a 的方向为向上偏右,即β1=π2-45°-θ=45°-θF N b 的方向为向上偏左,即β2=π2-(45°-θ)=45°+θ两球都受到重力、细杆的弹力和球面的弹力的作用,过O 作竖直线交ab 于c 点,设球面的半径为R ,由几何关系可得:m a g Oc =F N aR m b g Oc =F N bR解得:F N a =3F N b取a 、b 及细杆组成的整体为研究对象,由平衡条件得: F N a ·sin β1=F N b ·sin β2 即 3F N b ·sin(45°-θ)=F N b ·sin(45°+θ) 解得:θ=15°.解法二 由几何关系及细杆的长度知,平衡时有: sin ∠Oab =22R R =22故∠Oab =∠Oba =45°再设两小球及细杆组成的整体重心位于c 点,由悬挂法的原理知c 点位于O 点的正下方,且ac bc =m am b= 3即R ·sin(45°-θ)∶R ·sin(45°+θ)=1∶ 3解得:θ=15°. [答案] D【点评】①利用平行四边形(三角形)定则分析物体的受力情况在各类教辅中较常见.掌握好这种方法的关键在于深刻地理解好“在力的图示中,有向线段替代了力的矢量”.②在理论上,本题也可用隔离法分析小球a 、b 的受力情况,根据正交分解法分别列平衡方程进行求解,但是求解三角函数方程组时难度很大.③解法二较简便,但确定重心的公式ac bc =m am b=3超纲.(二)带电粒子在复合场中的平衡问题 在高考试题中,也常出现带电粒子在复合场中受力平衡的物理情境,出现概率较大的是在正交的电场和磁场中的平衡问题及在电场和重力场中的平衡问题.在如图1-11所示的速度选择器中,选择的速度v =EB ;在如图1-12所示的电磁流量计中,流速v =u Bd ,流量Q =πdu 4B.图1-11 图1-12●例5 在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成α角的直线MN 运动,如图1-13所示.由此可判断下列说法正确的是( )图1-13A .如果油滴带正电,则油滴从M 点运动到N 点B .如果油滴带正电,则油滴从N 点运动到M 点C .如果电场方向水平向右,则油滴从N 点运动到M 点D .如果电场方向水平向左,则油滴从N 点运动到M 点【解析】油滴在运动过程中受到重力、电场力及洛伦兹力的作用,因洛伦兹力的方向始终与速度方向垂直,大小随速度的改变而改变,而电场力与重力的合力是恒力,所以物体做匀速直线运动;又因电场力一定在水平方向上,故洛伦兹力的方向是斜向上方的,因而当油滴带正电时,应该由M 点向N 点运动,故选项A 正确、B 错误.若电场方向水平向右,则油滴需带负电,此时斜向右上方与MN 垂直的洛伦兹力对应粒子从N 点运动到M 点,即选项C 正确.同理,电场方向水平向左时,油滴需带正电,油滴是从M 点运动到N 点的,故选项D 错误.[答案] AC 【点评】对于带电粒子在复合场中做直线运动的问题要注意受力分析.因为洛伦兹力的方向与速度的方向垂直,而且与磁场的方向、带电粒子的电性都有关,分析时更要注意.本题中重力和电场力均为恒力,要保证油滴做直线运动,两力的合力必须与洛伦兹力平衡,粒子的运动就只能是匀速直线运动.★同类拓展2 如图1-14甲所示,悬挂在O 点的一根不可伸长的绝缘细线下端挂有一个带电荷量不变的小球A .在两次实验中,均缓慢移动另一带同种电荷的小球B .当B 到达悬点O 的正下方并与A 在同一水平线上,A 处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B 的电荷量分别为q 1和q 2,θ分别为30°和45°,则q 2q 1为 [2007年高考·重庆理综卷]( )图1-14甲A.2B.3C.23D.3 3【解析】对A球进行受力分析,如图1-14 乙所示,图1-14乙由于绳子的拉力和点电荷间的斥力的合力与A球的重力平衡,故有:F电=mg tan θ,又F电=k qQ Ar2.设绳子的长度为L,则A、B两球之间的距离r=L sin θ,联立可得:q=mL2g tan θsin2θkQ A,由此可见,q与tan θsin 2θ成正比,即q2q1=tan 45°sin245°tan 30°sin230°=23,故选项C正确.[答案] C互动辨析本题为带电体在重力场和电场中的平衡问题,解题的关键在于:先根据小球的受力情况画出平衡状态下的受力分析示意图;然后根据平衡条件和几何关系列式,得出电荷量的通解表达式,进而分析求解.本题体现了新课标在知识考查中重视方法渗透的思想.三、牛顿运动定律的应用要点归纳(一)深刻理解牛顿第一、第三定律1.牛顿第一定律(惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.(1)理解要点①运动是物体的一种属性,物体的运动不需要力来维持.②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因.③牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例.牛顿第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系.(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性.①惯性是物体的固有属性,与物体的受力情况及运动状态无关.②质量是物体惯性大小的量度.2.牛顿第三定律(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,可用公式表示为F=-F′.(2)作用力与反作用力一定是同种性质的力,作用效果不能抵消.(3)牛顿第三定律的应用非常广泛,凡是涉及两个或两个以上物体的物理情境、过程的解答,往往都需要应用这一定律.(二)牛顿第二定律1.定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比.2.公式:F合=ma理解要点①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失.②方向性:a与F合都是矢量,方向严格相同.③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力.3.应用牛顿第二定律解题的一般步骤:(1)确定研究对象;(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余的力或加速度分解到两坐标轴上;(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;(5)统一单位,计算数值.热点、重点、难点一、正交分解法在动力学问题中的应用当物体受到多个方向的外力作用产生加速度时,常要用到正交分解法.1.在适当的方向建立直角坐标系,使需要分解的矢量尽可能少.2.F x合=ma x合,F y合=ma y合,F z合=ma z合.3.正交分解法对本章各类问题,甚至对整个高中物理来说都是一重要的思想方法.●例6如图1-15甲所示,在风洞实验室里,一根足够长的细杆与水平面成θ=37°固定,质量m=1 kg的小球穿在细杆上静止于细杆底端O点.现有水平向右的风力F作用于小球上,经时间t 1=2 s 后停止,小球沿细杆运动的部分v -t 图象如图1-15乙所示.试求:(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)图1-15(1)小球在0~2 s 内的加速度a 1和2~4 s 内的加速度a 2.(2)风对小球的作用力F 的大小.【解析】(1)由图象可知,在0~2 s 内小球的加速度为:a 1=v 2-v 1t 1=20 m/s 2,方向沿杆向上 在2~4 s 内小球的加速度为:a 2=v 3-v 2t 2=-10 m/s 2,负号表示方向沿杆向下. (2)有风力时的上升过程,小球的受力情况如图1-15丙所示图1-15丙在y 方向,由平衡条件得:F N1=F sin θ+mg cos θ在x 方向,由牛顿第二定律得:F cos θ-mg sin θ-μF N1=ma1停风后上升阶段,小球的受力情况如图1-15丁所示图1-15丁在y方向,由平衡条件得:F N2=mg cos θ在x方向,由牛顿第二定律得:-mg sin θ-μF N2=ma2联立以上各式可得:F=60 N.【点评】①斜面(或类斜面)问题是高中最常出现的物理模型.②正交分解法是求解高中物理题最重要的思想方法之一.二、连接体问题(整体法与隔离法)高考卷中常出现涉及两个研究对象的动力学问题,其中又包含两种情况:一是两对象的速度相同需分析它们之间的相互作用,二是两对象的加速度不同需分析各自的运动或受力.隔离(或与整体法相结合)的思想方法是处理这类问题的重要手段.1.整体法是指当连接体内(即系统内)各物体具有相同的加速度时,可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,运用牛顿第二定律对整体列方程求解的方法.2.隔离法是指当研究对象涉及由多个物体组成的系统时,若要求连接体内物体间的相互作用力,则应把某个物体或某几个物体从系统中隔离出来,分析其受力情况及运动情况,再利用牛顿第二定律对隔离出来的物体列式求解的方法.3.当连接体中各物体运动的加速度相同或要求合外力时,优先考虑整体法;当连接体中各物体运动的加速度不相同或要求物体间的作用力时,优先考虑隔离法.有时一个问题要两种方法结合起来使用才能解决.●例7如图1-16所示,在光滑的水平地面上有两个质量相等的物体,中间用劲度系数为k的轻质弹簧相连,在外力F1、F2的作用下运动.已知F1>F2,当运动达到稳定时,弹簧的伸长量为()图1-16A .F 1-F 2kB .F 1-F 22kC .F 1+F 22kD .F 1+F 2k【解析】取A 、B 及弹簧整体为研究对象,由牛顿第二定律得:F 1-F 2=2ma取B 为研究对象:kx -F 2=ma(或取A 为研究对象:F 1-kx =ma )可解得:x =F 1+F 22k. [答案] C【点评】①解析中的三个方程任取两个求解都可以.②当地面粗糙时,只要两物体与地面的动摩擦因数相同,则A 、B 之间的拉力与地面光滑时相同.★同类拓展3 如图1-17所示,质量为m 的小物块A 放在质量为M 的木板B 的左端,B 在水平拉力的作用下沿水平地面匀速向右滑动,且A 、B 相对静止.某时刻撤去水平拉力,经过一段时间,B 在地面上滑行了一段距离x ,A 在B 上相对于B 向右滑行了一段距离L (设木板B 足够长)后A 和B 都停了下来.已知A 、B 间的动摩擦因数为μ1,B 与地面间的动摩擦因数为μ2,且μ2>μ1,则x 的表达式应为( )图1-17A .x =M m LB .x =(M +m )L mC .x =μ1ML (μ2-μ1)(m +M )D .x =μ1ML (μ2+μ1)(m +M ) 【解析】设A 、B 相对静止一起向右匀速运动时的速度为v ,撤去外力后至停止的过程中,A 受到的滑动摩擦力为:f 1=μ1mg其加速度大小a 1=f 1m=μ1g B 做减速运动的加速度大小a 2=μ2(m +M )g -μ1mg M由于μ2>μ1,所以a 2>μ2g >μ1g =a 1即木板B 先停止后,A 在木板上继续做匀减速运动,且其加速度大小不变对A 应用动能定理得:-f 1(L +x )=0-12m v 2 对B 应用动能定理得:μ1mgx -μ2(m +M )gx =0-12M v 2 解得:x =μ1ML (μ2-μ1)(m +M ). [答案] C【点评】①虽然使A 产生加速度的力由B 施加,但产生的加速度a 1=μ1g 是取大地为参照系的.加速度是相对速度而言的,所以加速度一定和速度取相同的参照系,与施力物体的速度无关.②动能定理可由牛顿第二定律推导,特别对于匀变速直线运动,两表达式很容易相互转换.三、临界问题●例8 如图1-18甲所示,滑块A 置于光滑的水平面上,一细线的一端固定于倾角为45°、质量为M 的光滑楔形滑块A 的顶端P 处,细线另一端拴一质量为m 的小球B .现对滑。
2022年高考物理二轮复习电学实验复习专题1.实验:探究影响感应电流方向的因素(1)实验原理a.由电流表指针偏转方向与电流方向的关系,找出感应电流的方向。
b.通过实验,观察、分析原磁场方向和磁通量的变化,记录感应电流的方向,然后归纳出感应电流的方向与原磁场方向、原磁通量变化之间的关系。
(2)实验器材条形磁体,螺线管,电流表,导线若干,滑动变阻器,开关,干电池,电池盒。
(3)实验过程a.探究电流表指针的偏转方向和电流方向之间的关系。
实验电路如图甲、乙所示:结论:电流从哪一侧接线柱流入,指针就向哪一侧偏转,即左进左偏,右进右偏。
(指针偏转方向应由实验得出,并非所有电流表都是这样的)b.探究条形磁体插入或拔出线圈时感应电流的方向(i)按图连接电路,明确螺线管的绕线方向。
(ii)按照控制变量的方法分别进行N极(S极)向下插入线圈和N极(S极)向下时抽出线圈的实验。
(iii)观察并记录磁场方向、电流方向、磁通量大小变化情况,并将结果填入表格。
(iiii)整理器材。
(4)结果分析根据上表记录,得到下述结果:甲、乙两种情况下,磁通量都___________,感应电流的磁场方向与原磁场方向___________,阻碍磁通量的增加;丙、丁两种情况下,磁通量都___________,感应电流的磁场方向与原磁场方向___________,阻碍磁通量的减少。
实验结论:感应电流具有这样的方向,即___________总要___________引起感应电流的___________。
(5)注意事项a.确定电流方向与电流表指针偏转方向的关系时,要用试触法并注意减小电流强度,防止电流过大或通电时间过长损坏电流表。
b.电流表选用零刻度在中间的灵敏电流计。
c.实验前设计好表格,并明确线圈的绕线方向。
d.按照控制变量的思想进行实验。
e.完成一种操作后,等电流计指针回零后再进行下一步操作。
2.我们可以通过实验探究电磁感应现象中感应电流方向的决定因素和其所遵循的物理规律。
高三物理二轮复习教案5篇.教案不能面面俱到、大而全,而应该是在学科基本的知识框架基础上,对当前急需解决的问题进行研究、探索、阐述,能够体现教师对相关学科有价值的学术观点及研究心得。
这里由小编给大家分享高三物理二轮复习教案,方便大家学习。
高三物理二轮复习教案篇1一、引入新课演示实验:让物块在旋转的平台上尽可能做匀速圆周运动。
教师:物块为什么可以做匀速圆周运动?这节课我们就来研究这个问题。
(设计意图:从实验引入,激发学生的好奇心,活跃课堂气氛。
)二、新课教学向心力1.向心力的概念学生:在教师引导下对物块进行受力分析:物块受到重力、摩擦力与支持力。
教师:物块所受到的合力是什么?学生:重力与支持力相互抵消,合力就是摩擦力。
教师:这个合力具有怎样的特点?学生:思考并回答:方向指向圆周运动的圆心。
教师:得出向心力的定义:做匀速圆周运动的物体受到的指向圆心的合力。
(做好新旧知识的衔接,使概念的得出自然、流畅。
)2.感受向心力学生:学生手拉着细绳的一端,使带细绳的钢球在水平面内尽可能做匀速圆周运动。
教师:钢球在水平面内尽可能做匀速圆周运动,什么力使钢球做圆周运动?学生:对钢球进行受力分析,发现拉力使钢球做圆周运动。
(设计意图:利用常见的小实验,让学生亲身体验,增强学生对向心力的感性认识。
)教师:也就是说,钢球受到的拉力充当圆周运动的向心力。
大家动手实验并猜想:拉力的大小与什么因素有关?学生:动手体验并猜想:拉力的大小可能与钢球的质量m、线速度的v、角速度高三物理二轮复习教案篇2[教学要求]1、力的示意图2、力的分类[重点难点]1、力的分类[教学要求]1、力的示意图:(表示力的意思的图,一为逗乐,二为揭示物体名词的命名方式)用有向线段表示力的方向和作用点的图,叫做力的示意图。
(力的图示和力的示意图的区别在于,力的图示除表示力的方向和作用点外,还表示力的大小。
即力的大小、方向、作用点,正好是力的三要素。
而力的示意图中并不表示力的大小)2、力的分类(力有许多种分类方式,比如力可以分成接触力和非接触力。
模型建构能力模型建构能力是指针对物理现象抽象出其主要特征,通过类比、想象等方法建构其结构、关系等物理模型。
高考中往往结合生产生活中的实际情境来考查学生在实际问题中对研究对象、物体的状态及运动过程的模型建构能力,试题的情境和考查角度通常很新颖,对学生的综合分析和创新能力也有较高的要求。
建构对象模型(智学精选)雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关。
雨滴间无相互作用且雨滴质量不变,重力加速度为g。
(1)将雨滴看作半径为r的球体,设其竖直落向地面的过程中所受空气阻力f=kr2v2,其中v是雨滴的速度,k是比例系数。
设雨滴的密度为ρ,推导雨滴下落趋近的最大速度v m与半径r的关系式;(2)由于大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。
将雨滴简化为垂直于运动方向面积为S的圆盘,证明:圆盘以速度v下落时受到的空气阻力f∝v2(提示:设单位体积内空气分子数为n,空气分子质量为m0)。
πr3关键信息:(1)雨滴看作半径为r的球体→球体的体积V=43雨滴所受空气阻力f=kr2v2→雨滴所受阻力随速度增大而增加,雨滴所受合力逐渐减小最大速度v m→重力与阻力平衡时速度最大(2)气体分子在各方向运动的几率相等,对静止雨滴的作用力为零→各个方向上气体分子与雨滴发生碰撞(可近似为弹性碰撞)产生对应方向上的作用力,由对称性可知总作用力为零圆盘以速度v下落时受到的空气阻力f→由于各个方向的气体分子与圆盘碰撞后产生的作用力不平衡产生了空气阻力→下落速度为v时与圆盘产生作用的气体可以看成以圆盘为底面,v∆t为高的微小圆柱体内的所有气体分子单位体积内空气分子数为n,空气分子质量为m0→确定微小圆柱体中各个方向上撞击圆盘的分子的质量解题思路:解决本题关键是要清楚空气对雨点产生阻力的微观原因,并构建起空气与雨滴简化后的“圆盘”之间相互作用的模型。
(1)当雨滴的速度最大时:mg=f其中:m=ρ·43πr3,空气阻力f=kr2v m2,联立可得:v m(2)取圆盘Δt时间内扫过柱体内分子的个数为N,则:N=v·Δt·Sn由题意,由于大量气体分子在各方向运动的几率相等,若取上下左右前后6个方向,则各方向的分子各占16 N;设分子的平均速率为v0,碰撞为弹性碰撞,则:对上表面,向下运动的分子与圆盘碰撞,设向下运动的分子的总质量为m,圆盘的质量为M,根据动量守恒与动能守恒可知:mv0+Mv=m v01+Mv12012mv +12Mv 2=20112mv +2112Mv 解得:v 01=m M m M -+v 0+2Mm M+v 由于圆盘的质量远大于分子的质量,则分子碰撞后的速率:v 01=2v -v 0 对向下与圆盘碰撞的所有分子,取竖直向下为正,由动量定理知:-f 1Δt =6N·m 0(v 01-v 0)对下表面,沿前后左右方向运动的分子与盘的下表面碰撞(竖直方向上的碰撞类似于质量很大的物体撞击质量很小的静止物体),获得向下的速率,大小为2v ,在水平方向的速度不发生变化。
高中物理速度选择器和回旋加速器习题二轮复习含答案一、高中物理解题方法:速度选择器和回旋加速器1.如图所示为一速度选择器,也称为滤速器的原理图.K为电子枪,由枪中沿KA方向射出的电子,速度大小不一.当电子通过方向互相垂直的均匀电场和磁场后,只有一定速率的电子能沿直线前进,并通过小孔S.设产生匀强电场的平行板间的电压为300 V,间距为5 cm,垂直纸面的匀强磁场的磁感应强度为0.06 T,问:(1)磁场的方向应该垂直纸面向里还是垂直纸面向外?(2)速度为多大的电子才能通过小孔S?【答案】(1)磁场方向垂直纸面向里(2)1×105m/s【解析】【分析】【详解】(1)由题图可知,平行板产生的电场强度E方向向下.带负电的电子受到的静电力F E=eE,方向向上.若没有磁场,电子束将向上偏转,为了使电子能够穿过小孔S,所加的磁场施于电子束的洛伦兹力必须是向下的,根据左手定则分析得出,B的方向垂直于纸面向里.(2)能够通过小孔的电子,其速率满足evB=eE解得:v=E B又因为E=U d所以v=UBd=1×105m/s即只有速率为1×105m/s的电子才可以通过小孔S2.实验中经常利用电磁场来改变带电粒子运动的轨迹.如图所示,氕、氘、氚三种粒子同时沿直线在纸面内通过电场强度为E、磁感应强度为B的复合场区域.进入时氕与氘、氘与氚的间距均为d,射出复合场后进入y轴与MN之间(其夹角为θ)垂直于纸面向外的匀强磁场区域Ⅰ,然后均垂直于边界MN射出.虚线MN与PQ间为真空区域Ⅱ且PQ与MN平行.已知质子比荷为qm,不计重力.(1)求粒子做直线运动时的速度大小v;(2)求区域Ⅰ内磁场的磁感应强度B1;(3)若虚线PQ右侧还存在一垂直于纸面的匀强磁场区域Ⅲ,经该磁场作用后三种粒子均能汇聚于MN上的一点,求该磁场的最小面积S和同时进入复合场的氕、氚运动到汇聚点的时间差△t.【答案】(1)EB(2)mEqdB(3)(2)BdEπθ+【解析】【分析】由电场力与洛伦兹力平衡即可求出速度;由洛伦兹力提供向心力结合几何关系即可求得区域Ⅰ内磁场的磁感应强度B1;分析可得氚粒子圆周运动直径为3r,求出磁场最小面积,在结合周期公式即可求得时间差.【详解】(1)粒子运动轨迹如图所示:由电场力与洛伦兹力平衡,有:Bqv=Eq解得:E vB =(2)由洛伦兹力提供向心力,有:2 1v qB v mr=由几何关系得:r=d解得:1mEBqdB=(3)分析可得氚粒子圆周运动直径为3r,磁场最小面积为:22 13222r r Sπ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭解得:S=πd2由题意得:B 2=2B 1由2rT vπ= 可得:2m T qB π=由轨迹可知:△t 1=(3T 1﹣T 1)2θπ, 其中112mT qB π= △t 2=12(3T 2﹣T 2)其中222m T qB π=解得:△t =△t 1+△t 2=()()122m dBqB Eθπθπ++=【点睛】本题考查带电粒子在电磁场中的运动,分析清楚粒子运动过程是解题的关键,注意在磁场中的运动要注意几何关系的应用.3.1897年,汤姆孙根据阴极射线在电场和磁场中的偏转情况断定,它的本质是带负电的粒子流并求出了这种粒子的比荷,图为汤姆孙测电子比荷的装置示意图。
高考物理二轮复习策略河南师范大学附属中学 刘新选2011年4月15日第一部分 总体构想----明方向一、思想认识:一年一度的高考复习使高三的师生们身心疲惫,因为学生的使命感,老师的责任感都不容我们有半点松懈。
学习的压力使得我们有些焦躁和着急。
那么,今天我们要重新思考的是:能否从这种紧张而苦燥的备考生活中,实现华丽转身,变“书山有路勤为径,学海无涯苦作舟”为“书山有道乐为径,题海有路思作舟”;变“老师跳进题海,学生跳出题海”的殉道士为“师生畅游题海”的潜姣龙。
用三句话概括就是:兴趣决定态度;思考决定行动;细节决定位次。
二、高端定位:1.目标高远,方向明确。
在机会面前,普通人放弃机会,优秀人抓住机会,杰出人创造机会;学习上,要我学,我要学,要学我;在大学面前,人找大学,大学找人,大学拿钱找人;我们不作磨道里的驴,要做志在千里的良驹;立志让你的老爹当中国人的好儿子,日本人的爸爸,当美国人的爷爷;让你的老师成为日本人的师傅,美国人的师祖。
2.分解任务,层层递进。
第一轮复习的任务主要是巩固“三基”(基本知识、基本能力----画师、基本方法----画匠),第二轮复习的任务是重组知识,专题训练,查缺补漏,完善体系,第三轮复习任务是提炼升华,迁移运用,全面培能,即主要任务是提高应试能力。
3.化技为道,成竹在胸。
只要我们掌握了物理学习的基本思想,再辅之以相应的方法,老师和学生都可以跳出题海览全局,面对书山和题海,做雄鹰,不做瞎猫,更不做兔子;当孙悟空,不当小毛猴,天上地下行我行。
三、备考策略:我们常有这样的感受:命题专家认为是难的题,考生从来也没有感觉到容易过;命题专家认为是中档题,考生有时还觉得难。
因此考生参加高考一定要有难的准备。
但是考生应当记住这样一条规律:“办法总比困难多”。
我认为研究考试大纲,遵循学科思想,强化“三基”能力,透析物理规律,掌握解题技术,修炼身心素质是复习备考的总策略。
因为高考每一道题都体现着命题意图,蕴含着学科思想,检验着解题能力,考量着心理素质,这就是综合能力。
专题二 一、选择题(1~6题只有一项符合题目要求,7~9题有多项符合题目要求) 1.物体a和b在同一条直线上向右运动,物体a在前且一直做匀速运动,物体b在后先做匀减速再做反方向匀加速运动,行驶中物体a和b相遇两次,用v-t图象表示两物体的速度随时间变化的关系,用x-t图象表示两物体的位移随时间变化的关系,则能正确反映物体a和物体b运动关系的图(取向右为正方向)是( )
解析: 图A中物体b的速度没有反向,A错;图B中,两物体不可能相遇,B错;图C中物体b不是先做匀减速运动再做匀加速运动,C错;图D满足题中所述运动,D对. 答案: D 2.以24 m/s的速度行驶的汽车,紧急刹车后做匀减速直线运动,其加速度大小为6 m/s2,则刹车后( ) A.汽车在第1 s内的平均速度为24 m/s B.汽车在第1 s内的平均速度为12 m/s C.汽车在前2 s内的位移为36 m D.汽车在前5 s内的位移为45 m
解析: 汽车刹车时间为t0=4 s,刹车位移为x0=2422×6 m=48 m,到第4 s末汽车已停
止,汽车在5 s内位移为48 m,D错误,根据位移x=v0t-12at2可知第1 s内的位移x1=21 m,平均速度v=21 m/s,A、B均错误;汽车在前2 s内位移为36 m,C正确. 答案: C 3.(2014·西安市质检二)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于( ) A.3μmg B.4μmg C.5μmg D.6μmg 解析: 纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m+m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确. 答案: D 4.(2014·大连市一模)在粗糙程度不变的水平面上,有一物体受到水平拉力的作用做直线运动,其位移—时间图象如图所示,则下列关于其所受水平拉力F、地面摩擦力Ff的变化图线可能正确的是( )
解析: 由图象可知:在0~t1,物体沿正向做匀速直线运动,其合力为零,即水平拉力F1与地面摩擦力Ff1等大反向,且F1沿正向、Ff1沿负向;在t1~t2,物体沿正向做匀速直线运动,其合力为零,即水平拉力F2与地面摩擦力Ff2等大反向,且F2沿正向、Ff2沿负向;在t2~t3,物体沿负向做匀速直线运动,其合力为零,即水平拉力F3与地面摩擦力Ff3
等大反向,且F3沿负向、Ff3沿正向,即水平拉力F在前两段时间内为正值,后一段时间内
为负值,选项A、B错误;地面摩擦力Ff在前两段时间内为负值,后一段时间内为正值,选项C错误,选项D正确. 答案: D 5.如图所示,沿水平面运动的小车里有用轻质细线和轻质弹簧A共同悬挂的小球,小车光滑底板上有用轻质弹簧B拴着的物块,已知悬线和轻质弹簧A与竖直方向夹角均为θ=30°,弹簧B处于压缩状态,小球和物块质量均为m,均相对小车静止,重力加速度为g,则( ) A.小车一定水平向左做匀加速运动 B.弹簧A一定处于拉伸状态
C.弹簧B的弹力大小可能为33mg D.细线拉力有可能与弹簧B的拉力相等 解析: 因弹簧B处于压缩状态,所以物块的合力一定水平向左,即小车的加速度水平向左,即小车可能向左加速,也可能向右减速,A错;当系统的加速度a=gtan θ,弹簧A不受力作用,即处于原长状态,B错;当a=gtan θ时,由牛顿第二定律知弹簧B的弹力大
小F=ma=33mg,C对;令细线对小球拉力为FT,弹簧A、B的弹力分别为F1、F2,则对小球水平方向有FTsin θ-F1sin θ=ma,对物块F2=ma,所以FT一定大于F2,D错. 答案: C 6. (2014·福建卷·15)如图,滑块以初速度v0沿表面粗糙且足够长的固定斜面,从顶端下滑,直至速度为零.对于该运动过程,若用h、x、v、a分别表示滑块的下降高度、位移、速度和加速度的大小,t表示时间,则下列图象最能正确描述这一运动规律的是( )
解析: 本题是从图象的角度,分析物体的运动情况,根据物理规律结合数学解决问题. 滑块沿斜面向下做匀减速运动,故滑块下滑过程中,速度随时间均匀变化,加速度a不变,选项C、D错误.
设斜面倾角为θ,则x=hsin θ=v0t-12at2,故h-t、x-t图象都应是开口向下的抛物线,选项A错误,选项B正确. 答案: B 7.(2014·四川卷·7)如图所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,P与定滑轮间的绳水平,t=t0时刻P离开传送带.不计定滑轮质量和摩擦,绳足够长.正确描述小物体P速度随时间变化的图象可能是( )
解析: 本题需考虑速度之间的关系及摩擦力与Q重力之间的关系,分别讨论求解. 若v1>v2,且P受到的滑动摩擦力大于Q的重力,则可能先向右匀加速,加速至v1后随传送带一起向右匀速,此过程如图B所示,故B正确.若v1>v2,且P受到的滑动摩擦力小于Q的重力,此时P一直向右减速,减速到零后反向加速.若v2>v1,P受到的滑动摩擦
力向左,开始时加速度a1=FT+μmgm,当减速至速度为v1时,摩擦力反向,若有FT>μmg,
此后加速度a2=FT-μmgm,故C正确,A、D错误. 答案: BC 8.(2014·商丘模拟)如图甲所示,在光滑水平面上叠放着甲、乙两物体.现对甲施加水平向右的拉力F,通过传感器可测得甲的加速度a随拉力F变化的关系如图乙所示.已知重力加速度g=10 m/s2,由图线可知( )
A.甲的质量为2 kg B.甲的质量为6 kg C.甲、乙之间的动摩擦因数是0.2 D.甲、乙之间的动摩擦因数是0.6 解析: 由a-F图象可知,当F<48 N时,甲、乙两物体相对静止.当F>48 N,甲、乙两物体相对滑动,此过程中,F-μm甲g=m甲a,对应图线可得:m甲=ΔFΔa=6 kg,将F=60 N,a=8 m/s2,代入上式可得μ=0.2,B、C正确. 答案: BC 9.如图甲所示,倾角为θ的足够长的传送带以恒定的速率v0沿逆时针方向运行.t=0时,将质量m=1 kg的物体(可视为质点)轻放在传送带上,物体相对地面的v-t图象如图乙所示.设沿传送带向下为正方向,取重力加速度g=10 m/s2.则( )
A.传送带的速率v0=10 m/s B.传送带的倾角θ=30° C.物体与传送带之间的动摩擦因数μ=0.5 D.0~2.0 s摩擦力对物体做功Wf=-24 J 解析: 由v-t图象可知,物体在传送带上先以a1=10 m/s2的加速度加速运动,再以a2=2 m/s2的加速度继续加速;t=1.0 s时物体获得与传送带相同的速度v共=10 m/s,选项
A正确. 由牛顿第二定律得:mgsin θ+μmgcos θ=ma1① mgsin θ-μmgcos θ=ma2② 联立①②得:θ=37° μ=0.5 选项C对、B错. 0~2.0 s摩擦力做功W=μmgcos 37°x1=μmgcos 37°·x2 =-24 J,选项D正确. 答案: ACD 二、非选择题 10.(2014·高考冲刺卷五)2013年7月1日,宁杭高铁正式开通运行,到长三角各个城市坐火车就像乘公交一样快捷.目前我国高铁常使用自动闭塞法行车,如图所示,自动闭塞法是通过信号机将行车区间划分为若干个闭塞分区,每个闭塞分区的尾端都设有信号灯,当闭塞分区有列车B占用时信号灯显示红色(停车),后一个闭塞分区显示黄色(制动减速),其他闭塞分区显示绿色(正常运行).假设列车A制动时所受总阻力为重力的0.1倍,不考虑司机刹车的反应时间.(重力加速度g取10 m/s2) (1)如果信号系统发生故障,列车A的运行速度是30 m/s,司机看到停在路轨上的列车B才开始刹车,要使列车不发生追尾事故,则列车A司机可视距离不得小于多少? (2)如果信号系统正常,司机可视距离取(1)中列车A司机的可视距离,列车设计运行速度为252 km/h,当司机看到黄灯开始制动,到红灯处停车.每个闭塞分区多长? 解析: (1)列车紧急制动时由牛顿第二定律得:0.1mg=ma 所以加速度大小为a=0.1g=1 m/s2 如果信号系统发生故障,要使列车不发生追尾事故,则列车A司机可视距离不得小于列车A的紧急制动距离,由运动公式v=2ax1 代入数据得可视距离不得小于x1=450 m.
(2)当运行速度为v2=252 km/h=70 m/s时,紧急制动距离x2=v222a 代入数据得x2=2 450 m 信号正常,当司机看到黄灯开始制动,到红灯处停车.每个闭塞分区的长度为x2-x1
=2 450 m-450 m=2 000 m.
答案: (1)450 m (2)2 000 m 11.如图甲所示,倾角θ=37°的斜面由粗糙的AB段和光滑的BC段组成,质量m=1 kg的物体(可视为质点)在平行斜面的恒定外力F作用下由A点加速下滑,运动到B点时,力F突然反向(大小不变),其部分v-t图如图乙所示,物体滑到C点时速度恰好为零,取sin 37°=0.6,重力加速度g=10 m/s2,求:
(1)外力F的大小及物体在AB段与斜面间的动摩擦因数μ. (2)物体从A到C的平均速度大小.
解析: (1)由v-t图可知物体在AB段的加速度为a1=Δv1Δt1=10 m/s2
在BC段加速度为a2=Δv2Δt2=-2 m/s2 由牛顿第二定律知物体在AB段有F+mgsin θ-μmgcos θ=ma1