充分条件和必要条件练习题76985
- 格式:docx
- 大小:201.86 KB
- 文档页数:5
充分条件与必要条件测试题〔含答案〕姓名 分数一、选择题1.“2x =〞是“(1)(2)0x x --=〞的 〔 〕(A) 充分没必要要条件 〔B 〕必要不充分条件〔C 〕充要条件 〔D 〕非充分非必要条件2.在ABC ∆中,:,:p a b q BAC ABC >∠>∠,那么p 是q 的〔 〕 (A) 充分没必要要条件 〔B 〕必要不充分条件〔C 〕充要条件 〔D 〕非充分非必要条件3.“p 或q 是假命题〞是“非p 为真命题〞的〔 〕 A .充分而没必要要条件 B .必要而不充分条件C .充要条件D .既不充分也没必要要条件4.假设非空集合M N ≠⊂,那么“a M ∈或a N ∈〞是“a M N ∈〞的〔 〕 A .充分而没必要要条件 B .必要而不充分条件C .充要条件D .既不充分也没必要要条件B 提示:“a M ∈或a N ∈〞不必然有“a M N ∈〞。
5.对任意的实数,,a b c ,以下命题是真命题的是〔 〕 〔A 〕“ac bc >〞是“a b >〞的必要条件〔B 〕“ac bc =〞是“a b =〞的必要条件〔C 〕“ac bc <〞是“a b >〞的充分条件〔D 〕“ac bc =〞是“a b =〞的必要条件6.假设条件:14p x +≤,条件:23q x <<,那么q ⌝是p ⌝的〔 〕〔A 〕充分没必要要条件 〔B 〕必要不充分条件〔C 〕充要条件 〔D 〕非充分非必要条件,,A B C 知足A B C =,且B 不是A 的子集,那么 〔 〕A. “x C ∈〞是“x A ∈〞的充分条件但不是必要条件B. “x C ∈〞是“x A ∈〞的必要条件但不是充分条件C. “x C ∈〞是“x A ∈〞的充要条件D. “x C ∈〞既不是“x A ∈〞的充分条件也不是“x A ∈〞必要条件8.关于实数,x y ,知足:3,:2p x y q x +≠≠或1y ≠,那么p 是q 的 〔 〕(A) 充分而没必要要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也没必要要条件9.“40k -<<〞是“函数2y x kx k =--的值恒为正值〞的 〔 〕 〔A 〕充分没必要要条件 〔B 〕必要不充分条件〔C 〕充要条件 〔D 〕既不充分也没必要要条件10.条件:2p t ≠,条件2:4q t ≠,那么p 是q 的 〔 〕 〔A 〕充分没必要要条件 〔B 〕必要不充分条件〔C 〕充要条件 〔D 〕既不充分也没必要要条件11.“a =2〞是“函数f (x )=x 2+ax +1在区间[-1,+∞)上为增函数〞的 〔 〕 〔A 〕充分没必要要条件 〔B 〕必要不充分条件〔C 〕充要条件 〔D 〕既不充分也没必要要条件12.p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。
充分条件与需要条件尝试题(含问案)之阳早格格创做 班级姓名一、采用题1.“2x =”是“(1)(2)0x x --=”的 ( )(A) 充分没有需要条件 (B )需要没有充分条件(C )充要条件 (D )非充分非需要条件2.正在ABC ∆中,:,:p a b q BAC ABC >∠>∠,则p 是q 的 ( )(A) 充分没有需要条件 (B )需要没有充分条件(C )充要条件 (D )非充分非需要条件3.“p 或者q 是假命题”是“非p 为真命题”的( )A .充分而没有需要条件B .需要而没有充分条件C .充要条件D .既没有充分也没有需要条件4.若非空集中M N ≠⊂,则“a M ∈或者a N ∈”是“a M N ∈”的( ) A .充分而没有需要条件B .需要而没有充分条件C .充要条件D .既没有充分也没有需要条件B 提示:“a M ∈或者a N ∈”纷歧定有“a MN ∈”. 5.对付任性的真数,,a b c ,下列命题是真命题的是 ( )(A )“ac bc >”是“a b >”的需要条件(B )“ac bc =”是“a b =”的需要条件(C )“ac bc <”是“a b >”的充分条件(D )“ac bc =”是“a b =”的需要条件6.若条件:14p x +≤,条件:23q x <<,则q ⌝是p ⌝的()(A)充分没有需要条件(B)需要没有充分条件(C)充要条件(D)非充分非需要条件A B C谦脚A B C=,且B没有是A的子集,则(),,A. “x C∈”是“x A∈”的充分条件但是没有是需要条件B. “x C∈”是“x A∈”的需要条件但是没有是充分条件C. “x C∈”是“x A∈”的充要条件D. “x C∈”既没有是“x A∈”的充分条件也没有是“x A∈”需要条件8.对付于真数,x y,谦脚:3,:2y≠,则p是q的+≠≠或者1p x y q x()(A) 充分而没有需要条件(B) 需要而没有充分条件(C) 充分需要条件(D) 既没有充分也没有需要条件9.“40-<<”是“函数2k=--的值恒为正值”的()y x kx k(A)充分没有需要条件(B)需要没有充分条件(C)充要条件(D)既没有充分也没有需要条件10.已知条件:2q t≠,则p是q的()p t≠,条件2:4(A)充分没有需要条件(B)需要没有充分条件(C)充要条件(D)既没有充分也没有需要条件11.“a=2”是“函数f(x)=x2+ax+1正在区间[-1,+∞)上为删函数”的( )(A )充分没有需要条件(B )需要没有充分条件(C )充要条件(D )既没有充分也没有需要条件12.已知p 是r 的充分条件而没有是需要条件,q 是r 的充分条件,s 是r 的需要条件,q是s 的需要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而没有是需要条件;③r 是q 的需要条件而没有是充分条件;④s p ⌝⌝是的需要条件而没有是充分条件;⑤r 是s 的充分条件而没有是需要条件,则精确命题序号是( )(A )①③④(B )②③④(C )①②③ (D )①②④二、挖空题13.从“⇒”、“⇔”、“⇒”中选出妥当的标记举止挖空.(1)5a >2a >; (2)四边形的四边相等四边形是正圆形;(3) a b <1a b<; (4)数a 能被6整除数a 能被3整除. 14.条件“:1p x >,条件:2q x <-,则p ⌝是q ⌝的条件.15.设集中2{60},{10}A x x x B x mx =+-==+=,则B ⊂≠A 的一个充分没有需要条件是_________.16.正在下列四个论断中,精确的是__________.(挖上您认为精确的所有问案的序号)①“x≠0”是“x +|x|>0”的需要没有充分条件;②已知a ,b ∈R ,则“|a +b|=|a|+|b|”的充要条件是ab>0; ③“Δ=2b -4ac <0”是“一元二次圆程a 2x +bx +c=0无真根”的充要条件;④“x≠1”是“2x ≠1”的充分没有需要条件.三、解问题17.指出下列各组命题中,p 是q 的什么条件(充分而没有需要条件、需要而没有充分条件、充分条件、既没有充分也没有需要条件).(1):p ABC ∆有二个角相等; :q ABC ∆是正三角形;(2)p :f -x f x=1,q :y =f(x)是奇函数; 18.已知集中P ={x||x -1|>2},S ={x|2x +(a +1)x +a <0}.若“x ∈P”的充要条件是“x ∈S”,供a 的值.19.已知命题p :⎩⎨⎧ x +2≥0,x -10≤0,⌝p 是⌝q 的需要而没有充分条件,供真数m 的与值范畴是. 20.圆程2(23)10ax a x a +++-=有一个正根战一个背根的充要条件是什么?21.供证:闭于x 的圆程2x +mx +1=0有二个背真根的充要条件是m≥2.22.(1)是可存留真数m ,使得20x m +<是(3)(1)0x x -+>的充分条件?(2)是可存留真数m ,使得20x m +<是(3)(1)0x x -+>的需要条件?参照问案:一、采用题1.A 2. C 3. A 4. B 5. B 6. B 7. B 8. A9. C10. B 11. A12. D二、挖空题13.(1)⇒;(2)⇒;(3)⇒;(4)⇒; 14.充分而没有需要 15.12m =-(或者13m =-); 16. ①③ 三、解问题17.(1)p 是q 的需要没有充分条件; (2)p 是q 的充分没有需要条件. 18. a=319.m≥9. 20.01a a <>或.21.略 22.(1)2m ≥,(2)没有存留真数m 时,使20x m +<是2230x x -->的需要条件.。
充分条件与必要条件测试题(含答案)班级姓名一、选择题1.“”是“”的()(A) 充分不必要条件(B)必要不充分条件(C)充要条件(D)非充分非必要条件2.在中,,则是的()(A) 充分不必要条件(B)必要不充分条件(C)充要条件(D)非充分非必要条件3.“或是假命题”是“非为真命题”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.若非空集合,则“或”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件B提示:“或”不一定有“”。
5.对任意的实数,下列命题是真命题的是()(A)“”是“”的必要条件(B)“”是“”的必要条件(C)“”是“”的充分条件(D)“”是“”的必要条件6.若条件,条件,则是的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)非充分非必要条件7.若非空集合满足,且不是的子集,则()A. “”是“”的充分条件但不是必要条件B. “”是“”的必要条件但不是充分条件C. “”是“”的充要条件D. “”既不是“”的充分条件也不是“”必要条件8.对于实数,满足或,则是的()(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件9.“”是“函数的值恒为正值”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件10.已知条件,条件,则是的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件11.“a=2”是“函数f(x)=x2+ax+1在区间[-1,+∞)上为增函数”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件12.已知是的充分条件而不是必要条件,是的充分条件,是的必要条件,是的必要条件。
现有下列命题:①是的充要条件;②是的充分条件而不是必要条件;③是的必要条件而不是充分条件;④的必要条件而不是充分条件;⑤是的充分条件而不是必要条件,则正确命题序号是()(A)①③④ (B)②③④(C)①②③ (D)①②④二、填空题13.从“”、“”、“”中选出恰当的符号进行填空。
充分条件与必要条件测试题(含答案)姓名 分数一、选择题1.“2x =”是“(1)(2)0x x --=”的 ( )(A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件2.在ABC ∆中,:,:p a b q BAC ABC >∠>∠,则p 是q 的( ) (A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件3.“p 或q 是假命题”是“非p 为真命题”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.若非空集合M N ≠⊂,则“a M ∈或a N ∈”是“a M N ∈”的() A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件B 提示:“a M ∈或a N ∈”不一定有“a M N ∈”。
5.对任意的实数,,a b c ,下列命题是真命题的是( ) (A )“a c b c >”是“a b >”的必要条件(B )“a c b c =”是“a b =”的必要条件(C )“a c b c <”是“a b >”的充分条件(D )“a c b c =”是“a b =”的必要条件6.若条件:14p x +≤,条件:23q x <<,则q ⌝是p ⌝的( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件7.若非空集合,,A B C 满足A B C =,且B 不是A 的子集,则 ( )A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”的充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”必要条件8.对于实数,x y ,满足:3,:2p x y q x +≠≠或1y ≠,则p 是q 的 ( )(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件9.“40k -<<”是“函数2y x kx k =--的值恒为正值”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件10.已知条件:2p t ≠,条件2:4q t ≠,则p 是q 的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件11.“a =2”是“函数f (x )=x 2+ax +1在区间[-1,+∞)上为增函数”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件12.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q是s 的必要条件。
充分条件与必要条件-基础练习(一) 选择题1•设甲是乙的充分而不必要条件,丙是乙的充要条件,丁是丙的必要而 不充分条件,则丁是甲的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件2. b=c=O 是抛物线y=ax2+bx+c 经过原点的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件3. 设有非空集合A 、B 、C,若“a€A"的充要条件是“aSB 且aEC", 则 “aeir 是 “aeA” 的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件x€R, (l-|x|)(l+x)是正数的充分必要条件是C 都不是零C 中至多有一个是篆C 中只有一个是篆C 中至少有一个不是篆6.下列说法正确的是A. xM3是x>5的充分而不必要条件 4. A. <1C. x|<lxV-lD. x<l 且 xH-l5・ 三个实数a 、b 、c 不全为零的充要条件是B. X A. B.C.D. a 、b 、 a 、b 、 a 、B. xH± I 是xlHl 的充要条件c.若"Ip 今"iq,则p 是q 的充分条件D. —个四边形是矩形的充分条件是:它是平行四边形(二)填空题1. 用符号“今”与填空.2. ax2+2x+l= 0有且只有一个负的实根的充要条件是3・集合 A={x x>l}, B={x 丨 xV2},则“ xGA 或 xeB” 是“ xeACB” 的 条件• 4. 在平面宜角坐标系中,点(X 2+5X , 1 — x2)在第一象限的充要条件是(三)解答题1.指出下列各组命题中P 是q 的什么条件 ⑴P2.已知a>(b 求证J x2>a 的充要条件是1x1 > 7a-3. 关于X 的实系数一元二次方程ax2+bx+c=0有两个异号实根的充要 条件是什么为什么參考答案(一)选择题L B (提示;①甲皐乙②乙o 丙③丁M 丙-山①®③知屮=>丁山③知丁命中,故选B.2. A(1) x+y=7..x2_y2_6x+8y=7 a=0m 为有理数 q : m 为实数 C2)p ; x2-l=0 C3)p ; C4)p ; 正方形(5) q ; abHO (6) p ; 内错角相等 四边相等aHO a. b 都不为篆q : X —1=0q :两直线平行q :四边形为 q : a 、b 不都为篆 P :C, 故选B.4. D (提不:解不等式(1 —【x|(l + x)>0得xVl 且xH — 1)5. A6. B(二)填空题I- (1) =>(X" —y" —6x+8y = (x+y)(x —y) —6x+8y = 7(x —y) —6x +8y 二 x+y 二 7)(2) (ab = 0 n a = 0或b = 0 士 a = 0)2- a = 0或a=l(提示:1)3 = 0时*=— — <0: 2)aH0时,△ =4 — 4a=0> a=l,此时 x=—KO. •••a=0 或 1.3. 必要而不充分(三)解答题1. (Dp 是q 的充分而不必要条件•(2) p 是q 的必要而不充分条件•(3) p 与q 互为充要条件.(4) p 是q 的必要而不充分条件•C5)p 是q 的必要而不充分条件•(6)p 是q 的充分而不必要条件•2•证明:(此題是二次不等式的开方解法)①充分性:Vlxl>Va>0 •••lxF=lxllxl>J^lxl>J? •石,即v>a ②必要性.Vx^>a» a>0» 「•xV —石或x>石,当xV —石时•x<0,故 1x1= —X, •: —lxl< —Va.即lxl>Va ;当%>7^时,x>0,故Alxl>7a ,总之有1x1 >石3. 解:关于X 的实系数的一元二次方程ax^+bx+c-0有两个异号实根的 充要条件是 ac<0.证明2 (1)充分性:Vac<0, A —4ac>0, A A =6^—4ac自€ A o B 且疋c,即A =Bn4- 0<x<l 解:< x'+5x>0 l-x2>0OS xV —5 或 x>0 oOVxVl -l<x<lX, 1x1= X, 3. B(提示:>0, A设X], X2为原方程的两个不等实根,又山韦达定理得:= —= -^<0,从而X], Xr异号•即:acVO是关于"C a' ■X的实系数一元二次方程ax2+bx+c二0有两个异号实根的充分条件•(2)必要性;设XI,X2是关于X的实系数一元二次方程ax2+bx+c二0的两C个异号实根,则XjX, = —<0, /.ac<0.即:dcVO是关于X的实系数一■ a元二次方程ax2+bx+c二0有两个异号实根的必要条件.综合(1)(2)可得原结论成立。
充分条件与必要条件1.设x∈R,则“1<x<2”是“1<x<3”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】B【解析】“1<x<2”⇒“1<x<3”,反之不成立.所以“1<x<2”是“1<x<3”的充分不必要条件.故选B.2.(2020年佛山高一期末)“x=1”是“x2-4x+3=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】若x=1,则x2-4x+3=0,是充分条件,若x2-4x+3=0,则x =1或x=3,不是必要条件.故选A.3.(2021年荆州期末)x2<9的必要不充分条件是()A.-3≤x≤3 B.-3<x<0C.0<x≤3 D.1<x<3【答案】A【解析】x2<9即-3<x<3.因为-3<x<3能推出-3≤x≤3,而-3≤x≤3不能推出-3<x<3,所以x2<9的必要不充分条件是-3≤x≤3.4.(多选)对任意实数a,b,c,下列命题中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a+5是无理数”是“a是无理数”的充要条件C.“a>b”是“a2>b2”的充分条件D.“a<5”是“a<3”的必要条件【答案】BD【解析】因为A中“a=b”⇒“ac=bc”为真命题,但当c=0时,“ac =bc”⇒“a=b”为假命题,故“a=b”是“ac=bc”的充分不必要条件,故A为假命题;因为B中“a+5是无理数”⇒“a是无理数”为真命题,“a是无理数”⇒“a+5是无理数”也为真命题,故“a+5是无理数”是“a是无理数”的充要条件,故B为真命题;因为C中“a>b”⇒“a2>b2”为假命题,“a2>b2”⇒“a>b”也为假命题,故“a>b”是“a2>b2”的既不充分也不必要条件,故C为假命题;因为D中{a|a<5}{a|a<3},故“a<5”是“a <3”的必要条件,故D为真命题.故选BD.5.(多选)已知p是r的充分条件而不是必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件,下列命题正确的是()A.r是q的充要条件B.p是q的充分条件而不是必要条件C.r是q的必要条件而不是充分条件D.r是s的充分条件而不是必要条件.【答案】AB【解析】由已知有p⇒r,q⇒r,r⇒s,s⇒q,由此得r⇒q且q⇒r,A正确,C不正确,p⇒q,B正确,r⇒s且s⇒r,D不正确.故选AB.6.“m=9”是“m>8”的________条件,“m>8”是“m=9”的________条件(填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”).【答案】充分不必要条件必要不充分条件【解析】当m=9时,满足m>8,即充分性成立,当m=10时,满足m>8,但m=9不成立,即必要性不成立,即“m=9”是“m>8”的充分不必要条件,“m>8”是“m=9”的必要不充分条件.7.条件p:1-x<0,条件q:x>a,若p是q的充分不必要条件,则a的取值范围是________.【答案】{a|a<1}【解析】p:x>1,若p是q的充分不必要条件,则p⇒q,但q⇒/ p,即p对应集合是q对应集合的真子集,所以a<1.8.下列说法正确的是________(填序号).①“x>0”是“x>1”的必要条件;②“a3>b3”是“a>b”的必要不充分条件;③在△ABC中,“a>b”不是“A>B”的充分条件.【答案】①【解析】①中,当x>1时,有x>0,所以①正确;②中,当a>b时,a3>b3一定成立,但a3>b3也一定能推出a>b,即“a3>b3”是“a>b”的充要条件,所以②不正确;③中,当a>b时,有A>B,所以“a>b”是“A>B”的充分条件,所以③不正确.9.指出下列各命题中,p是q的什么条件,q是p的什么条件.(1)p:x2>0,q:x>0.(2)p:x+2≠y,q:(x+2)2≠y2.(3)p:a能被6整除;q:a能被3整除.(4)p:两个角不都是直角;q:两个角不相等.解:(1)p:x2>0,则x>0或x<0,q:x>0,故p是q的必要条件,q是p的充分条件.(2)p:x+2≠y,q:(x+2)2≠y2,则x+2≠y,且x+2≠-y,故p是q的必要条件,q是p的充分条件.(3)p:a能被6整除,故也能被3和2整除,q:a能被3整除,故p是q的充分条件,q 是p的必要条件.(4)p:两个角不都是直角,这两个角可以相等,q:两个角不相等,则这个角一定不都是直角,故p是q的必要条件,q是p的充分条件.B级——能力提升练10.设a ,b ∈R ,则“(a -b )a 2<0”是“a <b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】因为a 2≥0,而(a -b )a 2<0,所以a -b <0,即a <b ;由a <b ,a 2≥0,得到(a -b )a 2≤0,(a -b )a 2可以为0,所以“(a -b )a 2<0”是“a <b ”的充分不必要条件.11.已知a ,b 为实数,则“a +b >4”是“a ,b 中至少有一个大于2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】“a +b >4”⇒“a ,b 中至少有一个大于2”,反之不成立.所以“a +b >4”是“a ,b 中至少有一个大于2”的充分不必要条件.故选A .12.设p :12≤x ≤1;q :(x -a )(x -a -1)≤0.若p 是q 的充分不必要条件,则a 的取值范围是________.【答案】⎩⎨⎧⎭⎬⎫a ⎪⎪0≤a ≤12 【解析】因为q :a ≤x ≤a +1,p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ a <12,a +1≥1或⎩⎪⎨⎪⎧ a ≤12,a +1>1,解得0≤a ≤12. 13.(2020年大庆高一期中)已知p :-4<x -a <4,q :2<x <3.若q 是p 的充分条件,则实数a 的取值范围为________.【答案】{a |-1≤a ≤6} 【解析】因为p :-4<x -a <4,即a -4<x <a +4,q :2<x<3.若q 是p 的充分条件,则{x |2<x <3}⊆{x |a -4<x <a +4},则⎩⎪⎨⎪⎧a -4≤2,a +4≥3,即-1≤a ≤6.所以实数a 的取值范围为{a |-1≤a ≤6}.14.若集合A ={x |x >-2},B ={x |x ≤b ,b ∈R },试写出:(1)A ∪B =R 的一个充要条件;(2)A ∪B =R 的一个必要不充分条件;(3)A ∪B =R 的一个充分不必要条件.解:(1)集合A ={x |x >-2},B ={x |x ≤b ,b ∈R }.(1)若A ∪B =R ,则b ≥-2,故A ∪B =R 的一个充要条件是b ≥-2.(2)由(1)知A∪B=R的一个充要条件是b≥-2,所以A∪B=R的一个必要不充分条件可以是b≥-3.(3)由(1)知A∪B=R的一个充要条件是b≥-2,所以A∪B=R的一个充分不必要条件可以是b≥-1.C级——探究创新练15.已知关于x的实系数二次方程x2+ax+b=0有两个实数根α,β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件.证明:(1)充分性:由韦达定理,得|b|=|α·β|=|α|·|β|<2×2=4.设y=x2+ax+b,则y=x2+ax+b的图象是开口向上的抛物线.又|α|<2,|β|<2,所以当x=2时,y>0且当x=-2时,y>0,即有-(4+b)<2a<4+b.因为|b|<4,所以4+b>0,即2|a|<4+b.(2)必要性:令y=x2+ax+b,由2|a|<4+b,得当x=2时,y>0且当x=-2时,y>0,因为|b|<4,所以方程y=0的两根α,β同在{x|-2<x<2}内或无实根.因为α,β是方程y=0的实根,所以α,β同在{x|-2<x<2}内,即|α|<2且|β|<2.。
充分条件与必要条件测试题(含答案)姓名 分数一、选择题1.“2x =”是“(1)(2)0x x --=”的 ( )(A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件2.在ABC ∆中,:,:p a b q BAC ABC >∠>∠,则p 是q 的 ( )(A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件3.“p 或q 是假命题”是“非p 为真命题”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.若非空集合M N ≠⊂,则“a M ∈或a N ∈”是“a M N ∈”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件B 提示:“a M ∈或a N ∈”不一定有“a M N ∈”。
5.对任意的实数,,a b c ,下列命题是真命题的是 ( )(A )“ac bc >”是“a b >”的必要条件(B )“ac bc =”是“a b =”的必要条件(C )“ac bc <”是“a b >”的充分条件(D )“ac bc =”是“a b =”的必要条件6.若条件:14p x +≤,条件:23q x <<,则q ⌝是p ⌝的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件7.若非空集合,,A B C 满足A B C =,且B 不是A 的子集,则 ( )A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”的充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”必要条件8.对于实数,x y ,满足:3,:2p x y q x +≠≠或1y ≠,则p 是q 的 ( )(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件9.“40k -<<”是“函数2y x kx k =--的值恒为正值”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件10.已知条件:2p t ≠,条件2:4q t ≠,则p 是q 的 ( ) (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件11.“a =2”是“函数f (x )=x 2+ax +1在区间[-1,+∞)上为增函数”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件12.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q是s 的必要条件。
充分条件与必要条件测试题(含答案)班级 姓名一、选择题1.“”是“”的 ( )2x =(1)(2)0x x --=(A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件2.在中,,则是的 ( )ABC ∆:,:p a b q BAC ABC >∠>∠p q (A) 充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件3.“或是假命题”是“非为真命题”的( )p q p A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.若非空集合,则“或”是“”的( )M N ≠⊂a M ∈a N ∈a M N ∈ A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件B 提示:“或”不一定有“”。
a M ∈a N ∈a M N ∈ 5.对任意的实数,下列命题是真命题的是( ),,a b c (A )“”是“”的必要条件ac bc >a b >(B )“”是“”的必要条件ac bc =a b =(C )“”是“”的充分条件ac bc <a b >(D )“”是“”的必要条件ac bc =a b =6.若条件,条件,则是的( ):14p x +≤:23q x <<q ⌝p ⌝(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )非充分非必要条件7.若非空集合满足,且不是的子集,则( ),,A B C A B C = B A A. “”是“”的充分条件但不是必要条件x C ∈x A ∈B. “”是“”的必要条件但不是充分条件x C ∈x A ∈C. “”是“”的充要条件x C ∈x A ∈D. “”既不是“”的充分条件也不是“”必要条件x C ∈x A ∈x A ∈ 8.对于实数,满足或,则是的(),x y :3,:2p x y q x +≠≠1y ≠p q (A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件9.“”是“函数的值恒为正值”的 ( )40k -<<2y x kx k =-- (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件10.已知条件,条件,则是的 ( ):2p t ≠2:4q t ≠p q (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件11.“a =2”是“函数f (x )=x 2+ax +1在区间[-1,+∞)上为增函数”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件12.已知是的充分条件而不是必要条件,是的充分条件,是的必要条件,p r q r s r q 是 的必要条件。
例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ]A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔对.且,即,是的充要条件.选.D p q q p p q p q D说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[]A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔C B C B∵是成立的充要条件,∴③由①③得A C④由②④得A D.∴D是A成立的必要条件.选B.说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C ),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C ).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C ),但AB 不成立, 综上所述:“A B ”“A(B ∪C )”,而“A (B ∪C )”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p:ab =0,q :a 2+b 2=0;(2)p:xy ≥0,q :|x|+|y |=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件(2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d"是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b (逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q,qs )r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B,结合数轴,构造不等式(组),求出a .解 A ={x |2a ≤x ≤a 2+1},B ={x |(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[]A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。
例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的[ ]A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件分析利用韦达定理转换.解∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.因此选A.说明:判断命题为假命题可以通过举反例.例2 p是q的充要条件的是[] A.p:3x+2>5,q:-2x-3>-5B.p:a>2,b<2,q:a>bC.p:四边形的两条对角线互相垂直平分,q:四边形是正方形D.p:a≠0,q:关于x的方程ax=1有惟一解分析逐个验证命题是否等价.解对A.p:x>1,q:x<1,所以,p是q的既不充分也不必要条件;对B.p q但q p,p是q的充分非必要条件;对C.p q且q p,p是q的必要非充分条件;⇒⇒⇔对.且,即,是的充要条件.选.D p q q p p q p q D说明:当a=0时,ax=0有无数个解.例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的[]A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件分析通过B、C作为桥梁联系A、D.解∵A是B的充分条件,∴A B①∵D是C成立的必要条件,∴C D②⇔C B C B∵是成立的充要条件,∴③由①③得A C④由②④得A D.∴D是A成立的必要条件.选B.说明:要注意利用推出符号的传递性.例4 设命题甲为:0<x <5,命题乙为|x -2|<3,那么甲是乙的[ ]A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 分析 先解不等式再判定.解 解不等式|x -2|<3得-1<x <5.∵0<x <5-1<x <5,但-1<x <50<x <5 ∴甲是乙的充分不必要条件,选A .说明:一般情况下,如果条件甲为x ∈A,条件乙为x ∈B .当且仅当时,甲为乙的充分条件;当且仅当时,甲为乙的必要条件;A B A B ⊆⊇当且仅当A =B 时,甲为乙的充要条件. 例5 设A 、B 、C 三个集合,为使A(B ∪C ),条件A B 是[ ]A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 分析 可以结合图形分析.请同学们自己画图.∴A(B ∪C ).但是,当B =N ,C =R ,A =Z 时, 显然A(B ∪C ),但AB 不成立, 综上所述:“A B ”“A(B ∪C )”,而“A (B ∪C )”“AB ”.即“AB ”是“A (B ∪C)”的充分条件(不必要).选A .说明:画图分析时要画一般形式的图,特殊形式的图会掩盖真实情况.例6 给出下列各组条件:(1)p:ab =0,q :a 2+b 2=0;(2)p:xy ≥0,q :|x|+|y |=|x +y|;(3)p :m >0,q :方程x 2-x -m =0有实根; (4)p :|x -1|>2,q :x <-1. 其中p 是q 的充要条件的有[ ]A .1组B .2组C .3组D .4组分析 使用方程理论和不等式性质. 解 (1)p 是q 的必要条件(2)p 是q 充要条件 (3)p 是q 的充分条件(4)p 是q 的必要条件.选A .说明:ab =0指其中至少有一个为零,而a 2+b 2=0指两个都为零.例>>是>>的条件.7x 3x 3x x x 12112⎧⎨⎩+⎧⎨⎩x 269分析 将前后两个不等式组分别作等价变形,观察两者之间的关系.解>且>+>且>,但当取=,=时,>>成立,而>>不成立=与>矛盾,所以填“充分不必要”.x 3x 3x x 6x x 9x 10x 2(x 2x 3)1212121222⇒+⎧⎨⎩⎧⎨⎩x x x x x x 1212126933 说明:>>->->x 3x 3 x 30x 301212⎧⎨⎩⇔⎧⎨⎩ ⇔⎧⎨⎩⇔⎧⎨⎩(x 3)(x 3)0(x 3)(x 3)0x x 6x x 3(x x )901212121212-+->-->+>-++>这一等价变形方法有时会用得上.例8 已知真命题“a ≥b c >d ”和“a <be ≤f ”,则“c ≤d"是“e ≤f ”的________条件.分析 ∵a ≥b c >d(原命题), ∴c ≤d a <b (逆否命题). 而a <b e ≤f ,∴c ≤d e ≤f 即c ≤d 是e ≤f 的充分条件. 答 填写“充分”.说明:充分利用原命题与其逆否命题的等价性是常见的思想方法.例9 ax 2+2x +1=0至少有一个负实根的充要条件是[ ]A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0分析 此题若采用普通方法推导较为复杂,可通过选项提供的信息,用排除法解之.当a =1时,方程有负根x =-1,当a =0时,x =-.故排除、、选.12A B D C 解常规方法:当=时,=-. a 0x 12当a ≠0时1a 0ax 2x 10021a 0a 12.>,则++=至少有一个负实根<-<<≤.⇔---⇔-⇔24422aa2a 0ax 2x 100221a 21a 1a 02.<,则++=至少有一个负实根<>->-><.⇔-+-⇔⇔⇔2442aa综上所述a ≤1.即ax 2+2x +1=0至少有一个负实根的充要条件是a ≤1.说明:特殊值法、排除法都是解选择题的好方法.例10 已知p 、q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么s,r ,p 分别是q 的什么条件?分析 画出关系图1-21,观察求解.解 s 是q 的充要条件;(s r q,qs )r 是q 的充要条件;(r q ,q s r) p 是q 的必要条件;(q s r p)说明:图可以画的随意一些,关键要体现各个条件、命题之间的逻辑关系. 例11 关于x 的不等式|x |x 3(a 1)x 2(3a 1)0AB A B 1a 3a 12-≤与-+++≤的解集依次为与,问“”是“≤≤或=-”的充要条件吗?()()a a +-⊆121222分析 化简A 和B,结合数轴,构造不等式(组),求出a .解 A ={x |2a ≤x ≤a 2+1},B ={x |(x -2)[x -(3a +1)]≤0}当≤+即≥时,23a 1a 13B ={x|2≤x ≤3a +1}.A B 2a 2a +13a +11a 323a 1a 2⊆⇔⎧⎨⎩⇔≥≤≤≤当>+即<时,13B ={x|3a +1≤x ≤2}A B 2a 3a +1a +12a 1A B a 11a 3A B 1a 3a 12⊆⇔⎧⎨⎩⇔⊆⇔⊆≥≤=-.综上所述:=-或≤≤.∴“”是“≤≤或=-”的充要条件.说明:集合的包含关系、命题的真假往往与解不等式密切相关.在解题时要理清思路,表达准确,推理无误.例>,>是<的必要条件还是充分条件,还是充12 x y xy 011x y要条件?分析 将充要条件和不等式同解变形相联系.解.当<时,可得-<即< 1001111x y x y y xxy-则-><或-<>,即<<或>>,y x 0xy 0y x 0xy 0 x y xy 0x 0⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩y xy故<不能推得>且>有可能得到<<,即>且>并非<的必要条件.11011x y x y xy x yx y xy 0()x y xy 0⎧⎨⎩2x y xy 0x y x 0y 0x y x 0y 0x y xy 0.当>且>则分成两种情况讨论:>>>或><<不论哪一种情况均可化为<.∴>且>是<的充分条件.⎧⎨⎪⎩⎪⎧⎨⎪⎩⎪1111x yx y说明:分类讨论要做到不重不漏.例13 设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α,β均大于1的什么条件?分析 把充要条件和方程中根与系数的关系问题相联系,解题时需要搞清楚条件与结论分别指什么.然后再验证是还是还是.p q p q q p p q ⇒⇒⇔解据韦达定理得:=α+β,=αβ,判定的条件是:>>结论是:α>β>还要注意条件中,,需要满足大前提Δ=-≥ a b p q (p a b a 4b 0)2a b 2111⎧⎨⎩⎧⎨⎩(1)1a2b1由α>β>得=α+β>,=αβ>,1⎧⎨⎩∴q p.上述讨论可知:a>2,b>1是α>1,β>1的必要但不充分条件.说明:本题中的讨论内容在二次方程的根的分布理论中常被使用.例14 (1991年全国高考题)设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么[]A.丙是甲的充分条件,但不是甲的必要条件B.丙是甲的必要条件,但不是甲的充分条件C.丙是甲的充要条件D.丙不是甲的充分条件,也不是甲的必要条件分析1:由丙乙甲且乙丙,即丙是甲的充分不必要条件.分析2:画图观察之.答:选A.说明:抽象命题之间的逻辑关系通常靠画图观察比较方便。
高一数学充分条件与必要条件练习题一、选择题1.“x=1”是“x2−2x+1=0”的()A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件2.若不等式|x−1|<a成立的充分条件为0<x<4,则实数a的取值范围是()A. {a|a≥3}B. {a|a≥1}C. {a|a≤3}D. {a|a≤1}3.下面四个条件中,使a>b成立的充分不必要的条件是()A. a>b+1B. a>b−1C. a2>b2D. a3>b34.若x,y∈R,则x>y的一个充分不必要条件是().A. B. x2>y2 C. √x>√y D. x3>y35.条件p:x>1,y>1,条件q:x+y>2,xy>1,则条件p是条件q的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 即不充分也不必要条件6.“x=1”是“x∈{x|x≤a}”的充分条件,则实数a的取值范围为()A. a=12B. a<12C. a<1D. a≥17.已知p:x−a>0,q:x>1,若p是q的充分条件,则实数a的取值范围为()A. {a|a<1}B. {a|a≤1}C. {a|a>1}D. {a|a≥1}8.“a+b>2”的一个充分条件是()A. a>1或b>1B. a>1且b<1C. a>1且b>1D. a>1或b<19.“(x−1)(y−2)=0”是“(x−1)2+(y−2)2=0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件10.已知命题p:−1<x<2,命题q:x<−3或x≥−1,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件11.已知a,b∈R,则“a<b<0”是“1a >1b”的()A. 充分不必要条件B. 必要比充分条件C. 充要条件D. 既不充分又不必要条件12.已知a,b为实数,则“ab>b2”是“a>b>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件二、填空题13.设集合A={x|x2+x−6=0},B={x|mx+1=0},则B⫋A的一个充分而不必要条件是_______.14.如果p:x=2,q:x2=4,那么p是q的______.(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要”中选择一个填空)三、解答题15.设集合A={x|x2+2x−3<0},集合B={x||x+1|<a,a>0},命题p:x∈A,命题q:x∈B.(1)若p是q的充要条件,求正实数a的取值范围;(2)若¬q是¬p的必要不充分条件,求正实数a的取值范围.16.已知P={x|1≤x≤4},S={x|1−m≤x≤1+m}.(1)是否存在实数m,使x∈P是x∈S的充要条件?若存在,求出m的取值范围;若不存在,请说明理由.(2)是否存在实数m,使x∈P是x∈S的必要条件?若存在,求出m的取值范围;若不存在,请说明理由.17.已知P={x|−2≤x≤10},非空集合S={x|1−m≤x≤1+m}.(1)若x∈P是x∈S的必要条件,求m的取值范围;(2)是否存在实数m,使x∈P是x∈S的充要条件.答案和解析1.【答案】A本题考查了充分、必要条件的判断,考查一元二次方程问题,是简单题. 先求出方程x 2−2x +1=0的解,再和x =1比较,从而得到答案. 【解答】解:由x 2−2x +1=0,解得:x =1, 由x =1可得x 2−2x +1=0,故“x =1”是“x 2−2x +1=0”的充要条件, 故选A .2.【答案】A本题考查充分条件的判断,属于基础题.由已知中不等式|x −1|<a 成立的充分条件是0<x <4,令不等式的解集为A ,可得{x|0<x <4}⊆A ,可以构造关于a 的不等式组,解不等式组即可得到答案. 【解答】解:∵不等式|x −1|<a 成立的充分条件是0<x <4, 设不等式的解集为A ,则{x|0<x <4}⊆A , 当a ≤0时,A =⌀,不满足要求; 当a >0时,A ={x|1−a <x <1+a }, 若{x|0<x <4}⊆A ,则{1−a ⩽01+a ⩾4, 解得a ≥3. 故选A .3.【答案】A本题考查充分条件、必要条件,考查了不等式的性质,属于基础题.a >b +1⇒a >b ;通过举反例判断出a >b 推不出a >b +1,利用充分不必要条件的定义判断出选项. 【解答】解:a >b +1⇒a >b ;反之,例如a =2,b =1满足a >b ,但a =b +1,即a >b 推不出a >b +1, 故a >b +1是a >b 成立的充分不必要的条件. 易判断BCD 不符合题意. 故选:A .4.【答案】C本题考查了不等式的性质、充要条件的判定方法,考查了推理能力,属于基础题.利用不等式的性质可得:由x>y−1,x2>y2,推不出x>y,而x3>y3⇔x>y,只有√x>√y⇒x>y,反之不成立,即可判断出.【解答】解:由x>y−1,x2>y2,推不出x>y,而x3>y3⇔x>y,只有√x>√y⇒x> y,反之不成立.因此x>y的一个充分不必要条件是√x>√y.故选:C.5.【答案】A【解析】解:由x>1,y>1可得x+y>2,xy>1,取x=1.9,y=0.9.则x+y>2,xy>1成立,但x>1,y>1,则条件p是条件q的充分而不必要条件.故选:A.题目中的x和y明显有对称性,即x和y可以互换题目不变,显然前者可以推出后者,通过取特殊值可得出后者不可以推出前者.方法不好,那么这就是一道难度较大的题目,如果没发现利用特殊值法验证,则都是比较复杂的.6.【答案】D本题考查充分条件,考查推理能力,属于基础题.根据充分条件的定义,则{1}是{x|x≤a}的子集即可求解.【解答】解:由题意,{1}是{x|x≤a}的子集,∴a≥1.故选D.7.【答案】D【解答】解:已知p:x−a>0,x>a,q:x>1,若p是q的充分条件,则{x|x>a}⊆{x|x>1},即a≥1.故选D.8.【答案】C本题考查充分条件,属于基础题.由充分条件的定义对选项逐一判断即可求解.【解答】解:对于A,a>1或b>1,不能保证a+b>2成立,比如a=2,b=0;对于B,a>1且b<1,不能保证a+b>2成立,比如a=2,b=0;对于C,a>1且b>1,由不等式的性质知,a+b>2,故C正确;对于D,a>1或b<1,不能保证a+b>2成立,比如a=2,b=0.故选C.9.【答案】B本题考查了必要条件、充分条件与充要条件的判断,属于基础题.先理解“(x−1)(y−2)=0”和“(x−1)2+(y−2)2=0”的意义,即可判断.【解答】解:∵“(x−1)(y−2)=0”表示的是直线x=1,直线y=2和点(1,2),“(x−1)2+(y−2)2=0”表示的是点(1,2),∴“(x−1)(y−2)=0”是“(x−1)2+(y−2)2=0”的必要不充分条件.故选B.10.【答案】A本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键.根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:依题意可p⇒q成立,反之不成立.即p是q的充分不必要条件,故选:A.11.【答案】A本题考查充分条件、必要条件的定义,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于基础题.根据a<b<0,一定能得到1a >1b;但当1a>1b,不一定能推出a<b<0,从而得到答案.【解答】解:由a<b<0,则ab>0,两边都乘以1ab ,一定能得到1a>1b;但当1a >1b时,不一定能推出a<b<0,(如当a>0,b<0时),则“a <b <0”是“1a >1b ”的充分不必要条件, 故选A .12.【答案】B本题考查了不等式的性质,属于基础题.a >b >0⇒ab >b 2,反之不一定成立,例如:a =−2,b =−1,即可判断出关系. 【解答】解:a >b >0⇒ab >b 2,反之不一定成立,例如:a =−2,b =−1, ∴“ab >b 2”是“a >b >0”的必要不充分条件, 故选B .13.【答案】m =−12(或m =13或m =0)本题主要考查集合间的关系及充分不必要条件的判定,属于基础题.由B ⫋A ,可得B =⌀或{−3}或{2},进而求得m =−12或m =13或m =0,即可得解. 【解答】解:集合A ={x|x 2+x −6=0}={−3,2}, 若B ⫋A ,则B =⌀或{−3}或{2}, 当B =⌀时,m =0,当B ={−3}时,有−3m +1=0,解得m =13, 当B ={2}时,有2m +1=0,解得m =−12,故B ⫋A 的一个充分而不必要条件是m =−12(或m =13或m =0) 故答案为m =−12(或m =13或m =0).14.【答案】充分不必要条件【解析】解:由p :x =2能推出q :x 2=4,是充分条件, 由q :x 2=4推不出p :x =2,不是必要条件, 故答案为:充分不必要条件.根据充分必要条件的定义,分别证明充分性,必要性,从而得到答案. 本题考查了充分必要条件,是一道基础题.15.【答案】解:A ={x|x 2+2x −3<0}={x|−3<x <1},B ={x|−a −1<x <a −1}, (1)∵p 是q 的充要条件,∴A =B ,即{−a −1=−3a −1=1a >0,解得a =2.(2)∵¬q 是¬p 的必要不充分条件, ∴p 是q 的必要不充分条件, ∴集合B 是集合A 的真子集, ∴{−a −1≥−3,a −1<1,a >0或{−a −1>−3,a −1≤1,a >0,解得0<a <2,即正实数a 的取值范围是(0,2).【解析】本题考查二次不等式的求解及充分条件必要条件的判定,同时考查集合关系中参数的取值范围,属于中档题. (1)求出A ,B ,由已知得A =B 求解即可;(2)将问题转化为集合B 是集合A 的真子集求解即可.16.【答案】解:P ={x|1⩽x ⩽4}.(1)要使x ∈P 是x ∈S 的充要条件, 则P =S ,即{1−m =11+m =4 此方程组无解, 则不存在实数m ,使x ∈P 是x ∈S 的充要条件; (2)要使x ∈P 是x ∈S 的必要条件,则S ⊆P , ①当S =⌀时,1−m >1+m ,解得m <0; ②当S ≠⌀时,1−m ⩽1+m ,解得m ⩾0, 要使S ⊆P ,则有{1−m ≥11+m ≤4, 解得m ⩽0, 所以m =0,综上可得,当实数m ⩽0时,x ∈P 是x ∈S 的必要条件.【解析】【试题解析】本题主要考查充分条件与必要条件的判断、集合间的基本关系,考查了逻辑推理能力,属中档题.(1)由题意可知P =Q ,得{1−m =11+m =4,求解可得结论;(2)由题意可知S ⊆P ,分S =⌀与S ≠⌀两种情况讨论求解.17.【答案】解:(1)若x ∈P 是x ∈S 的必要条件,则x ∈S 是x ∈P 的充分条件,所以S ⊆P , 即{1−m ≤1+m 1−m ≥−21+m ≤10, 解得0≤m ≤3,所以m 的取值范围是0≤m ≤3; (2)x ∈P 是x ∈S 的充分条件时,P ⊆S , 所以{1−m ≤1+m1−m ≤−21+m ≥10,解得m ≥9;由(1)知,x ∈P 是x ∈S 的必要条件时,0≤m ≤3; 由此知x ∈P 是x ∈S 的充要条件时,m 的值不存在.【解析】【试题解析】本题考查了充分与必要条件的应用问题,是基础题. (1)由题意知S ⊆P ,列不等式求出m 的取值范围;(2)求出x ∈P 是x ∈S 的充分条件时m 的取值范围,结合(1)中m 的取值范围,由此得出结论.。
充分条件与必要条件测试题(含答案)班级姓名一、选择题1.“”是“”的()(A) 充分不必要条件(B)必要不充分条件(C)充要条件(D)非充分非必要条件2.在中,,则是的()(A) 充分不必要条件(B)必要不充分条件(C)充要条件(D)非充分非必要条件3.“或是假命题”是“非为真命题”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.若非空集合,则“或”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件B提示:“或”不一定有“”。
5.对任意的实数,下列命题是真命题的是()(A)“”是“”的必要条件(B)“”是“”的必要条件(C)“”是“”的充分条件(D)“”是“”的必要条件6.若条件,条件,则是的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)非充分非必要条件7.若非空集合满足,且不是的子集,则()A. “”是“”的充分条件但不是必要条件B. “”是“”的必要条件但不是充分条件C. “”是“”的充要条件D. “”既不是“”的充分条件也不是“”必要条件8.对于实数,满足或,则是的()(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件9.“”是“函数的值恒为正值”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件10.已知条件,条件,则是的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件11.“a=2”是“函数f(x)=x2+ax+1在区间[-1,+∞)上为增函数”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件12.已知是的充分条件而不是必要条件,是的充分条件,是的必要条件,是的必要条件。
现有下列命题:①是的充要条件;②是的充分条件而不是必要条件;③是的必要条件而不是充分条件;④的必要条件而不是充分条件;⑤是的充分条件而不是必要条件,则正确命题序号是()(A)①③④ (B)②③④(C)①②③ (D)①②④二、填空题13.从“”、“”、“”中选出恰当的符号进行填空。
1充分条件与必要条件测试题(含答案)班级 ___________ 姓名 _______________、选择题1•“ x 2 ”是“(x 1)(x 2)0 ”的(A)充分不必要条件 (C )充要条件2 .在 ABC 中,p: a b,q: BAC(A)充分不必要条件 (C )充要条件3.“p 或q 是假命题”是非p 为真命题”的A .充分而不必要条件 C .充要条件4. 若非空集合M N ,则“ aA .充分而不必要条件 C .充要条件B 提示:“ a M 或a NB .必要而不充分条件 D .既不充分也不必要条件M 或 a N ”是“ a M I N ”的B .必要而不充分条件D .既不充分也不必要条件 不一定有“ a M I N ”。
5. 对任意的实数a,b,c ,下列命题是真命题的是(A ) “ acbe ”是“ ab ”的必要条件 (B) “ ae be ”是“ a b ”的必要条件 (C) “ ae be ”是“ a b ”的充分条件 (D) “ ae be ”是“ a b ”的必要条件6. 若条件p: x 1 4,条件q:2x3,则 q 是 p 的()(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )非充分非必要条件7. 若非空集合 A,B,C 满足AU B C ,且B 不是A 的子集,贝U()A. “ x C ”是“ x A ”的充分条件但不是必要条件B. “ x C ”是“ x A ”的必要条件但不是充分条件C.ax C ”是“ x A ”的充要条件D.ax C ”既不是“ x A ”的充分条件也不是“ x A ”必要条件8 .对于实数x, y ,满足p : x y 3, q : x(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(B )必要不充分条件 (D )非充分非必要条件ABC ,贝U p 是q 的(B )必要不充分条件 (D )非充分非必要条件29 •“ 4 k 0 ”是“函数y x 2kx k 的值恒为正值”的(A )充分不必要条件 (B )必要不充分条件10 •已知条件p:t 2,条件q:t 24,则p 是q 的(B )必要不充分条件(D )既不充分也不必要条件11.“a = 2”是“函数f(x) = x 2 + ax + 1在区间[—1,+^ )上为增函数”的()(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件12 .已知p 是r 的充分条件而不是必要条件, q 是r 的充分条件,s 是r 的必要条件,q是s 的必要条件。
充分条件与必要条件测试题含答案在逻辑学中,充分条件与必要条件是非常重要的概念。
它们用来描述一个事件或条件对另一个事件或条件的影响关系。
了解充分条件与必要条件的概念和应用对提高逻辑思维能力及解决问题非常有帮助。
下面是一些关于充分条件与必要条件的测试题,希望能帮助你加深理解。
测试题1:如果一个数是偶数,那么它一定能被2整除。
请判断下面的说法是否为真:正数a能够被2整除,那么a一定是偶数。
答案:这个说法是正确的。
根据偶数的定义,偶数是能够被2整除的数。
如果一个数能被2整除,那么它一定是偶数。
测试题2:如果一个人是成年人,那么他一定年满18岁。
请判断下面的说法是否为真:某人年满18岁,那么他一定是成年人。
答案:这个说法是正确的。
根据成年人的定义,成年人是指年满18岁的人。
如果一个人年满18岁,那么他一定是成年人。
测试题3:如果天气晴朗,那么我会去公园散步。
请判断下面的说法是否为真:我去了公园散步,那么天气一定是晴朗的。
答案:这个说法是不正确的。
根据条件句的逻辑关系,如果天气晴朗,那么我会去公园散步。
但是在这个逻辑关系中,并没有说如果我去了公园散步,那么天气一定是晴朗的。
测试题4:如果一个人失去味觉,那么他一定患有感冒。
请判断下面的说法是否为真:某人患有感冒,那么他一定失去味觉。
答案:这个说法是不正确的。
根据条件句的逻辑关系,如果一个人失去味觉,那么他一定患有感冒。
但是在这个逻辑关系中,并没有说如果一个人患有感冒,那么他一定失去味觉。
测试题5:如果一个人是中国公民,那么他一定会说汉语。
请判断下面的说法是否为真:某人会说汉语,那么他一定是中国公民。
答案:这个说法是不正确的。
虽然大部分中国公民会说汉语,但是并不代表所有会说汉语的人都是中国公民。
可能有其他原因导致他们会说汉语,所以不能推断某人会说汉语就一定是中国公民。
通过测试题的答案,我们可以看出充分条件与必要条件的逻辑关系。
充分条件是指如果条件A发生,那么结果B一定会发生;而必要条件是指结果B发生所必须的条件是A。
充分条件与必要条件测试题1.“2x =”是“(1)(2)0x x --=”的 ( )(A) 充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )非充分非必要条件2.在ABC ∆中,:,:p a b q BAC ABC >∠>∠,则p 是q 的 ( )(A) 充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )非充分非必要条件3.“p 或q 是假命题”是“非p 为真命题”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.若非空集合M N ≠⊂,则“a M ∈或a N ∈”是“a M N ∈”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.对任意的实数,,a b c ,下列命题是真命题的是 ( )(A )“ac b c >”是“a b >”的必要条件 (B )“a c b c =”是“a b =”的必要条件(C )“a c b c <”是“a b >”的充分条件 (D )“a c b c =”是“a b =”的必要条件 6.若条件:14p x +≤,条件:23q x <<,则q ⌝是p ⌝的 ( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )非充分非必要条件7.若非空集合,,A B C 满足A B C =,且B 不是A 的子集,则 ( )A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”的充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”必要条件8.对于实数,x y ,满足:3,:2p x y q x +≠≠或1y ≠,则p 是q 的 ( )(A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件9.“40k -<<”是“函数2y x kx k =--的值恒为正值”的 ( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件10.已知条件:2p t ≠,条件2:4q t ≠,则p 是q 的 ( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件11.“a =2”是“函数f (x )=x 2+ax +1在区间[-1,+∞)上为增函数”的 ( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件12.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p ⌝是s ⌝的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件,则正确命题序号是( )(A )①③④ (B )②③④ (C )①②③ (D )①②④13.条件“:1p x >,条件:2q x <-,则p ⌝是q ⌝的 条件.14.设集合2{60},{10}A x x x B x mx =+-==+=,则B ⊂≠A 的一个充分不必要条件是_________. 15.在下列四个结论中,正确的是__________.(填上你认为正确的所有答案的序号)①“0x ≠”是“||x x +>0”的必要不充分条件;②已知,,a b R ∈则“||||||a b a b +=+”的充要条件是ab>0;③“24b ac ∆=-<0”是“一元二次方程20ax bx c ++=无实根”的充要条件;④“1x ≠”是“21x ≠”的充分不必要条件.16.指出下列各组命题中,p 是q 的什么条件(充分而不必要条件、必要而不充分条件、充分条件、既不充分也不必要条件)。
充分条件与必要条件测试题(含答案)班级姓名一、选择题1.“”是“”的()(A) 充分不必要条件(B)必要不充分条件(C)充要条件(D)非充分非必要条件2.在中,,则是的()(A) 充分不必要条件(B)必要不充分条件(C)充要条件(D)非充分非必要条件3.“或是假命题”是“非为真命题”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.若非空集合,则“或”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件B提示:“或”不一定有“”。
5.对任意的实数,下列命题是真命题的是()(A)“”是“”的必要条件(B)“”是“”的必要条件(C)“”是“”的充分条件(D)“”是“”的必要条件6.若条件,条件,则是的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)非充分非必要条件7.若非空集合满足,且不是的子集,则()A. “”是“”的充分条件但不是必要条件B. “”是“”的必要条件但不是充分条件C. “”是“”的充要条件D. “”既不是“”的充分条件也不是“”必要条件8.对于实数,满足或,则是的()(A) 充分而不必要条件 (B) 必要而不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件9.“”是“函数的值恒为正值”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件10.已知条件,条件,则是的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件11.“a=2”是“函数f(x)=x2+ax+1在区间[-1,+∞)上为增函数”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件12.已知是的充分条件而不是必要条件,是的充分条件,是的必要条件,是的必要条件。
现有下列命题:①是的充要条件;②是的充分条件而不是必要条件;③是的必要条件而不是充分条件;④的必要条件而不是充分条件;⑤是的充分条件而不是必要条件,则正确命题序号是()(A)①③④ (B)②③④(C)①②③ (D)①②④二、填空题13.从“”、“”、“”中选出恰当的符号进行填空。
充分条件和必要条件练习题
1.设x R ∈,则“”是“2210x x +->”的( ) A .充分不必要条件 B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
2.若a R ∈,则“0a =”是“cos sin a a >”的( )
A .必要不充分条件
B .充分不必要条件
C .充分必要条件
D .既不充分也不必要条件
3.设x R ∈,且0x ≠, ) A .充分而不必要条件 B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
4.已知a R ∈,则“2a >”是“22a a >”的( )
A .充分非必条件
B .必要不充分条件
C .充要条件
D .既非充分也非必要条件
5.设x R ∈,则“”是“220x x +->”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .即不充分也不必要条件
6.若a ,b 为实数,则“0<a b <1”是“b <
) A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
7.“0>>b a ”是“22b a >”的什么条件?( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
8.“1<x <2”是“x<2”成立的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
9.12x <<“”是”
“2<x 成立的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件
10.A,B 是任意角,“A=B ”是“sinA=sinB ”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分又不必要条件
11.设a R ∈,则“1a <”是“11a
>”( ) A .充分不必要条件 B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
12.“20x >”是“0x >”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
13.x=y ”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
14.”
”是““00>≠x x 的( ) A .充分不必要条件 B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
15.命题5:>x p ,命题3:>x q ,则p 是q 的 ( )
A .必要不充分条件
B .充分不必要条件
C .充要条件
D .既不充分也不必要条件
16.“1x =”是“2210x x -+=”的( )
A .充要条件
B .充分不必要条件
C .必要不充分条件
D .既不充分也不必要条件
17.若R a ∈,则“2a =”是“()()240a a -+=”的( )
A .充要条件
B .充分不必要条件
C .必要不充分条件
D .既不充分也不必要条件
一、填空题
18.已知条件p :13x ≤≤,条件q :2560x x -+<,则p 是q 的 条件.
A .充分必要条件
B .充分不必要条件
C .必要不充分条件
D .既非充分也非必要条件
参考答案
1.A
【解析】
”是“2210x x +->”的充分不必要条件,故选A .
考点:充要条件.
2.B
【解析】
即充分条件成立,但当ααsin cos >故必要条件不成立,综合选B.
考点:1.正余弦函数的单调性;2.充分条件和必要条件的定义.
3.A
【解析】
,得1x <-,由,解得01x <<或0x <,所以“
A. 考点:充要条件的应用.
4.A
【解析】
试题分析:因为当“2a >” 成立时,()2220,a a a a -=->∴ “22a a >” 成立. 即“2a >”⇒“22a a >” 为真命题;而当“22a a >” 成立时, ()2220a a a a -=->, 即2a >或0,2a a <∴>不一定成立, 即“22a a >”⇒“2a >”的充分非必要条件,故选A. 考点:1、充分条件与必要条件;2、不等式的性质.
【方法点睛】本题主要考查不等式的性质及充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.
5.A
【解析】
试题分析:由得31<<x ,由220x x +->得1>x 或2-<x ,即是“220x x +->”的充分不必要条件,故选:A .
考点:充分条件与必要条件的判断.
6.D
【解析】 时,p 不能推出q ,当0,0b a <>时,q 不能推出p ,故是既不充分也不必要条件.
考点:充要条件.
7.A
【解析】
试题分析:当0>>b a 时,能推出22b a >,反过来,当22b a >不能推出0>>b a ,所以是充分不必要条件,故选A.
考点:充分必要条件
8.A
【解析】
试题分析:若“12x <<”,则“2x <”成立,反之不成立,所以“12x <<”是“2x <”的成立充分不必要条件.
故选A.
考点:充分条件和必要条件的判断.
9.A
【解析】
试题分析:当12x <<时可得2x <成立,反之不成立,所以12x <<“”是”“2<x 成立的充分不必要条件
考点:充分条件与必要条件
10.A
【解析】
试题分析:由B A =可得B A sin sin =,由B A sin sin =不一定有B A =,如:0=A ,π=B ,所以B A =是B A sin sin =的充分不必要条件.故选A.
考点:充分条件、必要条件.
11.B.
【解析】 试题分析:111110001a a a a a
->⇔->⇔>⇔<<,故是必要不充分条件,故选B . 考点:1.解不等式;2.充分必要条件.
12.B .
【解析】 试题分析:因为由20x >解得:0x >或0x <,∴“0x >或0x <”是“0x >”的必要而不充分条件.
考点:充分必要条件.
13.B
【解析】
或x y =-,所以是“x y =”的必要不充分条件.故B 正确.
考点:充分必要条件.
14.B
【解析】 试题分析:00x x >⇒≠“”“”,反之不成立,因此选B .
考点:充要关系
15.B
【解析】
试题分析:若5x >成立则3x >成立,反之当3x >成立时5x >不一定成立,因此p 是q 的充分不必要条件
考点:充分条件与必要条件
16.A
【解析】
试题分析:当1x =时,2210x x -+=;
同时当2210x x -+=时,可得1x =;可得“1x =”是“2210x x -+=”的充要条件.
考点:充分、必要条件的判断.
【易错点晴】本题主要考查的是一元二次不等式、对数不等式和集合的交集、并集和补集运算,属于容易题.解不等式时一定要注意对数的真数大于0和2x 的系数大于0,否则很容易出现错误.
17.B
【解析】 试题分析:若“2a =”,则“()()240a a -+=”;反之 “()()240a a -+=”,则2,a =或4a =-.故“2a =”是“()()240a a -+=”的充分不必要条件.
考点:充分、必要条件的判断.
18.C
【解析】 试题分析:解不等式2560x x -+<得23x <<,由p :13x ≤≤可知p 是q 的必要不充分条件条件
考点:充分条件与必要条件。