高二生物遗传学知识点总结
- 格式:docx
- 大小:37.47 KB
- 文档页数:4
高二生物遗传知识点总结一:基因的分离规律1、相对性状:同种生物同一性状的不同表现类型,叫做~。
(此概念有三个要点:同种生物--豌豆,同一性状--茎的高度,不同表现类型--高茎和矮茎)2、显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做~。
3、隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做~。
4、性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做~。
5、显性基因:控制显性性状的基因,叫做~。
一般用大写字母表示,豌豆高茎基因用D表示。
6、隐性基因:控制隐性性状的基因,叫做~。
一般用小写字母表示,豌豆矮茎基因用d表示。
7、等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做~。
(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。
显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。
等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。
D∶d=1∶1;两种雌配子D∶d=1∶1。
)8、非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。
9、表现型:是指生物个体所表现出来的性状。
10、基因型:是指与表现型有关系的基因组成。
11、纯合体:由含有相同基因的配子结合成的合子发育而成的个体。
可稳定遗传。
12、杂合体:由含有不同基因的配子结合成的合子发育而成的个体。
不能稳定遗传,后代会发生性状分离。
13、测交:让杂种子一代与隐性类型杂交,用来测定F1的基因型。
测交是检验生物体是纯合体还是杂合体的有效方法。
14、基因的分离规律:在进行减数分裂的时候,等位基因随着同源染色体的分开而分离,分别进入两个配子中,独立地随着配子遗传给后代,这就是~。
15、携带者:在遗传学上,含有一个隐性致病基因的杂合体。
16、隐性遗传病:由于控制患病的基因是隐性基因,所以又叫隐性遗传病。
高二生物第六章遗传和变异知识点总结现代科学研究证明,遗传物质除DNA以外还有RNA。
基因突变在生物进化中具有重要意义。
它是生物变异的根本来源,为生物进化提供了最初的原材料。
下面是店铺为大家整理的高二生物第六章遗传和变异知识点,希望对大家有所帮助!高二生物第六章遗传和变异知识点总结:第一节、基因一、 DNA是主要的遗传物质名词:1、T2噬菌体:这是一种寄生在大肠杆菌里的病毒。
它是由蛋白质外壳和存在于头部内的DNA所构成。
它侵染细菌时可以产生一大批与亲代噬菌体一样的子代噬菌体。
2、细胞核遗传:染色体是主要的遗传物质载体,且染色体在细胞核内,受细胞核内遗传物质控制的遗传现象。
3、细胞质遗传:线粒体和叶绿体也是遗传物质的载体,且在细胞质内,受细胞质内遗传物质控制的遗传现象。
语句:1、证明DNA是遗传物质的实验关键是:设法把DNA与蛋白质分开,单独直接地观察DNA的作用。
2、肺炎双球菌的类型:①、R型(英文Rough是粗糙之意),菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。
②、S 型(英文Smooth是光滑之意):菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。
如果用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡。
3、格里菲斯实验:格里菲斯用加热的办法将S型菌杀死,并用死的S型菌与活的R型菌的混合物注射到小鼠身上。
小鼠死了。
(由于R 型经不起死了的S型菌的DNA(转化因子)的诱惑,变成了S型)。
4、艾弗里实验说明DNA是“转化因子”的原因:将S型细菌中的多糖、蛋白质、脂类和DNA等提取出来,分别与R型细菌进行混合;结果只有DNA与R型细菌进行混合,才能使R型细菌转化成S型细菌,并且的含量越高,转化越有效。
5、艾弗里实验的结论:DNA是转化因子,是使R型细菌产生稳定的遗传变化的物质,即DNA是遗传物质。
6、噬菌体侵染细菌的实验:①噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。
高二生物必修二遗传病考点总结高二生物必修二遗传病考点总结:名词1、遗传病是指因遗传物质不正常引起的先天性疾病,通常分为单基因遗传病、多基因遗传病和染色体异常遗传病三类。
2、单基因遗传病:由一对等位基因控制,属于单基因遗传病。
3、多基因遗传病:由多对等位基因控制。
常表现出家族性聚集现象,且比较容易受环境影响。
4、染色体异常遗传病:例如遗传病是由染色体异常引起的。
5、优生学:运用遗传学原理改善人类的遗传素质。
让每个家庭生育出健康的孩子。
6、直系血亲”指由父母子女关系形成的亲属。
如父母、祖父母、外祖父母、子女、孙子女等。
7、“旁系血亲”指由兄弟姐妹关系形成的亲属。
8、“三代以内旁系血亲”包括有共同父母的亲兄弟姐妹、有共同祖父母的堂兄弟姐妹、有共同外祖父母的表兄弟姐妹。
语句:1、单基因遗传病:a、常染色体隐性:白化病、苯丙酮尿症。
b、伴X隐性遗传:红绿色盲、血友病、果蝇白眼、进行性肌营养不良。
c、常染色体显性:多指、并指、短指、多指、软骨发育不全、d、伴X显性遗传:抗VD性佝偻病、2、多基因遗传病:青少年型糖尿病、原发性高血压、唇裂、无脑儿。
3、染色体异常遗传病;a、常染色体病:21三体综合征(发病的根本原因是患者体细胞内多了一条21号染色体。
)、b、性染色体遗传病。
4、优生及优生措施:a、禁止近亲结婚:我国婚姻法规定:“直系血亲和三代以内的旁系血亲禁止结婚。
”b、遗传咨询:遗传咨询是预防遗传病发生最简便有效的方法。
C、提倡“适龄生育”:女子生育的最适年龄为24到29岁。
d、产前诊断。
5、禁止近亲结婚的理论依据是:使隐性致病基因纯合的几率增大。
6、先天性疾病不一定是遗传病(先天性心脏病),遗传病不一定是先天性疾病。
学习高二生物的观察方法观察方法学习过程从本质上说是一种认识过程。
认识过程是从感性认识开始的,而感性认识主要靠观察来获得,所以观察方法就是首要的学习方法。
观察方法主要包括顺序观察、对比观察、动态观察和边思考边观察。
高中生物遗传学知识点总结高中生物遗传学知识点—伴性遗传高中生物伴性遗传知识点总结:伴性遗传的最大特点就是性状与性别的关联,这部分常考题目主要有伴性遗传的判断和相关计算。
判断是伴性遗传还是常染色体遗传,常用同型的隐形个体与异型的显性个体杂交,根据后代的表现型进行判断。
以XY型性别决定的生物为例,如果为伴X隐性遗传,雌性隐性个体与雄性显性个体杂交,如果后代雄性个体中出现了显性性状,即为常染色体遗传,否则即为伴X遗传。
高中生物遗传学知识点—遗传病常见遗传病的遗传方式有以下这几种:(1)单基因遗传:常染色体显性遗传:并指、多指;常染色体隐性遗传:白化病、失天性聋哑X连锁隐性遗传:血友病、红绿色盲;X连锁显性遗传:抗维生素D佝偻病;Y连锁遗传:外耳道多毛症;(2)多基因遗传:唇裂、先天性幽门狭窄、先天性畸形足、脊柱裂、无脑儿;(3)染色体病:染色体数目异常:先天性愚型病;染色体结构畸变:猫叫综合症。
单基因遗传:单基因遗传病是指受一对等位基因控制的遗传病,较常见的有红绿色盲、血友病、白化病等。
根据致病基因所在染色体的种类,通常又可分四类:一、常染色体显性遗传病致病基因为显性并且位于常染色体上,等位基因之一突变,杂合状态下即可发病。
致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。
此种患者的子女发病的概率相同,均为1/2。
此种患者的异常性状表达程度可不尽相同。
在某些情况下,显性基因性状表达极其轻微,甚至临床不能查出,种情况称为失显。
由于外显不完全,在家系分析时可见到中间一代人未患病的隔代遗传系谱,这种现象又称不规则外显。
还有一些常染色体显性遗传病,在病情表现上可有明显的轻重差异,纯合子患者病情严重,杂合子患者病情轻,这种情况称不完全外显。
常见常染色体显性遗传病的病因和临床表现1、多指(趾)、并指(趾)。
临床表现:5指(趾)之外多生1~2指(趾),有的仅为一团软组织,无关节及韧带,也有的有骨组织。
高中生物遗传的知识总结生物遗传是生物学中的一门重要学科,主要研究物质的遗传变异和遗传规律。
生物遗传在高中生物学课程中占据重要地位,对于理解生物的基本原理和进化机制具有重要作用。
以下是关于高中生物遗传知识的总结。
一、基因的概念和发现:1. 基因是决定个体遗传特征的基本单位,是DNA分子的一部分。
2. 莫尔根通过斑点草蝇的实验发现了基因的存在和分布规律。
二、基因的组成和结构:1. 基因组成:基因由DNA分子组成,DNA是由核苷酸组成的,包括脱氧核糖、磷酸基团和嘌呤碱基和嘧啶碱基。
2. 基因的结构:基因由外显子和内含子组成,外显子决定了蛋白质的编码序列,内含子没有编码功能。
三、染色体的遗传:1. 染色体是细胞核中遗传物质的携带者,由DNA和蛋白质组成。
2. 生物的体细胞染色体通常是成对存在,一对染色体来自于父亲,一对来自于母亲。
3. 遗传物质的分离和重组是由于染色体的交换和分裂。
四、遗传的规律:1. 孟德尔的遗传定律:包括单因素和双因素的自交和亲代的交配。
2. 隐性和显性遗传:隐性遗传指的是在基因重组时该特征不表现出来,需要两个隐性基因才能呈现该特征。
3. 基因的连锁和自由组合:基因连锁是指基因位于同一条染色体上,自由组合是指基因位于不同染色体上。
五、基因突变:1. 基因突变是基因的变异现象,包括点突变、染色体结构的改变和数目的改变等。
2. 点突变包括错义突变、无义突变和无移突变。
六、基因的表达和调控:1. 转录和翻译:转录是指DNA的信息被转录成mRNA,翻译是指mRNA的信息被翻译成蛋白质。
2. 底物和激活剂对基因的调控:底物和激活剂可以通过结合到基因的启动子或诱导子上来调控基因的表达。
七、遗传的分子机制:1. DNA复制:DNA复制是指DNA分子通过酶的作用复制成两条完全相同的DNA分子。
2. 重组和基因转移:重组是指基因的重新组合,基因转移是指基因从一个个体到另一个个体的转移。
总而言之,高中生物遗传知识的学习和理解,不仅有助于对个体遗传特征和物种进化机制的理解,也对疾病的诊断和治疗方案的制定具有重要意义。
高中生物分子遗传学知识点总结分子遗传学是现代生物学的重要分支,它研究的是生物生命活动的基础,也是基因功能和遗传信息传递的重要领域。
以下是高中生物分子遗传学的一些重要知识点总结。
一、DNA的结构和复制1. DNA的结构:DNA是由核苷酸单元组成的双螺旋结构,包含磷酸基团、五碳糖(脱氧核糖)、碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳥嘧啶)。
2. DNA的复制:DNA复制是指在细胞分裂过程中,通过酶的作用,将DNA的两条链分离后,以互补碱基配对的方式合成两条新的DNA 链。
二、RNA的结构和转录1. RNA的结构:RNA也是由核苷酸单元组成,但是它只包含单条链,其中糖骨架使用的是核糖。
2. 转录:转录是指将DNA模板上的遗传信息转化为RNA分子的过程。
在转录过程中,DNA的一部分被解开,形成一个可供RNA聚合酶进行配对合成的模板。
三、遗传密码和翻译1. 遗传密码:遗传密码是指RNA的核苷酸序列与氨基酸序列之间的对应关系。
共有64个密码子,其中61个密码子对应给定的氨基酸。
2. 翻译:翻译是指将mRNA上的核苷酸序列翻译成蛋白质的过程。
在翻译过程中,mRNA的信息被带有氨基酸的tRNA识别,最终形成多肽链。
四、基因表达的调控1. 甲基化:甲基化是一种通过在DNA分子上添加甲基基团来改变基因表达的方式。
甲基化可以抑制基因的转录,从而调控基因的表达水平。
2. 转录因子:转录因子是一类能够结合到DNA上的蛋白质,它们能够促进或抑制基因的转录。
转录因子的不同结合方式和组合可以导致不同的基因调控模式。
五、基因突变和遗传疾病1. 点突变:点突变是指DNA序列中一个单个碱基的改变,可能导致蛋白质结构的改变,进而导致遗传疾病的发生。
2. 染色体突变:染色体突变包括染色体结构的改变和数目的改变,可能导致严重的遗传病。
六、逆转录和重组DNA技术1. 逆转录:逆转录是指将RNA作为模板合成DNA的过程,由逆转录酶完成。
逆转录在病毒的复制和细胞中的转座子等过程中起到重要作用。
高中遗传学知识点总结高中遗传学是生命科学中非常重要的一个领域,主要研究生物的遗传变异、遗传基因的控制和遗传疾病的预防和治疗。
以下是高中遗传学的一些重要知识点总结。
1. 遗传基因遗传基因是生物体内遗传信息的载体,是 DNA 或 RNA 分子上的一段序列。
遗传基因控制着生物的性状表现,包括形态、生理和生化等方面。
遗传基因可以通过突变、重组和传递等途径进行变异,从而导致生物的遗传变异。
2. 遗传变异遗传变异是指生物体基因组中的变异,包括基因突变和染色体变异。
基因突变是指 DNA 碱基对的替换、增添或缺失,从而导致生物体的性状改变。
染色体变异是指染色体结构的变异,如缺失、增加或易位等,也会导致生物体的性状改变。
3. 遗传疾病遗传疾病是指由遗传基因变异引起的疾病,通常表现为家族性或遗传性。
常见的遗传疾病包括自闭症、先天性失聪、地中海贫血症等。
4. 遗传传递遗传传递是指遗传基因从亲代向子代的传递过程。
遗传传递可以通过自然传递和人工传递两种方式进行。
自然传递是指亲代将遗传基因传递给子代,通常是通过生殖细胞来实现的。
人工传递是指通过人工操作将遗传基因传递给子代,如基因编辑和基因转移等。
5. 遗传基因控制遗传基因控制是指通过遗传基因来控制生物的性状表现。
遗传基因可以通过调节蛋白质的表达来控制生物的生理和生化反应,从而实现对生物性状的控制。
6. 遗传图谱遗传图谱是指通过绘制遗传图谱来研究遗传基因控制的研究方法。
遗传图谱可以通过连锁分析和遗传标记等方法来研究遗传基因的位置和连锁关系,从而揭示遗传基因控制生物性状的机制。
以上是高中遗传学的一些重要知识点总结。
在学习遗传学时,需要注意遗传学的基本概念、变异和遗传的原理,以及遗传疾病和遗传图谱的研究方法。
同时,还需要结合实际情况进行思考,理解遗传学在实际生活中的应用。
高中生物:遗传学知识点总结
1. 遗传学的基本概念
遗传学是生物学的一个重要分支,研究物质的遗传传递和变异。
它研究了物种的遗传特征如何从一代传递到下一代,并探索了基因
在这个过程中的作用。
2. 孟德尔遗传定律
约翰·孟德尔是遗传学的奠基人,他通过对豌豆的研究提出了
三个重要的遗传定律:
- 第一法则,也称为分离规律:当纯合的个体(纯合子)自交
或互交时,后代的表型和等位基因的比例符合一定的规律。
- 第二法则,也称为自由组合规律:基因分离和分布是独立进
行的,一个基因的表现不受其他基因的影响。
- 第三法则,也称为隔离规律:同源染色体上的基因在两性生
殖细胞的形成过程中会分离。
3. 基因和染色体
基因是生物体内的遗传物质,是生物性状的载体。
基因通过遗
传物质DNA存在于染色体上。
人类的大部分细胞都有46条染色体,其中23对是由父母分别传递的。
4. 遗传的方式
遗传传递主要有两种方式:显性遗传和隐性遗传。
显性遗传是
指某个性状在基因上表现为显性的,即只需有一个显性基因即可表
现出来。
隐性遗传是指某个性状在基因上表现为隐性的,需要两个
隐性基因才能表现出来。
5. 基因突变
基因突变是指基因发生了改变,导致个体的基因型发生变异。
基因突变可能是由于DNA复制时的错误或外界环境因素引起的,
它是遗传变异的重要原因。
以上是关于高中生物遗传学的一些基本知识点总结。
掌握这些
知识,有助于我们理解物种的遗传特征传递和变异的规律,以及基
因在这个过程中的作用。
高中生物遗传学知识点总结高中生物遗传学知识1一、显、隐性的判断:①性状分离,分离出的性状为隐性性状;②杂交:两相对性状的个体杂交;③随机交配的群体中,显性性状》隐性性状;④假设推导:假设某表型为显性,按题干的给出的杂交组合逐代推导,看是否符合;再设该表型为隐性,推导,看是否符合;最后做出判断;二、纯合子杂合子的判断:①测交:若只有一种表型出现,则为纯合子(体);若出现两种比例相同的表现型,则为杂合体;②自交:若出现性状分离,则为杂合子;不出现(或者稳定遗传),则为纯合子;注意:若是动物实验材料,材料适合的时候选择测交;若是植物实验材料,适合的是测交和自交,但是最简单的方法为自交;三、基因分离定律和自由组合定律的验证:①测交:选择杂合(或者双杂合)的个体与隐性个体杂交,若子代出现1:1(或者1:1:1:1),则符合;反之,不符合;②自交:杂合(或者双杂合)的个体自交,若子代出现3:1(1:2:1)或者9:3:3:1(其他的变式也可),则符合;否则,不符合;③通过鉴定配子的种类也可以;如:花粉鉴定;再如:通过观察雄峰的表型及比例推测蜂王产生的卵细胞的种类进而验证是否符合分离定律。
高中生物遗传学知识2一、自交和自由(随机)交配的相关计算:①自交:只要确定一方的基因型,另一方的出现概率为“1”(只要带一个系数即可);②自由交配:推荐使用分别求出双亲产生的配子的种类及比例,再进行雌雄配子的自由结合得出子代(若双亲都有多种可能的基因型,要讲各自的系数相乘)。
注意:若对自交或者自由交配的后代进行了相应表型的选择之后,注意子代相应比例的改变。
二、遗传现象中的“特殊遗传”:①不完全显性:如Aa表型介于AA和aa之间的现象。
判断的依据可以根据分离比1:2:1变化推导得知;②复等位基因:一对相对性状受受两个以上的等位基因控制(但每个个体依然只含其中的两个)的现象,先根据题干给出的信息确定出不同表型的基因型,再答题。
③一对相对性状受两对或者多对等位基因控制的现象;⑤致死现象,如某基因纯合时胚胎致死,可以根据子代的分离比的偏离情况分析得出,注意该种情况下得到的子代比例的变化。
生物高考生物遗传学知识点归纳遗传学是生物学的重要分支,涉及到生物遗传性状的传递、变异、进化等方面的研究。
对于高考生物考试来说,遗传学知识点是必须要掌握的内容之一。
本文将对生物高考遗传学知识点进行归纳和总结,帮助考生更好地复习和备考。
一、基本概念1. 遗传学的定义:遗传学是研究生物遗传现象发生、发展规律的科学。
2. 基因的定义:基因是生物体内能控制一种性状的功能单位,由DNA分子构成。
3. 真核生物基因的结构:真核生物基因由外显子和内含子组成,外显子决定蛋白质的编码信息,而内含子则参与剪接过程。
4. 基因型与表现型:基因型是指个体基因的组成,而表现型是指基因型在外部环境下所显示的形态、生理和行为特征。
二、遗传基因的分离与组合1. 孟德尔遗传定律:包括单因素遗传、分离定律和自由组合定律。
单因素遗传是指由一对等位基因决定的性状传递规律;分离定律是指在杂合子自交过程中,等位基因分离分配到不同的生殖细胞中;自由组合定律是指在自由组合的条件下,不同基因对的配子自由组合。
2. 基因的显性与隐性:显性基因表现在杂合子和纯合子中,而隐性基因只表现在纯合子中。
3. 位点和等位基因:位点是基因位于染色体上的一段DNA序列,而等位基因是指同一位点上的不同基因。
4. 基因的自由组合和连锁不平衡:自由组合是指不同位点上的基因自由组合在配子中;连锁不平衡是指两个位点上的基因很少发生重组而连在一起传递。
三、遗传的分离和联合1. 温和度:指两个等位基因在显性、隐性和中间表现三个表型之间的相对强弱程度。
2. 不完全显性与共显性:不完全显性是指杂种表现出中间表型,而不同纯合子的表型之间没有中间表型;共显性是指一对基因共同表现在同一亲代基因型中。
3. 多基因性状的分离与组合:多基因性状受多对基因共同控制,表现为连续变异。
四、遗传的变异与进化1. 变异的类型:包括基因突变、染色体畸变和种群遗传变异。
2. 自然选择:适应环境条件的个体能生存下来并繁殖,不适应环境条件的个体会被淘汰,进而导致种群结构的变化。
生物必修二知识点总结一、遗传的基本规律(1)基因的分离定律①豌豆做材料的优点:(1)豌豆能够严格进行自花授粉,而且是闭花授粉自然条件下能保持纯种。
(2)品种之间具有易区分的性状。
②人工杂交试验过程:去雄(留下雌蕊)→套袋(防干扰)→人工传粉③一对相对性状的遗传现象:具有一对相对性状的纯合亲本杂交,后代表现为一种表现型,F1代自交,F2代中出现性状分离,分离比为3:1。
④基因分离定律的实质:在杂合子的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性,生物体在进行减数分裂时,等位基因会随同源染色体的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。
(2)基因的自由组合定律①两对等位基因控制的两对相对性状的遗传现象:具有两对相对性状的纯合子亲本杂交后,产生的F1自交,后代出现四种表现型,比例为9:3:3:1。
四种表现型中各有一种纯合子,分别在子二代占1/16,共占4/16;双显性个体比例占9/16;双隐性个体比例占1/16;单杂合子占2/16×4=8/16;双杂合子占4/16;亲本类型比例各占9/16、1/16;重组类型比例各占3/16、3/16 ②基因的自由组合定律的实质:位于非同源染色体上的非等位基因的分离或组合是互不干扰的。
在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时非同源染色体上的非等位基因自由组合。
③运用基因的自由组合定律的原理培育新品种的方法:优良性状分别在不同的品种中,先进行杂交,从中选择出符合需要的,再进行连续自交即可获得纯合的优良品种。
记忆点: 1.基因分离定律:具有一对相对性状的两个生物纯本杂交时,子一代只表现出显性性状;子二代出现了性状分离现象,并且显性性状与隐性性状的数量比接近于3:1。
2.基因分离定律的实质是:在杂合子的细胞中,位于一对同源染色体,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随着的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。
高二生物《生物遗传学》知识点整理1.染色体组型:常染色体、性染色体女性:44条常染色体+X染色体,44条常染色体+X染色体男性:44条常染色体+X染色体,44条常染色体+Y染色体统计红绿色盲发病率男性7%,女性0.5% 为伴X隐性遗传常染色体遗传分为显性遗传、隐性遗传性染色体遗传分为伴X显性遗传、伴X隐性遗传、伴Y遗传* 遗传的规律要记住显性的病率高,隐形的病率低,常染体无论显隐性男女得病几率一样高做题先判断显隐性,在判断在常染色体上还是性染色体上2.遗传规律常染色体:无中生有为隐性,生女患病为常隐有中生无为显性,生女患病为常显伴性遗传:伴X隐性遗传:母病子必病,女病父必病伴X显性遗传:子病母必病,父病女必病做题先把思路缕清,判断显隐性3.人类遗传病伴性染色体隐性遗传病:血友病、红绿色盲常染色体隐性遗传:白化病4.基因的本质(1)从结构上基因是DNA上一个个特定的片段,一个DNA分子上有许多个基因基因与DNA结构一样,是由四种脱氧核苷酸按一定顺序排列而成的,也是双螺旋结构基因中脱氧核苷酸(碱基对)的排列顺序代表遗传信息(2)从功能上基因具有遗传效应,即基因能控制生物的性状,基因是控制生物性状的基本单位,特定的基因决定特定的性状5.实验分析同源染色体的分离发生在减数第一次分裂后期实验的目的:找出遗传物质蛋白质的分子结构:一级结构:组成蛋白质多肽链的线性氨基酸序列。
二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠。
三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。
四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。
DNA使S型菌转化成R型菌,产生稳定遗传浓度越高,转化越多细菌噬菌体实验:上层液:噬菌体的蛋白质外壳、未侵染的噬菌体、侵染并释放的噬菌体。
沉淀物:细菌、被噬菌体侵染的细菌。
分离,分别标记看图分析DNA是遗传物质,蛋白质不是回答用主要是DNA遗传物质(绝大多数)实验结论:噬菌体注入宿主菌细胞内的物质是DNA,释放出来的是跟原先感染细菌细胞一样的噬菌体。
高中生物遗传的知识点总结遗传学是高中生物课程中的一个重要组成部分,它涉及生物体性状的传递和变异规律。
以下是高中生物遗传的知识点总结:1. 遗传的物质基础- DNA是主要的遗传物质,它的结构为双螺旋。
- 基因是DNA分子上的一段特定序列,负责编码生物体的特定性状。
- 染色体是DNA和相关蛋白质的复合体,存在于细胞的核中。
2. 孟德尔遗传定律- 孟德尔通过豌豆植物的杂交实验,提出了遗传的两个基本定律:分离定律和自由组合定律。
- 分离定律:在有性生殖过程中,一个性状的两个等位基因在形成配子时分离,每个配子只含有一个等位基因。
- 自由组合定律:不同性状的基因在形成配子时,它们的分离和组合是相互独立的。
3. 遗传的模式- 显性和隐性:显性基因在杂合子中能够表现出来,而隐性基因则不能。
- 等位基因:控制同一性状的不同形式的基因。
- 纯合子和杂合子:纯合子指两个等位基因相同的个体,杂合子则是指两个等位基因不同的个体。
4. 性别遗传- 性染色体:决定性别的染色体,人类中女性为XX,男性为XY。
- 性别连锁遗传:某些基因位于性染色体上,因此其遗传与性别相关联。
5. 遗传变异- 基因突变:基因序列发生改变,可能导致新的性状出现。
- 基因重组:在有性生殖过程中,父母的基因重新组合,产生新的基因型。
6. 人类遗传病- 单基因遗传病:由单个基因突变引起的遗传病,如遗传性肌营养不良。
- 多基因遗传病:由多个基因及环境因素共同作用引起的遗传病,如高血压、糖尿病。
- 染色体异常遗传病:由染色体数目或结构异常引起的遗传病,如唐氏综合症。
7. 遗传学的应用- 基因治疗:通过改变或替换异常基因来治疗遗传病。
- 遗传工程:通过人工手段改变生物体的遗传特性,如转基因技术。
8. 遗传咨询- 遗传咨询旨在帮助个体和家庭了解遗传病的风险,并提供相关的预防和治疗建议。
9. 遗传学实验技术- PCR技术:用于快速复制特定DNA片段的技术。
- DNA测序:确定DNA分子中精确的核苷酸序列。
高考遗传知识点总结遗传学是生物学中重要的一个分支,研究基因传递的规律以及遗传变异的机制。
在高考生物考试中,遗传学是一个重要的考察点,不仅包括基本原理,还包括相关的遗传工程技术和应用。
下面对高考遗传知识点进行总结。
一、基本遗传原理1. 遗传基因遗传基因是决定个体性状的遗传信息的基本单位。
在高考中,要了解基因的组成,基因座、等位基因的概念,以及基因的分离定律。
2. 隐性和显性隐性和显性是描述基因表现方式的概念。
在高考中,需要了解隐性基因和显性基因的区别,以及显性和隐性基因的遗传规律。
3. 孟德尔遗传定律孟德尔遗传定律是遗传学的基本原理之一,包括自由组合定律、两性花雄蕊雌蕊雌雄同体性和主要性状与次要性状的分离定律。
在高考中,要熟练掌握孟德尔遗传定律的具体内容,并能够运用到遗传学问题的解决中。
4. 染色体和性别遗传染色体是携带遗传信息的载体,性别遗传是染色体遗传的一个重要方面。
在高考中,需要了解染色体的结构和功能,以及性别决定的遗传规律。
5. 遗传变异变异是生物进化的基础,也是遗传学的重要内容。
在高考中,要了解遗传变异的类型和原因,以及变异对个体性状的影响。
二、遗传工程技术1. 基因工程基因工程是利用基因工程技术对生物体进行基因改造的方法。
在高考中,需要了解基因工程技术的原理和方法,以及基因工程在生物科学和医学领域的应用。
2. 克隆技术克隆技术是利用细胞核移植或者重组DNA技术获得与原始生物一样的或者类似的生物体的方法。
在高考中,需要了解克隆技术的基本原理和方法,以及克隆技术在生物科学和医学领域的应用。
3. 基因编辑技术基因编辑技术是一种精准编辑基因序列的方法,能够对细胞基因组进行精准的修改。
在高考中,需要了解基因编辑技术的原理和方法,以及基因编辑技术在生物科学和医学领域的应用。
三、遗传学在生物科学和医学领域的应用1. 遗传疾病和遗传咨询遗传疾病是由遗传因素所导致的疾病,包括单基因遗传病和多基因遗传病。
高中生物——遗传学知识整理1、染色体组型:也叫核型,是指一种生物体细胞中全部染色体的数目、大小和形态特征。
观察染色体组型最好的时期是有丝分裂的中期。
2、性别决定:一般是指雌雄异体的生物决定性别的方式。
3、性染色体:决定性别的染色体叫做性染色体。
4、常染色体:与决定性别无关的染色体叫做常染色体。
5、伴性遗传:性染色体上的基因,它的遗传方式是与性别相联系的,这种遗传方式叫做伴性遗传。
语句:1、染色体的四种类型:中着丝粒染色体,亚中着丝粒染色体,近端着丝粒染色体,端着丝粒染色体。
2、性别决定的类型:(1)XY型:雄性个体的体细胞中含有两个异型的性染色体(XY),雌性个体含有两个同型的性染色体(XX)的性别决定类型。
(2)ZW型:与XY型相反,同型性染色体的个体是雄性,而异型性染色体的个体是雌性。
蛾类、蝶类、鸟类(鸡、鸭、鹅)的性别决定属于“ZW”型。
3、色盲病是一种先天性色觉障碍病,不能分辨各种颜色或两种颜色。
其中,常见的色盲是红绿色盲,患者对红色、绿色分不清,全色盲极个别。
色盲基因(b)以及它的等位基因——正常人的B就位于X染色体上,而Y染色体的相应位置上没有什么色觉的基因。
4、色盲的遗传特点:男性多于女性一般地说,色盲这种病是由男性通过他的女儿(不病)遗传给他的外孙子(隔代遗传、交叉遗传)。
色盲基因不能由男性传给男性)。
5、血友病简介:症状——血液中缺少一种凝血因子,故凝血时间延长,或出血不止;血友病也是一种伴X隐性遗传病,其遗传特点与色盲完全一样。
DNA是主要的遗传物质1.19世纪末叶,生物学家通过对细胞的有丝分裂、减数分裂和受精过程的研究,认识到染色体在生物的遗传中具有重要的作用。
染色体的化学组成如何?到底哪种成分才是遗传物质? 染色体主要由DNA和蛋白质组成,还含有少量的RNA。
由于染色体不是单一物质组成,因而,遗传物质到底是DNA,还是蛋白质的争论相当激烈,随着噬菌体侵染大肠杆菌实验的进行,使人们普遍接受了DNA才是遗传物质的结论。
高考生物遗传知识点遗传是生物学中重要的内容之一,也是高考生物考试的重要知识点之一。
遗传涉及到基因、染色体、遗传变异等概念。
下面将从遗传的基本规律、遗传变异以及遗传工程等方面来介绍高考生物的遗传知识点。
一、遗传的基本规律1. 孟德尔遗传定律孟德尔通过对豌豆的杂交实验,总结出了遗传的基本规律。
第一定律是同质性及分离定律,即杂交的父代在纯合子后代中的基因分离,分别传给下一代;第二定律是独立性及自由组合定律,即基因的遗传是相互独立的,不会相互影响;第三定律是组合性定律,即不同性状的基因可以独立转移到后代。
2. 表现型和基因型遗传的基本单位是基因,基因决定了生物的性状。
表现型指的是生物在外部表现出的性状,而基因型则是指生物内部携带的基因组合情况。
二、遗传变异遗传变异是生物在繁殖过程中因基因组合不同而导致的个体之间的差异。
遗传变异的主要来源有基因突变、基因重组和基因重组的结果。
1. 基因突变基因突变是指基因的突然发生的改变,可能是由于DNA的突变、染色体的突变或基因的重组等原因导致。
基因突变可以分为点突变、缺失突变、插入突变和转座子突变等。
2. 基因重组基因重组是指在染色体发生交换时,基因顺序的重新组合。
这种基因的交换通常发生在配子形成过程中,通过基因重组可以产生新的基因组合,使得个体之间有更大的遗传差异。
3. 基因重组的结果基因重组可以导致基因频率的改变,进而影响种群的遗传结构。
它可以增加种群的遗传多样性,提高适应环境的能力。
然而,基因重组也可能导致一些不利性的突变,甚至导致一些疾病的发生。
三、遗传工程遗传工程是指将人工合成的DNA片段或整个基因转移到其他生物体中,以改变生物的遗传特征。
遗传工程在农业、医学和工业等领域都有广泛的应用。
1. 基因克隆基因克隆是指将某个生物体的基因提取出来,并通过重组DNA技术插入到其他生物体中,从而让目标生物体也具有这一特定基因。
基因克隆在医学上有着重要的应用,可以用于治疗某些遗传病。
高中生物基因遗传知识点总结随着生物技术的发展,基因遗传学逐渐成为生物学研究的重点之一。
高中生物课程中也涉及了基因遗传学的部分内容。
本文将对高中生物基因遗传学的知识点进行总结和归纳,希望能够对需要学习和掌握这些知识点的同学提供帮助。
1.基因与染色体基因是指控制生物遗传性状表现的功能单位。
染色体是遗传信息的载体,其中包括基因。
在人类中,有23对染色体,其中22对为体染色体,另一对为性染色体。
性染色体分为X染色体和Y染色体,男性为XY,女性为XX。
2.基因型与表型基因型是指一个个体所拥有的基因,包括显性基因和隐性基因。
表型是指个体在外部表现出的性状,由基因型和环境因素共同决定。
3.遗传规律3.1孟德尔遗传定律孟德尔遗传定律是指自然界中存在着两个相对独立的因素,即基因和性状,它们以一个很简单的方式组合。
孟德尔通过豌豆杂交实验,探讨了基因和性状之间的关系,得出了遗传规律:分离定律、自由组合定律和优势和劣势定律。
3.2显性基因和隐性基因显性基因指在杂合子中,表现出来的性状,比如说红花颜色。
隐性基因指在杂合子中,掩盖显性基因所表现的性状,但在纯合子中会表现出来,比如说白花颜色。
3.3基因的互作基因的互作指基因之间相互影响的关系,包括两种类型:基因的配合作用和基因的拮抗作用。
基因的配合作用指两个或多个基因之间能够产生合作作用从而形成新的性状,比如说豌豆形状和种皮颜色。
基因的拮抗作用指两个或多个基因之间相互抵消,从而使表现出来的性状中体现出各自的优劣势,比如说人类中的血型。
3.4性连锁遗传性连锁遗传是指某些性染色体基因所控制的遗传特征以性别为分界线,只在一个性别中表现出来。
例如在人类中,眼色、色盲和血友病等遗传特征都是由性染色体控制的,其中眼色由X染色体控制,色盲和血友病均由X染色体的缺失或突变所造成。
4.突变和基因多样性突变是指基因序列发生的随机和突发的改变。
它是基因多样性的重要来源,能够产生新的基因型和性状。
高中生物遗传学知识点总结高中生物遗传学知识点—伴性遗传高中生物伴性遗传知识点总结:伴性遗传的最大特点就是性状与性别的关联,这部分常考题目主要有伴性遗传的判断和相关计算。
判断是伴性遗传还是常染色体遗传,常用同型的隐形个体与异型的显性个体杂交,根据后代的表现型进行判断。
以XY型性别决定的生物为例,如果为伴X隐性遗传,雌性隐性个体与雄性显性个体杂交,如果后代雄性个体中出现了显性性状,即为常染色体遗传,否则即为伴X遗传。
高中生物遗传学知识点—遗传病常见遗传病的遗传方式有以下这几种:(1)单基因遗传:常染色体显性遗传:并指、多指;常染色体隐性遗传:白化病、失天性聋哑X连锁隐性遗传:血友病、红绿色盲;X连锁显性遗传:抗维生素D佝偻病;Y连锁遗传:外耳道多毛症;(2)多基因遗传:唇裂、先天性幽门狭窄、先天性畸形足、脊柱裂、无脑儿;(3)染色体病:染色体数目异常:先天性愚型病;染色体结构畸变:猫叫综合症。
单基因遗传:单基因遗传病是指受一对等位基因控制的遗传病,较常见的有红绿色盲、血友病、白化病等。
根据致病基因所在染色体的种类,通常又可分四类:一、常染色体显性遗传病致病基因为显性并且位于常染色体上,等位基因之一突变,杂合状态下即可发病。
致病基因可以是生殖细胞发生突变而新产生,也可以是由双亲任何一方遗传而来的。
此种患者的子女发病的概率相同,均为1/2。
此种患者的异常性状表达程度可不尽相同。
在某些情况下,显性基因性状表达极其轻微,甚至临床不能查出,种情况称为失显。
由于外显不完全,在家系分析时可见到中间一代人未患病的隔代遗传系谱,这种现象又称不规则外显。
还有一些常染色体显性遗传病,在病情表现上可有明显的轻重差异,纯合子患者病情严重,杂合子患者病情轻,这种情况称不完全外显。
常见常染色体显性遗传病的病因和临床表现1、多指(趾)、并指(趾)。
临床表现:5指(趾)之外多生1~2指(趾),有的仅为一团软组织,无关节及韧带,也有的有骨组织。
高二生物遗传学知识点总结遗传学是生物学的一个重要分支,研究物种内部和物种间遗传信息的传递和变化规律。
在高二生物学习中,我们学习了许多遗传学知识点,下面将对这些知识点进行总结。
一、DNA的结构和复制
1. DNA的结构
DNA是一种长链状的分子,由磷酸、糖(脱氧核糖)和四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成。
DNA的结构是双螺旋状的,由两条互补的链相互缠绕而成。
2. DNA的复制
DNA复制是指将一个DNA分子复制成两个完全相同的分子。
复制过程中,DNA双链被解开,每条链上的碱基配对原则使其成为模板,合成一条新的互补链。
这一过程保证了遗传信息的传递和稳定。
二、基因和染色体
1. 基因
基因是决定生物形态和功能的遗传单位,它位于染色体上。
基因由DNA编码,通过RNA和蛋白质的合成来表达。
2. 染色体
染色体是存在于细胞核中的遗传物质,它携带了生物个体遗传信息的大部分。
染色体由DNA和蛋白质组成,可分为体细胞染色体和生殖细胞染色体两种。
三、基因的表达与调控
1. 转录与翻译
基因的表达是指将基因内的信息转录成RNA,再通过翻译转化为蛋白质的过程。
转录发生在细胞核中,翻译发生在细胞质中。
2. 调控
基因的表达可以被调控,从而使细胞在不同的环境条件下产生不同的功能蛋白质。
调控机制包括转录调控和转录后调控两个层次。
四、遗传与进化
1. 遗传
遗传是指生物个体将其遗传信息传递给下一代的过程。
遗传通
过基因的组合和基因的突变来实现。
2. 进化
进化是物种在环境变化中适应和变异的过程。
进化的重要驱动
力是自然选择,优势基因会在环境适应中逐渐传递给后代,导致
物种的适应性改变。
五、遗传性疾病和基因工程
1. 遗传性疾病
遗传性疾病是由基因突变引起的疾病,可传递给后代。
常见的
遗传性疾病包括遗传性耳聋、先天性心脏病等。
对于一些遗传疾病,基因治疗成为人们研究的方向之一。
2. 基因工程
基因工程是对生物基因进行改造和调控的技术,广泛应用于医药、农业和工业等领域。
基因工程的发展为人类带来了许多好处,但也涉及一些伦理和安全问题。
总结:高二生物遗传学知识点涵盖了DNA的结构和复制、基因和染色体、基因表达与调控、遗传与进化、遗传性疾病和基因工程等内容。
通过深入学习这些知识,我们可以更好地理解生物的遗传规律,为未来的科学研究和医学发展做出贡献。
遗传学知识的掌握不仅关乎考试成绩,更关乎对生命奥秘的探索和对人类共同未来的影响。