携手共进,齐创精品工程
Thank You
世界触手可及
拓展点二 平行线的判定方法的综合运用 例2 如图,∠α=∠A,∠β=∠B.证明MN与CD平行.
分析:证明MN∥CD的思路有很多. (1)∠NMD=∠α.(2)∠NMD+∠MDC=180°.(3)∠AMN=∠ADC.(4)平 行公理的推论等.同时一种思路有可能有多种变式.本题根据题目 条件和图形特点,可选择的思路是:由∠A=∠α推出AB∥DC,由 ∠β=∠B推出AB∥MN,最后根据平行公理的推论得到MN∥CD.
教材习题答案
知识点一
知识点二
知识点三
例1 如图,已知∠AED=60°,∠2=30°,EF平分∠AED,可以判断 EF∥BD吗?为什么?
分析:本题可通过证直线EF与BD的内错角∠1和∠2相等,来得出 EF∥BD的结论.
解:EF∥BD.理由如下:
∵∠AED=60°,EF平分∠AED, ∴∠FED=∠1=30°. 又∵∠2=30°, ∴∠1=∠2. ∴EF∥BD(内错角相等,两直线平行).
知识点一
知识点二
知识点三
教材新知精讲
综合知识拓展
教材习题答案
知识点二 平行线的判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线 平行.简单地说,内错角相等,两直线平行. 名师解读 符号语言为:因为∠2=∠3,所以l1∥l2(内错角相等,两直 线平行).
教材新知精讲
综合知识拓展
教材新知精讲
综合知识拓展
教材习题答案
5.解:可以根据“同旁内角互补,两直线平行”,分别量出一对同旁内 角,看它们是否互补.也可以在上面画一条截线,利用平行线的判定 方法,测出相应的角度进行判断.
6.解:a∥b,c∥d,e⊥b,e⊥a. 7.解:(1)AB∥CD(同位角相等,两直线平行);(2)AD∥BC(内错角相 等,两直线平行);(3)AD∥EF(同旁内角互补,两直线平行). 8.学生课后独立完成. 9.解:a∥b,d∥e,f∥g,a⊥d,b⊥d,a⊥e,b⊥e,g⊥h,f⊥h. 10.解:通过度量图中的∠2,∠3,∠4,∠5等于90°,都可以说明平安大 街与长安街是互相平行的. 11.解:A1B1∥AB,AA1⊥AB,A1D1⊥C1D1,AD∥BC. 12.∠1=∠3时,a∥b.根据“同位角相等,两直线平行”. ∠2+∠3=180°时,a∥b.根据“同旁内角互补,两直线平行”.