半对数坐标纸
- 格式:doc
- 大小:522.00 KB
- 文档页数:2
河流泥沙动力学习题1.某河道悬移质沙样如下表所列。
要求:(1)用半对数坐标纸绘出粒径组的沙重百分数P 的分布图,绘出粒径的累积分布曲线,求出d 50、d pj 、ϕ(2575d d =)的数值。
(2)用对数概率坐标纸绘出粒径组的沙重百分数P 的分布图,绘出粒径的累积分布曲线,求出d 50、ϕ的数值。
(3)用方格纸绘出粒径组的沙重百分数P 的分布图,绘出粒径的累积分布曲线。
解:根据题意计算出小于某粒径之沙重百分数,列表如上。
(1)、半对数坐标纸上粒径组的沙重百分数P 的分布图及粒径的累积分布曲线,从下述半对数坐标纸上的粒配累计曲线上可查得中值粒径m m 054.050=d ,m m 075.075=d ,m m 041.025=d 。
平均粒径:069.01008675.6141141==∆∆=∑∑==i ii iipj pdp d , 非均匀系数:353.1041.0075.02575===d d ϕ。
半对数坐标纸上的沙重百分数p的分布图2468101214161820220.010.11粒径(mm)沙重百分数(%)半对数坐标纸上的粒配累积分布曲线1020304050607080901000.010.11粒径(mm)小于某粒径之沙重百分数(%)(2)、对数概率坐标纸上粒径组的沙重百分数P 的分布图及粒径的累积分布曲线 (3)、方格纸上粒径组的沙重百分数P 的分布图及粒径的累积分布曲线方格纸上的沙重百分数p的分布图2468101214161820220.050.10.150.20.250.3粒径(mm)沙重百分数(%)方格纸上的粒配累积分布曲线10203040506070809010000.050.10.150.20.250.3粒径(mm)小于某粒径之沙重百分数(%)2.已知泥沙沉降处于过渡区的动力平衡方程式为(ω可查表):223231)(ωρωρυγγd K d K d K s +=-令上式为 A=B+C要求计算并绘制d ~C B C +及d Re ~C B C +的关系曲线。
抽水试验确定渗透系数的方法及步骤1.抽水试验资料整理试验期间,对原始资料和表格应及时进行整理。
试验结束后,应进行资料分析、整理,提交抽水试验报告。
单孔抽水试验应提交抽水试验综合成果表,其内容包括:水位和流量过程曲线、水位和流量关系曲线、水位和时间(单对数及双对数)关系曲线、恢复水位与时间关系曲线、抽水成果、水质化验成果、水文地质计算成果、施工技术柱状图、钻孔平面位置图等。
并利用单孔抽水试验资料编绘导水系数分区图。
多孔抽水试验尚应提交抽水试验地下水水位下降漏斗平面图、剖面图。
群孔干扰抽水试验和试验性开采抽水试验还应提交抽水孔和观测孔平面位置图(以水文地质图为底图)、勘察区初始水位等水位线图、水位下降漏斗发展趋势图(编制等水位线图系列)、水位下降漏斗剖面图、水位恢复后的等水位线图、观测孔的S-t、S-lg t曲线[注]、各抽水孔单孔流量和孔组总流量过程曲线等。
注意:(1)要消除区域水位下降值;(2)在基岩地区要消除固体潮的影响;3)傍河抽水要消除河水位变化对抽水孔水位变化的影响。
多孔抽水试验、群孔干扰抽水试验和试验性开采抽水试验均应编写试验小结,其内容包括:试验目的、要求、方法、获得的主要成果及其质量评述和结论。
2. 稳定流抽水试验求参方法求参方法可以采用Dupuit 公式法和Thiem公式法。
(1) 只有抽水孔观测资料时的Dupuit 公式承压完整井:潜水完整井:式中K——含水层渗透系数(m/d);Q——抽水井流量(m3/d);sw——抽水井中水位降深(m);M——承压含水层厚度(m);R——影响半径(m);H——潜水含水层厚度(m);h——潜水含水层抽水后的厚度(m);rw——抽水井半径(m)。
(2) 当有抽水井和观测孔的观测资料时的Dupuit 或Thiem公式式中hw ——抽水井中水柱高度(m);h1、h2——与抽水井距离为r1和r2处观测孔(井)中水柱高度(m),分别等于初始水位H0与井中水位降深s之差,h1= H0 –s1;h2= H0 –s2。
抽水试验确定渗透系数的方法及步骤1.抽水试验资料整理试验期间,对原始资料和表格应及时进行整理。
试验结束后,应进行资料分析、整理,提交抽水试验报告。
单孔抽水试验应提交抽水试验综合成果表,其内容包括:水位和流量过程曲线、水位和流量关系曲线、水位和时间(单对数及双对数)关系曲线、恢复水位与时间关系曲线、抽水成果、水质化验成果、水文地质计算成果、施工技术柱状图、钻孔平面位置图等。
并利用单孔抽水试验资料编绘导水系数分区图。
多孔抽水试验尚应提交抽水试验地下水水位下降漏斗平面图、剖面图。
群孔干扰抽水试验和试验性开采抽水试验还应提交抽水孔和观测孔平面位置图(以水文地质图为底图)、勘察区初始水位等水位线图、水位下降漏斗发展趋势图(编制等水位线图系列)、水位下降漏斗剖面图、水位恢复后的等水位线图、观测孔的S-t、S-lg t曲线[注]、各抽水孔单孔流量和孔组总流量过程曲线等。
注意:(1)要消除区域水位下降值;(2)在基岩地区要消除固体潮的影响;3)傍河抽水要消除河水位变化对抽水孔水位变化的影响。
多孔抽水试验、群孔干扰抽水试验和试验性开采抽水试验均应编写试验小结,其内容包括:试验目的、要求、方法、获得的主要成果及其质量评述和结论。
2. 稳定流抽水试验求参方法求参方法可以采用Dupuit 公式法和Thiem公式法。
(1) 只有抽水孔观测资料时的Dupuit 公式承压完整井:潜水完整井:式中K——含水层渗透系数(m/d);Q——抽水井流量(m3/d);sw——抽水井中水位降深(m);M——承压含水层厚度(m);R——影响半径(m);H——潜水含水层厚度(m);h——潜水含水层抽水后的厚度(m);rw——抽水井半径(m)。
(2) 当有抽水井和观测孔的观测资料时的Dupuit 或Thiem公式式中hw ——抽水井中水柱高度(m);h1、h2——与抽水井距离为r1和r2处观测孔(井)中水柱高度(m),分别等于初始水位H0与井中水位降深s之差,h1= H0 –s1;h2= H0 –s2。
抽水试验确定渗透系数的方法及步骤1.抽水试验资料整理试验期间,对原始资料和表格应及时进行整理。
试验结束后,应进行资料分析、整理,提交抽水试验报告。
单孔抽水试验应提交抽水试验综合成果表,其内容包括:水位和流量过程曲线、水位和流量关系曲线、水位和时间(单对数及双对数)关系曲线、恢复水位与时间关系曲线、抽水成果、水质化验成果、水文地质计算成果、施工技术柱状图、钻孔平面位置图等。
并利用单孔抽水试验资料编绘导水系数分区图。
多孔抽水试验尚应提交抽水试验地下水水位下降漏斗平面图、剖面图。
群孔干扰抽水试验和试验性开采抽水试验还应提交抽水孔和观测孔平面位置图(以水文地质图为底图)、勘察区初始水位等水位线图、水位下降漏斗发展趋势图(编制等水位线图系列)、水位下降漏斗剖面图、水位恢复后的等水位线图、观测孔的S-t、S-lg t曲线[注]、各抽水孔单孔流量和孔组总流量过程曲线等。
注意:(1)要消除区域水位下降值;(2)在基岩地区要消除固体潮的影响;3)傍河抽水要消除河水位变化对抽水孔水位变化的影响。
多孔抽水试验、群孔干扰抽水试验和试验性开采抽水试验均应编写试验小结,其内容包括:试验目的、要求、方法、获得的主要成果及其质量评述和结论。
2. 稳定流抽水试验求参方法求参方法可以采用Dupuit 公式法和Thiem公式法。
(1) 只有抽水孔观测资料时的Dupuit 公式承压完整井:潜水完整井:式中K——含水层渗透系数(m/d);Q——抽水井流量(m3/d);sw——抽水井中水位降深(m);M——承压含水层厚度(m);R——影响半径(m);H——潜水含水层厚度(m);h——潜水含水层抽水后的厚度(m);rw——抽水井半径(m)。
(2) 当有抽水井和观测孔的观测资料时的Dupuit 或Thiem公式式中hw ——抽水井中水柱高度(m);h1、h2——与抽水井距离为r1和r2处观测孔(井)中水柱高度(m),分别等于初始水位H0与井中水位降深s之差,h1= H0 –s1;h2= H0 –s2。
自来水中含氟量的测定——标准曲线法和标准加入法一、实验原理氟离子选择性电极是一种由LaF3单晶制成的电化学传感器。
当控制测定体系的离子强度为一定值时,电池的电动势与氟离子浓度的对数值呈线性关系。
二、仪器与试剂1.pHS—3B型酸度计。
2.氟离子选择性电极。
3.饱和甘汞电极。
4.电磁搅拌器。
5.半对数坐标纸。
6.1.00×10-1mol·L-1F-的标准贮备液称取分析纯试剂NaF(烘干1~2h,温度110℃左右)1.050g于烧杯中,用去离子水溶解,定量转入250mL容量瓶中,用水稀释至刻度,贮存于聚乙烯瓶中,备用。
7.总离子强度缓冲溶液(简写为TISAB)称取NaCl58g,柠檬酸钠(Na3C6H5O7·2H2O)12g溶于800mL去离子水中,加57mL冰醋酸,用500g·L-1NaOH调节pH=5.0~5.5之间,冷至室温,用去离子水稀释至1000mL。
三、实验步骤1.氟离子选择性电极的准备接通仪器电源,预热20min,校正仪器,调仪器零点。
氟电极接仪器负极接线柱,甘汞电极接仪器正极接线柱。
将两电极插入蒸馏水中,开动搅拌器,使电位小于-200mV,若读数大于-200mV,则更换蒸馏水,如此反复几次即可达到电极的空白值。
若仍不能使电位小于-200mV,可用金相砂纸轻轻擦拭氟电极,继续清洗至-220mV。
2.标准曲线的制作分别吸取(10-3mol·L-1)F的标准溶液0.50,0.70,1.00,3.00,5.00,10.00mL 于100mL容量瓶中,加入20mLTISAB溶液,用去离子水稀释至刻度。
将标准系列溶液由低浓度到高浓度依次转入干的塑料杯中,电极插入被测试液。
开动搅拌器5~8min 后,停止搅拌,读取平衡电位(注意:测定时,需由低浓度到高浓度依次测定)。
在半对数坐标纸上作E~[F -]图,即得标准曲线,或在普通坐标纸上作E~㏒[F -]曲线。
抽水试验确定渗透系数的方法及步骤1.抽水试验资料整理试验期间,对原始资料和表格应及时进行整理。
试验结束后,应进行资料分析、整理,提交抽水试验报告。
单孔抽水试验应提交抽水试验综合成果表,其内容包括:水位和流量过程曲线、水位和流量关系曲线、水位和时间(单对数及双对数)关系曲线、恢复水位与时间关系曲线、抽水成果、水质化验成果、水文地质计算成果、施工技术柱状图、钻孔平面位置图等。
并利用单孔抽水试验资料编绘导水系数分区图。
多孔抽水试验尚应提交抽水试验地下水水位下降漏斗平面图、剖面图。
群孔干扰抽水试验和试验性开采抽水试验还应提交抽水孔和观测孔平面位置图(以水文地质图为底图)、勘察区初始水位等水位线图、水位下降漏斗发展趋势图(编制等水位线图系列)、水位下降漏斗剖面图、水位恢复后的等水位线图、观测孔的S-t、S-lg t曲线[注]、各抽水孔单孔流量和孔组总流量过程曲线等。
注意:(1)要消除区域水位下降值;(2)在基岩地区要消除固体潮的影响;3)傍河抽水要消除河水位变化对抽水孔水位变化的影响。
多孔抽水试验、群孔干扰抽水试验和试验性开采抽水试验均应编写试验小结,其内容包括:试验目的、要求、方法、获得的主要成果及其质量评述和结论。
2. 稳定流抽水试验求参方法求参方法可以采用Dupuit 公式法和Thiem公式法。
(1) 只有抽水孔观测资料时的Dupuit 公式承压完整井:潜水完整井:式中K——含水层渗透系数(m/d);Q——抽水井流量(m3/d);sw——抽水井中水位降深(m);M——承压含水层厚度(m);R——影响半径(m);H——潜水含水层厚度(m);h——潜水含水层抽水后的厚度(m);rw——抽水井半径(m)。
(2) 当有抽水井和观测孔的观测资料时的Dupuit 或Thiem公式式中hw ——抽水井中水柱高度(m);h1、h2——与抽水井距离为r1和r2处观测孔(井)中水柱高度(m),分别等于初始水位H0与井中水位降深s之差,h1= H0 –s1;h2= H0 –s2。
实验数据的处理通过实验测得原始数据后需要进行计算将最终的实验结果归纳成经验公式或以图表的形式表示,以便与理论结果比较分析。
因此由实验而获取的数据必须经过正确的处理和分析,只有正确的结论才能经得起检验。
下面介绍这方面的基本知识。
一、有效数字与运算规律1.有效数字在测量和实验中,我们经常遇到两类数字,一类是无单位的数字,例如圆周率π等,其有效数字位数可多可少,根据我们的需要来确定有效数字。
另一类是表示测量结果有单位的数字,例如:温度、压强、流量等。
这类数字不仅有单位,且它们最后一位数字往往由仪表的精度而估计的数字,例如精度为1/10℃的温度计,读得21.75℃,则最后一位是估计的,所以记录或测量数据时通常以仪表最小刻度后保留一位有效数字。
在科学与工程中为了能清楚地表示数值的准确度与精度和方便运算,在第一个有效数字后加小数点,而数值的数量级则用10的幂表示,这种用10的幂来记数的方法称为科学记数法。
例如:,可记为。
2.有效数字的运算规律(1)在加减运算中,各数所保留的小数点后的位数应与其中小数点的位数最少的相同,例如:。
(2)在乘除运算中,各数所保留的位数以有效数字最少的为准,例如:将0.0135,17.53,2.45824三数相乘应写成。
(3)乘方及开方运算的结果比原数据多保留一位有效数字,例如:,。
(4)对数运算,取对数前后的有效数字相等,例如:,。
二、实验数据的误差分析测得的实验值与真值之差值称测定值的误差,测定误差的估算与分析对实验结果的准确性具有重要的意义。
1.真值与平均值任何一个被测量的物理量总存在一定的客观真实值,即真值,由于测量的仪器、方法等引起的误差,真值一般不能直接测得,若在实验中无限多次的测量时,则根据误差分布定律,正负误差出现的几率相等,将各个测量值相加并加以平均,在无系统误差的情况下,可能获得近似于真值的数值,因此实验科学给真值定义为:无限多次的测量平均值称为真值。
而在实际测量中的次数是有限的,故用有限测量次数求出的平均值,只能是近似真值,称最佳值。
实验题目:小鼠腹腔注射筒箭毒碱ED50的测定Determination of Cl-Tubocurarine's Median Effective Dose (ED50)【实验目的】了解ED50的测定方法、原理、计算过程与意义。
【相关理论】1.关于量反应,质反应:量反应是指个体上反应的强度并以数量的分级来表示;例如:血压、尿量等。
质反应是指群体中所观察到的某一效应的出现;如:生死、有效或无效。
以阳性反应的出现频率或百分数来表示(全或无,阳性率)。
2.关于ED50,LD50,以及治疗指数:能使群体中有半数个体出现某一效应的剂量,称为半数效应量,若此效应为有效,则为半数有效量ED50,ED50是质反应的参数。
若此效应为死亡时,则为半数致死量LD50。
治疗指数= LD50/ ED50=TI,该值越大越好,说明药物越安全.可用机率单位正规法或点斜法求出LD1 ,ED99 ;LD5 ,ED95。
3.肌松药分为去极化型和非去极化型两种。
去极化型肌松药的代表为琥珀酰胆碱,其肌松作用不能被抗胆碱酯酶药新斯的明拮抗,反而会加重。
非去极化型肌松药的代表为筒箭毒碱,其肌松作用能被新斯的明解救。
4.测定ED50,LD50的意义可计算治疗指数TI(LD50/ ED50),为临床安全用药提供指导。
【实验动物】小鼠(昆明种KM),雌雄各半。
【实验器材】铁丝网,铁架台,天平,注射器等。
【实验方法】应用点斜法测定ED50。
应用该方法测定ED50时,实验设计必须符合以下5点要求:1)动物以5~8组为宜;2)每组动物数须一致;3)各组给药剂量应呈现等比数列;4)各组给药剂量的公比r = 1.1~1.6;5)最大剂量(Dmax)组的阳性反应率须≥80%,最小剂量(Dmin)组的阳性反应率须≤20%【实验方法】1.预实验:目的是为了找出符合上述点斜法要求5)的Dmax和Dmin。
阳性反应判定标准:20min内小鼠落下3次(注意排除因互相拥挤而落下所造成的假阳性)。
用Word绘制精细刻度半对数坐标格的方法探讨
苏盛通
【期刊名称】《卫生职业教育》
【年(卷),期】2007(025)024
【摘要】三级刻度半对数坐标纸是测定体内抗生素绘制标准曲线的必备工具.用电子表格可简便绘出二级刻度半对数坐标格,但不够精细,不适合绘制精细的标准曲线.现介绍用最常用的办公软件Word绘制三级精细刻度半对数坐标格的方法.用Word绘制坐标格,既方便文本的编辑、打印,又节省了购买坐标纸或坐标制作软件的费用.
【总页数】2页(P82-83)
【作者】苏盛通
【作者单位】玉林市卫生学校,广西,玉林,537000
【正文语种】中文
【中图分类】G642.3
【相关文献】
1.VB开发AutoCAD绘制半对数坐标网格 [J], 李建
2.自适应坐标格绘制的实现 [J], 陈华;丁杰伟
3.利用Word自身功能绘制刻度线 [J], 王志军
4.Word绘制电路图的方法探讨 [J], 吕岚
5.用普通纸绘制半对数图的方法 [J], 毛志民;于军
因版权原因,仅展示原文概要,查看原文内容请购买。
一般的电脑行情分析软件的主图坐标都提供多种坐标类型方便我们选择。
如:普通坐标、对数坐标、等差坐标、百分比坐标、黄金分割坐标、10%等比坐标、等分坐标。
普通坐标:坐标刻度之间的间隔距离与价格成正比。
对数坐标:坐标刻度之间的间隔距离与价格的对数成正比,同样的涨幅或同样的跌幅在坐标上的距离显示是相等的。
等差坐标:刻度数值线之间的间隔差值相等,是缺省时的坐标。
百分比坐标:百分比坐标以画面显示的第一天的开盘价为基准,股价表示为与基准的百分比值,显示百分比值的数值线,这对于主图叠加特别有用。
黄金分割坐标:以画面显示的最高价、最低价为基准,分别显示%分割的数值线,对于分析某波段的压力、支撑价位线有用。
10%等比坐标:百分比坐标以画面显示的最后一天的开盘价为基准,显示与基准的10%递增和递减的数值线。
等分坐标:以画面显示的最高价、最低价为基准,对这个区域N等分,显示分割的数值线,对于分析某波段的压力、支撑价位线有用,等分的参数N可以在系统参数中设置。
国外的图表分析师大多数使用半对数坐标(也叫做比例或百分比坐标纸)系统分析走势图,因为,半对数坐标纸拥有一定的优点,区别在算术坐标上竖直方向上相同的距离代表相同价格变化数量;半对数坐标纸上表示相同百分比变化。
半对数坐标方便了止损指令的设置。
一些价格形态在两种坐标纸上基本相同。
趋势线投射在普通或线性坐标中与投射在对数或比例坐标中有何区别?线性坐标纸上形成的一系列相当直的上倾线的点,当转换到半对数坐标纸上时,形成一条曲线,曲线首先是急剧上升然后渐渐变圆结束.而且在半对数坐标纸上形成一条直线的点。
在线性坐标纸上会形成一条加速曲线,投射的越远,曲线倾斜得越厉越陡.事实上。
确定细小趋势时这种差别不是很重要,因为细小趋势很少运动到足够远;以至于两种坐标的差异开始有限。
垂直型的中等移动情况也相同;如果是一轮长期而强劲的中等趋势,这种差异会变得明显。
会在时间和最后趋势线穿透水平上造成相当大的差别;这是不少分析者用半对数坐标纸来作技术分析图的主要原因。
(二)公式法公式法最初由Ball 提出,后来经美国制罐公司热工学研究组简化后,用来计算简单型和转折型传热曲线上杀菌时间和F 值,简化虽会引起一些误差但无明显影响。
现已列入美国食品药物管理局有关规定,在美国得到普遍应用。
公式法是根据罐头在杀菌过程中内容物温度的变化在半对数坐标纸上所绘出的加热曲线,以及杀菌一结束,冷却水立即进入杀菌锅进行冷却的曲线才能进行推算并找出答案。
它的优点是可以在杀菌温度变更时算出杀菌时间,但其缺点是计算较繁,费时,用公式法计算比较费时,尤其是产品传热呈转折型加热曲线时,还容易在计算中发生错误,又要求加热曲线必须呈有规则的简单型加热曲线或转折型加热曲线,才能求得较正确的结果。
1标绘加热曲线计算时首先将罐内冷点温度变化数据与时间绘在半对数坐标纸上,如果所得传热曲线呈一条直线时为简单加热曲线,如呈二条直线,则为转折型加热曲一线,可求得传热速率f h (及f 2)和滞后因子j 、μ,如为转折型加热曲线时,还须绘制冷却曲线,求得X 、f c ,计算时需有F i 表、f /u :log g图和r :log g图。
2杀菌值(F 0值)和杀菌时间计算 各符号含义介绍:Z ——热力杀菌时对象菌的热力致死时间曲线的斜率(min ),也即对温度变化时热力致死时间相应变化或致死速率的估量。
低酸性食品按Z=10℃肉毒杆菌计算;酸性食品在低于100℃杀菌时可按Z=8℃计算。
f h ——加热曲线中直线部分的斜率,机横跨一个对数周期所需要的时间(min )。
在转折型加热曲线中转折点前第一条加热曲线部分的斜率也为f h 。
f 2——加热曲线中转折点后第二条曲线的斜率(min )。
j ——在半对数坐标纸上加热曲线呈直线前加热时间的滞后因子,IjI ITRT T I RT j =-''-=。
RT ——杀菌或杀菌锅温度(℃)。
IT ——罐头食品初温(℃),杀菌锅进蒸汽前容器内装食品的平均温度。
T I ''——假初温,它处于横坐标上按58%升温时间标定的点引出的垂直线和加热曲线直线部分延长线相交的交点上,该交点视为假起始点。