硫酸盐腐蚀对混凝土耐久性的影响学习资料
- 格式:ppt
- 大小:5.68 MB
- 文档页数:28
硫酸盐侵蚀环境因素对混凝土性能影响硫酸盐的侵蚀环境给混凝土的耐久性能带来严重的影响,在工程施工中应用的混凝土原料一般处在各种硫酸盐的环境中,如浓度、温度、干湿循环等。
基于此,本文分析了硫酸盐对混凝土结构产生腐蚀的原理,展开了抗硫酸盐腐蚀性能方面的实验,为更好地提升混凝土的性能打下了基础。
标签:硫酸盐;侵蚀环境;混凝土;性能影响;研究硫酸盐的侵蚀主要指在硫酸盐如硫酸钙、硫酸钠、硫酸镁等侵入水泥的混凝土时,会和水泥里的氢氧化钙与水化铝酸钙生成化学反应,而且因为氢氧化钙的浓度逐渐下降,导致水化矿物发生分解,进而生成硫铝酸钙和石膏,使体积变大,混凝土瓦解。
1、硫酸盐侵蚀对混凝土构造的腐蚀原理分析1.1硫酸钠对混凝土的侵蚀原理硫酸钠最先侵蚀的是Na2S04;和水泥的水化产物Ca(OH)发生化学反应,生成石膏(CaS042H20),再和单硫式的硫铝酸钙与含铝的胶体发生化学反应并生成次生钙矾石,因为钙矾石带有较强的膨胀性,因此会导致混凝土表面产生较大的裂痕。
其化学反应式见下:Ca(OH)2+Na2S04 ·10H2O CaSO4 ·2H2O + 2NaOH+8H2O2(3Cao·Al2O3·12H2O)+ 3(Na2SO4·10 H2O)3CaO·Al2O3·3CaSO4·32 H2O + 2Al(OH)3+6NaOH+16H2O硫酸钙只会和水化的铝酸钙发生化学反应,生成硫铝酸钙。
若侵蚀溶液里的S042-浓度超过1000mg/L的时候,水泥石的毛细孔如果被饱和的石灰溶液填满,既会生成钙矾石,又会在水泥石中析出二水石膏的结晶。
从氢氧化钙变化成石膏,体积会扩大到原来的二倍,导致混凝土由于内应力太大而膨胀。
石膏膨胀破坏的特征是试件没有产生粗大的裂纹,但是全体溃散。
1.2硫酸镁对混凝土的侵蚀原理硫酸镁除了可以侵害水化的铝酸钙与氢氧化钙,还可以与水化的硅酸钙发生化学反应,其化学反应式为:3CaO·2SiO2·aq + MgS04 · 7H2O CaSO4·2H2O+Mg (OH)2+SiO2·aq上面的化学式生成的Mg(0H)2和NaOH不一样,其溶解度较低(0.01g/L),而Ca(OH)2为1.37g/L,饱和溶液的PH值为10.5,而Ca(OH)2为12.4 ,NaOH为13.5,在这种情况下,钙矾石与C-S-H都是很不稳定的,较低PH值的环境下会产生下面的结果:一是不会生成次生钙矾石;二是因为镁离子与钙离子带有相同的化合价与大小相等的半径,因此二者可以很好地结合在一起,所以MgS04极易和C-S-H发生反应,并生成石膏、硅胶、氢氧化镁,这种胶体比C-S-H 的胶体粘性小;三是为强化本身的稳定性能,C-S-H胶体会继续释放石灰以增大PH值,然而,释放的石灰未达到增加PH值的效果,而是继续和MgS04发生反应,生成更多CaSO4·2H2O 与Mg(OH)2,在C-S-H胶体内石灰析出与胶性的不断下降,胶体内的石膏与Mg(OH)2会再次发生硅胶和Mg(OH)2反应,生成水化硅酸镁(M-S-H )。
混凝土抗硫酸盐侵蚀研究作者摘要:本文介绍了混凝土硫酸盐侵蚀破坏的机理和分类以及混凝土硫酸盐侵蚀的影响因素。
主要综合说明了5种判断硫酸盐侵蚀混凝土的检验方法:快速法;膨胀法;干湿循环法I;干湿循环法II;氯离子渗透试验。
提出了4种改善方法:合理选择水泥及掺合料品种;提高混凝土密实性;采用高压蒸汽养护;增设必要的保护层。
Summary:This paper introduces the mechanism and classification of erosion of concrete sulfate and influence factors of concrete sulfate attack.5 methods for the inspection of sulfate attack concrete are described:Express method;Plavini;dry wet cycling method I;Dry wet cycling method II;Chloride ion penetration test.4 improvement methods are proposed:Reasonable selection of varieties of cement and admixture;Improve the density of concrete;High pressure steam curing;Add the necessary protective layer.关键词:硫酸盐侵蚀混凝土改善方法影响因素Key word: Sulfate attack Concrete Improvement method Influential factors一、研究背景自混凝土产生以来,就以其原材料来源广泛、强度高、可塑性好、成本低等优点被普遍应用在房建工程、桥梁工程、还有水利及其它工程中,随着社会的发展和科学技术的进步,环境污染也成为了人类面临的一大重要问题,在空气和水中都产生了大量的腐蚀性的物质,给混凝土结构的使用寿命带来了严峻的考验。
混凝土施工中混凝土抗硫酸盐侵蚀性能的质量验收和规范混凝土是一种常见而重要的建筑材料,用于各种工程中,如房屋、桥梁、道路等。
在某些环境条件下,如工业区、化学厂等,混凝土会受到硫酸盐侵蚀的影响,导致混凝土的强度和耐久性下降。
因此,在混凝土施工中,对混凝土抗硫酸盐侵蚀性能进行质量验收和规范是非常重要的。
一、混凝土抗硫酸盐侵蚀性能的定义和评价方法混凝土抗硫酸盐侵蚀性能指的是混凝土在硫酸盐侵蚀环境下的稳定性和耐久性。
常用的评价方法包括试块浸泡法、试块悬挂法和试块浸泡干燥法。
通过浸泡试验可以评估混凝土在硫酸盐侵蚀环境中的性能,并根据评价结果确定混凝土的合格程度。
二、混凝土抗硫酸盐侵蚀性能的质量验收标准混凝土抗硫酸盐侵蚀性能的质量验收标准应符合相关的国家和地方标准。
例如,根据《混凝土结构工程施工质量验收规范》,混凝土在硫酸盐侵蚀环境下的性能应满足一定的要求,如抗硫酸根离子的渗透深度限制、抗压强度损失和体积损失的限值等。
严格按照质量验收标准进行检测和评估,可以确保混凝土在硫酸盐侵蚀环境中的性能达到要求。
三、混凝土抗硫酸盐侵蚀性能的规范要求为保证混凝土的抗硫酸盐侵蚀性能,施工过程中应注意以下规范要求:1. 混凝土配合比的设计:混凝土配合比应合理设计,控制水胶比、水灰比和使用掺合料等,以提高混凝土的抗硫酸盐侵蚀性能。
2. 硬化养护措施:严格按照养护规范,对混凝土进行充分的湿养护,以确保混凝土的早期强度发展和良好的硬化效果。
3. 混凝土施工过程中的控制措施:在施工过程中,要注意控制混凝土浇筑的温度、湿度和坍落度等,以保证混凝土的质量和稳定性。
4. 使用抗硫酸盐掺合料:在混凝土配合中加入一定比例的抗硫酸盐掺合料,可以有效提高混凝土的抗硫酸盐侵蚀性能。
5. 定期检测和维护:在混凝土施工完毕后,应定期检测混凝土的抗硫酸盐侵蚀性能,并根据检测结果进行相应的维护和修复工作,以确保混凝土的长期稳定性和耐久性。
综上所述,混凝土施工中混凝土抗硫酸盐侵蚀性能的质量验收和规范是非常重要的。
混凝土中硫酸盐侵蚀原理与防治方法标题:混凝土中硫酸盐侵蚀原理与防治方法引言:混凝土是现代建筑中广泛使用的重要建材之一,但在某些情况下,混凝土表面会遭受到硫酸盐的侵蚀,导致结构衰败和损害。
本文将深入探讨混凝土中硫酸盐侵蚀的原理,以及一些有效的防治方法。
一、硫酸盐侵蚀的原理1. 混凝土中的硫酸盐来源1.1 大气中的硫化物:例如来自大气污染物的二氧化硫,会在空气中与水反应生成硫酸根离子。
1.2 地下水和土壤中的硫酸盐:地下水和土壤中的硫酸盐通常来自含有硫酸盐的酸性岩石,或者是由人为原因引起的,如污水渗入土壤或含硫污染物的倾倒。
2. 硫酸盐对混凝土的侵蚀作用2.1 硫酸盐与水反应:硫酸盐在混凝土中与水反应生成硫酸,使混凝土中pH值下降,同时释放出大量的氢离子。
2.2 硫酸离子的腐蚀作用:硫酸离子对混凝土中的水化产物、钙铝硅酸盐胶凝材料和钢筋等产生腐蚀作用,导致混凝土的体积膨胀、强度降低,进而引发开裂、剥落和结构损坏。
二、混凝土中硫酸盐侵蚀的分类为了更好地认识混凝土中硫酸盐侵蚀的特点和严重程度,我们将其分为三个等级:1. 轻度硫酸盐侵蚀:混凝土表面出现轻微腐蚀现象,无明显损害。
2. 中度硫酸盐侵蚀:混凝土表面出现腐蚀现象,开裂和表面剥落明显,并且强度降低。
3. 重度硫酸盐侵蚀:混凝土表面严重腐蚀,大面积剥落和破坏,失去正常的结构强度。
三、混凝土中硫酸盐侵蚀的防治方法1. 选用合适的混凝土配方:在混凝土原材料中添加硫酸盐抑制剂,合理调整水灰比和骨料的优选,以提高混凝土的抗硫酸盐侵蚀性能。
2. 表面保护措施:2.1 表面涂层:使用耐酸碱的涂层材料,如环氧树脂、聚氨酯等,形成一层防护膜,防止硫酸盐的进一步侵蚀。
2.2 防水材料:混凝土表面涂覆防水材料,减少水的渗透,以降低硫酸盐的侵蚀。
3. 抗渗措施:3.1 高性能混凝土:采用高抗渗混凝土,减少水分渗透,降低硫酸盐的侵蚀。
3.2 改善混凝土工艺:优化混凝土制作和施工工艺,减少混凝土产生裂缝的可能性,避免硫酸盐通过裂缝侵蚀混凝土。
大部分的土壤中含有硫酸盐,以石膏(CaSO4.2H20)的形式存在(一般以S04计含0.01%一0.05%),此含量对混凝土无害。
在正常温度下,石膏在水中的溶解度很有限。
地下水中硫酸盐浓度较高,通常是由于存在硫酸镁、硫酸钠和硫酸钾所致;农村土壤和水中常常含有硫酸馁。
用高硫煤为燃料的锅炉和化学工业的排放物中可能会含有硫酸。
沼泽、采矿坑、污水管中有机腐殖物的分解会生成H2S,H2S会由于细菌的作用转变成硫酸。
混凝土冷却塔的用水,可能会由于水的蒸发而含有高浓度的硫酸盐。
因此在自然水和工业水中,硫酸盐的侵害不容忽视。
从硫酸根的来源看,混凝土的硫酸盐侵蚀可分为内部和外部侵蚀。
内部侵蚀是由于混凝土组分本身带有的硫酸盐引起的,而外部侵蚀是环境中的硫酸盐对混凝土的侵蚀。
外部侵蚀可分为两个过程:(1)由环境溶液进入混凝土孔隙中,这是一个扩散过程,其速率决定于混凝土的抗渗性;(2)内部SO42-与其他物质的反应过程。
近年来,由于含硫酸盐外加剂及含硫酸盐集料的大量采用,内部硫酸盐侵蚀也成为研究热点。
与外部侵蚀相比,内部侵蚀的化学实质也是SO42-与水泥石矿物的反应,但由于SO42-来源不同,内部侵蚀又具有与外部侵蚀不同的特点,内部侵蚀中,母体内部的SO42-从混凝土拌和时就己存在,不经过扩散即可与水泥石中的矿物发生侵蚀反应,而SO42-的浓度随反应的进行而减少,因此侵蚀速率则随母体龄期增长而趋于降低。
本课题重点探讨由外部引起的侵蚀。
水泥混凝土受侵蚀破坏主要是水泥石的受侵蚀破坏。
在水泥侵蚀破坏诸多类型中,产生的侵蚀内因基本一致,但以外部侵蚀介质的硫酸盐,镁盐侵蚀最为严重。
所以,进行水泥混凝土的抗硫酸盐,镁盐侵蚀,对提高普通水泥混凝土的抗侵蚀研究具有代表性和普遍性。
①离子的影响Bonen和cohen[曾调查过硫酸镁溶液对水泥浆的影响,提出镁离子最初在暴露面上形成一层氢氧化镁沉淀。
因为其溶解度低,镁离子不易通过这层膜深入其内部,但应加以注意的是,氢氧化镁的形成消耗了大量的ca(oH)2,其浓度的下降使得溶液的PH值下降,为了保持稳定性,C-S-H凝胶释放出大量的到周围的溶液中,ca(oH)2来增加PH值,这最终导致C-S-H凝胶的分解,在侵蚀的高级阶段,C-S-H凝胶中的Ca2+能够完全被Mg2+完全替代,形成不具有胶结性的糊状物。
水泥砂浆抗硫酸盐腐蚀的研究摘要:作为基础设施建设的重要基础材料的水泥混凝土,在研究及设计方向已不再单纯以强度为主要标志,而是向强度及耐久性方向综合发展。
硫酸盐侵蚀是混凝土耐久性的一个重要内容,在此背景下,本文提出以掺矿粉和氟石膏的超硫水泥砂浆为研究对象,与传统硅酸盐水泥进行试验对比研究,从抗蚀系数、膨胀率指标面上分析超硫水泥的抗硫酸盐侵蚀性能,以期开发出以掺入矿物掺合料为特征的高性能水泥体系。
关键词:高性能水泥;耐久性;硫酸盐侵蚀Abstract: This paper presents the study to the ultra slag cement and fluorgypsum sulfur cement mortar, comparative study of traditional portland cement, ultra-sulfur cement resistance to sulfate corrosion coefficient, swelling index surface erosion performance in order to develop a high-performance cement system characterized by the incorporation of mineral admixtures.Key words: high-performance cement; durability; sulfate attack1 引言传统的硅酸盐水泥在生产过程中,不仅要消耗大量的资源和能源,而且会造成严重的环境污染。
要与不断扩大的工程发展规模相适应,最好大力开发以掺入矿物掺合料为特征的高性能水泥体系,以解决硅酸盐水泥生产中存在的资源、能源消耗高,有害气体排放量大以及耐久性差等问题。
2. 实验内容2.1制作水泥砂浆试件2.1.1实验原料实验材料为超硫水泥即硅酸盐水泥+矿粉+石膏配制的新型水泥,所用原料皆为正规厂家生产的合格产品。
混凝土的抗硫酸盐侵蚀混凝土是一种常见的建筑材料,被广泛应用于各种建筑和基础设施项目中。
然而,由于环境因素的影响,混凝土会受到不同程度的侵蚀,其中硫酸盐侵蚀是一种常见的问题。
本文将探讨混凝土的抗硫酸盐侵蚀能力及相关措施。
一、硫酸盐侵蚀对混凝土的影响硫酸盐侵蚀是指硫酸盐离子与水中的氢氧根离子反应生成硫酸,进而与混凝土中的水化产物发生反应,导致水化产物的破坏和结构的疏松化。
这种侵蚀作用会引起混凝土的体积膨胀、强度下降、表面剥落等现象,最终影响混凝土的使用寿命和安全性能。
二、提高混凝土的抗硫酸盐侵蚀能力的方法为了提高混凝土的抗硫酸盐侵蚀能力,可以采取以下几种方法:1. 选用优质材料混凝土的抗硫酸盐侵蚀能力与材料的质量有着密切的关系。
选择高品质的水泥、矿物掺合料和骨料,可以提高混凝土的整体性能和抗硫酸盐侵蚀能力。
此外,合理控制配合比例,确保混凝土的均匀性和致密性,也是提高抗侵蚀能力的关键。
2. 表面防护措施在混凝土表面施加防护层或使用化学表面剂等方法可以有效减轻硫酸盐对混凝土的侵蚀作用。
常用的表面防护措施包括涂覆防酸漆、喷涂防蚀液、堆浆处理等,这些方法能够形成一层保护膜,减缓硫酸盐的渗透和侵蚀,提高混凝土的抗侵蚀性能。
3. 控制环境因素控制硫酸盐侵蚀的环境因素也是保护混凝土的重要措施。
例如,在设计和施工中合理选择材料与环境的接触形式,减少硫酸盐侵蚀的机会;合理排水,避免水分和硫酸盐的积聚;加强维护和管理,及时修复损坏部位等都能够有效延长混凝土的使用寿命。
三、混凝土抗硫酸盐侵蚀能力的评价标准为了对混凝土的抗硫酸盐侵蚀能力进行评估,常常采用硫酸盐侵蚀试验来判断其耐久性。
硫酸盐侵蚀试验可以通过浸泡、喷洒或循环浸泡硫酸盐溶液来模拟实际的侵蚀环境,根据试验前后的重量损失、抗折强度变化等指标来评估混凝土的抗侵蚀性能。
四、展望随着建筑材料科学技术的不断发展,人们对混凝土抗硫酸盐侵蚀性能的要求也越来越高。
未来,我们可以通过改进混凝土配方、开发新型材料以及加强施工和维护管理等方式,来进一步提高混凝土的抗硫酸盐侵蚀能力,以确保建筑物的安全性和耐久性。
硫酸盐对混凝土影响研究现状
硫酸盐是一种常见的混凝土化学腐蚀因素,其来源主要是来自混凝土材料中的氧化硫化物或水中的含硫离子等。
硫酸盐的腐蚀作用会使得混凝土失去其原有的力学性能,从而影响混凝土结构的耐久性和使用寿命。
因此,研究硫酸盐对混凝土影响的现状和趋势是非常重要的。
目前,硫酸盐对混凝土影响的研究主要包括以下几个方面:
1.硫酸盐对混凝土抗压强度的影响:研究发现,当混凝土中含有一定量的硫酸盐时,其抗压强度会显著下降。
分析表明,硫酸盐会与混凝土中的水化产物反应并产生结晶,进而导致混凝土结构的破坏。
2.硫酸盐对混凝土微观结构的影响:硫酸盐腐蚀会引起混凝土中钙矾石、氧化铁等物质的溶解,导致混凝土中空隙和孔隙度增大,从而降低混凝土的密实性和承载能力。
3.硫酸盐对混凝土耐久性的影响:硫酸盐对混凝土耐久性的影响涉及到混凝土的长期使用寿命和结构安全。
研究表明,硫酸盐腐蚀会加速混凝土的老化速度并导致混凝土的裂缝和破坏,从而影响混凝土的使用寿命和结构安全。
4.硫酸盐对混凝土的防护方法:目前,针对硫酸盐对混凝土的腐蚀作用,研究者提出了多种防护方式和技术,例如添加防腐剂、选用具有良好抗硫酸盐性能的混凝土材料、提高混凝土密实性等。
综上,硫酸盐对混凝土的影响研究仍在不断深入,研究者们正积极探索更有效的防护方法,以提高混凝土结构的耐久性和使用寿命。