(波普解析)有机化合物波谱解析
- 格式:ppt
- 大小:4.88 MB
- 文档页数:109
第七章有机化合物的波谱分析(一)概述研究或鉴圧一个有机化合物的结构,需对该化合物进行结构表征。
其基本程序如下: 分离提纯一物理常数测左一元素分析一确立分子式一确泄其可能的构适式(结构表 征(参见 P11-12)(1)结构表征的方法传统方法:(化学法)① 元素左性.泄量分析及相对分子质量测泄 —— 分子式:② 官能团试验及衍生物制备——分子中所含官能团及部分结构片断: ③ 将部分结构片断拼凑 —— 完整结构; ④ 查阅文献,对照标准样,验证分析结果。
特点:需要较多试样(半微量分析,用样虽为10-100mg ),大虽:的时间(吗啡碱,1805- 1952年).熟练的实验技巧,高超的智慧和坚韧不拔的精神。
缺点:①分子有时重排,导致错误结论;② P 及一C=C 一的构型确定困难。
波谱法:① 质谱(最好用元素分析仪验证)——分子式:② 各种谱图(UV 、IR 、NMR. MS ) —— 官能团及部分结构片断; ③ 拼凑——完整结构; ④ 标准谱图——确认。
特点:样品用量少(v30mg ),不损坏样品(质谱除外),分析速度快,对'C 及一C=C 一的 构型确左比较方便。
光谱法已成为有机结构分析的常规方法。
但是化学方法仍不可少,它与光谱法相辅相成, 相互补充,互为佐证。
(2)波谱过程分子运动:平动、振动、转动、核外电子运动等9量子化的(能量变化秘续)A 每个分子中只能存在一定数量的转? 动.振动、电子跃迁能级波谱过程可表示为:有机分子+电磁波选择性吸收 仪器记录用电磁波照射有机分子时, 分子便会吸收那些与分子内 的能级差相当的电磁波,引 起分子振动、转动或电子运 动能级跃迁,即分子可选择 性地吸收电磁波使分子内能 提高用仪器记录分子对不 同波长的电磁波的吸收情 况,就可得到光谱。
不饱和度亦称为分子中的环加双键数、缺氢指数、双键等价值等。
其定义为: 当一个化合物衍变为相应的绘后,与其同碳的饱和开链桂比较,每缺少2个氢为 1个不饱和度。
绪论单元测试1.本课程学习的四大谱主要是哪四类?A:质谱 (Mass Spectra, 简称MS)B:核磁共振谱 (Nuclear Magnetic Resonance Spectra,简称NMR)C:紫外-可见光谱(Ultraviolet-visible Absorption Spectra,简称UV)D:红外光谱(Infrared Spectra, 简称IR )答案:ABCD2.凡是合成、半合成药物或者是由天然产物中提取的单体或组分中的主要组分,都必须确证其化学结构。
A:错B:对答案:B3.确证结构的方法主要有两种:第一,可以采用经典的理化分析和元素分析方法;第二,目前国内外普遍使用的红外、紫外、核磁和质谱四大谱解析,必要时还应增加其他方法,如圆二色散、X光衍射、热分析等。
A:错B:对答案:B4.红外光谱特别适用于分子中功能基的鉴定。
A:错B:对答案:B5.核磁共振谱对有机化合物结构的解析非常有用,应用在四大谱中最为广泛。
A:对B:错答案:A第一章测试1.在关于紫外光谱正确的是()。
A:紫外光谱也叫振-转光谱B:紫外光谱是电子能级跃迁,不涉及振动能级和转动能级的跃迁C:紫外光谱能级跃迁需要吸收0.5―1eV能量D:紫外光谱属于电子光谱答案:D2.丙酮的紫外-可见光区中,对于吸收波长最大的那个吸收峰,在下列四种溶剂中吸收波长最短的是哪一个()。
A:水B:甲醇C:乙醚D:环己烷答案:A3.分子的紫外-可见吸收光谱呈带状光谱,其原因是什么()。
A:分子电子能级的跃迁伴随着振动、转动能级的跃迁B:分子中价电子运动的离域性质C:分子中价电子能级的相互作用D:分子振动能级的跃迁伴随着转动能级的跃迁答案:A4.在下列化合物中,哪一个在近紫外光区产生两个吸收带()。
A:丁二烯B:环己烷C:丙烯醛D:丙烯答案:C5.在化合物的紫外吸收光谱中K带是指()。
A:共轭非封闭体系π→π的跃迁B:σ→σ跃迁C:n→σ跃迁D:共轭非封闭体系n→π的跃迁答案:A6.紫外光谱一般都用样品的溶液测定,溶剂在所测定的紫外光谱区必须透明,以下溶剂可适用于210 nm的是()A:乙醇B:环己烷C:丙酮D:正己烷答案:B7.某化合物在正己烷中测得λmax = 305 nm,在乙醇中测得λmax = 307 nm,请指出该吸收是由下述哪一类跃迁类型所引起的?()A:n→π*B:n→σ*C:σ→σ*D:π→π*答案:D8.在环状体系中,分子中非共轭的两个发色团因为空间位置上的接近, 发生轨道间的交盖作用, 使得吸收带长移, 同时吸光强度增强。
绪论单元测试1.有机化合物波谱解析主要学习哪些波谱学方法()。
A:紫外光谱B:核磁共振谱C: 质谱D:红外光谱答案:ABCD第一章测试1.以下波长最长的是()。
A:近紫外区B:远紫外区C:近红外区D:可见区答案:C2.紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了()。
A:吸收峰的位置B:吸收峰的强度C:吸收峰的数目答案:A3.助色团对吸收峰的影响是使吸收峰()。
A:波长变短B:谱带蓝移C:波长变长D:波长不变答案:C4.在紫外光的照射下,CH3Cl分子中电子能级跃迁的类型有σ→σ和n→σ跃迁。
()A:对B:错答案:A5.跨环效应是共轭基团间的相互作用。
()A:错B:对答案:A6.利用紫外光谱可以确定乙酰乙酸乙酯的互变异构现象。
()A:错B:对答案:B7.π→π共轭作用使_跃迁及_跃迁峰均发生红移。
答案:8.远紫外区指波长范围_nm,近紫外区是指波长范围_nm。
答案:9.请解释什么是红移和蓝移。
答案:10.下列两个异构体,能否用紫外光谱区别?答案:第二章测试1.红外光谱是由()跃迁产生的。
A:中子B:分子振动能级-转动能级C:原子核D:外层电子能级答案:B2.在红外光谱中,各个化合物在结构上的微小差异在指纹区都会得到反映。
指纹区的范围是()。
A:1333-400cm-1B: 1475-1300cm-1C: 1000-650cm-1D: 4000-1333cm-1答案:A3.在红外光谱中,氢键的形成通常使(),峰强增加。
A:峰位向低波数移动,峰变宽。
B:峰位向高波数移动,峰变宽。
C:峰位向低波数移动,峰变窄。
D:峰位向高波数移动,峰变窄。
答案:A4.化学键两端连接的原子,电负性相差越大,键的力常数越大。
()A:错B:对答案:B5.红外光谱中,形成分子内氢键后,羰基的伸缩振动吸收峰波数基本不变。
()A:错B:对答案:A6.对映异构体的左旋体和右旋体的红外光谱图形是可以区分的。
()A:错B:对答案:A7.影响红外光谱的峰强两大因素为_和_。
有机化合物波谱解析教案一、教学目标1. 理解有机化合物波谱解析的基本概念和方法。
2. 学会使用红外光谱、核磁共振谱、质谱等波谱进行分析。
3. 能够解析有机化合物的结构based on the information from the spectra.二、教学内容1. 红外光谱(IR)基本原理谱图解析功能团振动频率与结构的关系2. 核磁共振谱(NMR)基本原理谱图解析化学位移、耦合常数与结构的关系三、教学方法1. 讲授:讲解基本原理、概念和谱图解析方法。
2. 示例分析:分析具体化合物的红外光谱、核磁共振谱和质谱。
3. 练习:学生自行分析给定的谱图,得出结构结论。
四、教学准备1. 教学PPT:包含基本原理、概念、谱图解析方法和示例。
2. 谱图数据:用于示例分析和学生练习。
五、教学过程1. 导入:介绍有机化合物波谱解析的重要性。
2. 红外光谱(IR)讲解基本原理和谱图解析方法。
分析示例谱图,引导学生理解谱图与结构的关系。
3. 核磁共振谱(NMR)讲解基本原理和谱图解析方法。
分析示例谱图,引导学生理解谱图与结构的关系。
4. 练习:学生分析给定的谱图,得出结构结论。
教学反思:在课后,教师应反思教学效果,根据学生的反馈和练习情况,调整教学方法和难度,以便更好地达到教学目标。
六、质谱(MS)1. 基本原理介绍质谱仪的工作原理和质谱图的获取。
解释质谱图中的峰代表分子离子、碎片离子等。
2. 谱图解析讲解质谱图的解析方法,包括分子离子峰的确定、碎片离子的识别等。
引导学生理解质谱图与分子结构的关系。
七、紫外光谱(UV)1. 基本原理介绍紫外光谱的产生原理,如π-π、n-π等电子跃迁。
解释紫外光谱图中的吸收峰与分子结构的关系。
2. 谱图解析讲解紫外光谱图的解析方法,包括吸收峰的位置、强度和形状等。
引导学生理解紫外光谱图与分子结构的关系。
八、圆二色光谱(CD)1. 基本原理介绍圆二色光谱的产生原理,如手性分子的CD光谱。
有机波谱解析有机波谱解析是一门利用谱学技术来解析有机化合物结构的科学。
其中,质谱、红外光谱、核磁共振氢谱和核磁共振碳谱是最常用的几种方法。
本文将分别介绍这几种方法的基本原理和解析方法。
1.质谱解析质谱是一种通过离子化样品并测量其质量-电荷比来分析样品分子质量的谱学技术。
在质谱解析中,样品通常经过离子化(如电子轰击、化学电离等),生成不同质荷比的离子。
然后,这些离子根据其质量-电荷比被分离和检测。
通过测量不同质荷比的离子数量,可以得到样品的分子质量和分子结构信息。
质谱解析的关键步骤包括:(1)选择合适的离子化方法,以产生具有代表性的离子;(2)选择合适的分离和检测方法,以获得高质量的质谱数据;(3)通过比对已知的分子质量标准,确定样品的分子质量;(4)通过解析样品的质谱数据,推断样品的分子结构。
2.红外光谱解析红外光谱是一种通过测量样品在红外光区的吸收或透射光强度来分析样品分子结构和化学键信息的谱学技术。
在红外光谱解析中,样品与一束红外光相互作用,不同的化学键和官能团会吸收不同波长的红外光。
通过测量样品在不同波长下的吸收或透射光强度,可以获得样品的红外光谱。
红外光谱解析的关键步骤包括:(1)选择合适的样品制备方法,以获得均匀、透明的样品;(2)选择合适的扫描范围和分辨率,以获得高质量的红外光谱数据;(3)通过比对已知的红外光谱标准,确定样品的化学键和官能团;(4)通过解析样品的红外光谱数据,推断样品的分子结构和化学键信息。
3.核磁共振氢谱解析核磁共振氢谱是一种通过测量样品中氢原子核的自旋磁矩来分析样品分子结构的技术。
在核磁共振氢谱解析中,样品被置于强磁场中,氢原子核在磁场中发生自旋并产生磁矩。
通过施加射频脉冲,氢原子核发生共振并释放出射频信号。
通过测量这些信号的频率和强度,可以获得样品的核磁共振氢谱。
核磁共振氢谱解析的关键步骤包括:(1)选择合适的溶剂和样品浓度,以获得高质量的核磁共振氢谱数据;(2)选择合适的射频脉冲序列和扫描参数,以获得清晰的核磁共振信号;(3)通过比对已知的核磁共振氢谱标准,确定样品中氢原子的化学环境;(4)通过解析样品的核磁共振氢谱数据,推断样品的分子结构和化学键信息。
有机化合物波谱解析一、课程说明课程编号:240205Z10课程名称(中/英文):有机化合物波谱解析(Spectroscopy of Organic Compounds)课程类别:专业基础课学时/学分:总48学时,其中理论36学时,实验12学时;学分3先修课程:有机化学、物理化学、分析化学适用专业:药学教材:《有机化合物波谱解析》(第三版),中国医药科技出版社,吴立军,2009。
教学参考书:《有机化合物波谱解析》(第一版),人民卫生出版社,孔令义,2016。
《有机化合物结构鉴定与有机波谱学》(第三版),科学出版社,宁永成,2016。
《有机化合物的波谱解析》,华东理工大学出版社,药明康德新药开发有限公司分析部译,秦川校,2007年二、课程设置的目的意义本课程是运用紫外光谱(UV)、红外光谱(IR)、核磁共振波谱(NMR)、质谱(MS)等现代物理手段研究有机化合物化学结构的一门学科,是现代有机化合物结构测定最主要的手段。
本课程为药学、制药工程等专业本科生开设的专业基础课,培养学生利用这四种波谱技术综合解决大多数有机化合物结构研究问题的能力,为进一步学习药物化学、天然药物化学、药物分析等专业课奠定基础。
三、课程的基本要求掌握紫外光谱(UV)、红外光谱(IR)、核磁共振波谱(NMR)、质谱(MS)等的基础知识及其解析方法,熟悉旋光谱和圆二色谱的基本解析,学会综合运用上述多种谱图所提供的结构信息解决化合物的结构问题。
四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求对乙酰氨基酚的红外光谱测定与解析。
掌握红外光谱分析中固体样品制备技术(KBr压片)与图谱解析,熟悉红外光谱仪的操作。
六、考核方式及成绩评定七、大纲主撰人:大纲审核人:。