小升初立体图形练习
- 格式:doc
- 大小:57.50 KB
- 文档页数:2
立体图形专项训练1、将表面积分别为54平方厘米,96平方厘米和150平方厘米的三个铁块正方体融成一个大正方体(不记损耗),求这个大正方体的体积。
2、在一个长15分米,宽12分米的长方体水箱中,有10分米深的水。
如果在水中沉入一个棱长为30厘米的正方体铁块,那么,水箱中水深多少分米?3、一个长方体容器的底面是一个边长为60厘米的正方形,容器里直立着一个高1米、底面边长都是15厘米的长方体铁块。
这时容器里的水深0.5米。
如果把铁块取出,容器里的水深多少厘米?4、有一个长方体冰箱,从里面量长40厘米,宽30厘米,高35厘米,箱中水面高10厘米。
放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。
这时水面高是多少厘米?5、一个长方体,不同的三个面的面积分别是35平方厘米,21平方厘米和15平方厘米,且长、宽、高都是质数。
这个长方体的体积是多少立方厘米?6、一个长方体,如果高增加3厘米,就变成一个正方体,这时表面积比原来增加48平方厘米,原来长方体的体积是多少厘米?7、一个直角三角形,两条直角边分别是3厘米、4厘米,怎样旋转体积最大?最大体积是多少?8、一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,求剩下的体积是原正方体的百分之几?9、两个相同的圆锥容器中盛一些水(如图),水深都是圆锥高的一半,那么甲容器中的水的体积是乙容器中水的几倍?10、已知一个圆锥体的底面半径和高都等于一个正方体的棱长,这个正方体的体积是216立方分米,求这个圆锥体的体积?11、在底面半径为60厘米的正方形的一个长方体容器里,直立放着一个长100厘米,底面边长为15厘米的正方形的四棱锥铁棍,这时容器里的水50厘米深,现在把铁棍轻轻地向上方提起24厘米,露出水面的四棱柱铁棍浸湿部分长多少厘米?12、一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图,已知它的容积为26.4π立方厘米。
当瓶子正放时,瓶内的酒精的液面高为6厘米。
2019-2020学年度人教版数学六年级下册小升初专题练习:立体图形一、选择题)。
A. B. C.2.长方体的火柴盒外壳有多少个面()A. 2B. 3C. 4D. 53.下列形状的纸片中,不能围成圆柱形纸筒的是()A. B. C. D.4.下图中的正方体、圆柱体和圆锥体的底面积相等,高也相等。
下面说法正确的是()。
A. 圆锥的体积是圆柱体积的3倍。
B. 圆柱的体积比正方体的体积小一些。
C. 圆锥的体积是正方体体积的。
D. 以上说法都不对。
5.圆柱的底面直径和高都是8厘米,这个圆柱的表面积是()平方厘米。
A. 100.48B. 301.44C. 200.96D. 251.26.圆锥的体积是120立方分米,底面积是10平方分米,高是()分米.A.12B.24C.36D.487.一个圆柱,底面直径和高都是2分米,这个圆柱的表面积是()平方分米.A. 6πB. 5πC. 4π8.油漆圆柱形柱子,要计算油漆的面积有多大,就是求()A. 体积B. 表面积C. 侧面积9.圆柱的底面周长是6.28cm,高是10cm;长方体的底面是正方形的,底面周长和高与圆柱的相等.两个形体的表面积哪个大?正确的解答是()A. 两个形体表面积一样大B. 长方体的表面积大C. 无法确定D. 圆柱体的表面积大二、填空题(题型注释)10.如图的四个正方体堆放在墙角处,露在外面的有( )个面。
A. 6 B. 9 C. 15 D. 2411.两个长方体的表面积相等,它们的形状一定相同. .12.正方体的棱长扩大到原来的3倍,那么它的表面积扩大到原来的6倍,体积扩大到原来的9倍. .13.如果把圆柱的侧面展开可以得到一个长方形,这个长方形的长等于圆柱的底面 ,宽等于圆柱的 .14.把一个高为9分米的圆锥体钢坏,经熔铸后,成为一个与它等底的圆柱体,这个圆柱体的高是 .15.正方体的棱长扩大4倍,它的体积也扩大4倍. .16.这个长方体的前面与________面是完全相同的长方形,每个面的面积都是________平方分米;右面与________面完全相同,每个面的面积都是________平方分米;还有________面与________面完全相同,每个面的面积都是________平方分米.17.一个高6cm 的圆锥形容器盛满了水,倒入和它等底等高的圆柱形容器内,这时水面的高是(_______)cm 。
小升初试卷——立体图形综合专题二十四:立体图形综合(二)一、填空题(每题3分,共48分)1.一个圆柱体的侧面积是942cm²,体积是2355cm³,它的底面半径是 5 cm。
2.有底面积相等的圆锥体和圆柱体各一个,在空圆柱里装满水,然后倒入空圆锥里,倒三次正好装满,这个圆柱和圆锥高的比是 3:2.3.如图,是两个底面积相同的圆柱和圆锥形杯子,其中圆柱形杯子的盛有水,将水倒入圆锥形的杯子中刚好倒满,则圆柱的高与圆锥的高的比是 3:4.4.一个圆锥与一个圆柱的底面积相等,圆锥与圆柱的体积比是1:6,圆锥的高是4.8厘米,则圆柱的高是 28.8 厘米。
5.一个圆柱的侧面展开是一个正方形,这个圆柱的底面半径和高的比是 1:2.6.一个圆柱的底面周长是一个圆锥的底面周长的,而这个圆锥的高是圆柱高的 7/5,则圆锥的体积是圆柱体积的 49/125.7.有一种饮料的瓶身如图所示,容积是3升。
现在它里面装了一些饮料,正放时饮料高度是20厘米,倒放时空余部分高度为5厘米,则瓶内现有饮料 2 升。
8.有一个圆柱体,高是底面半径的3倍,将它如图分成大、小两个圆柱体,大圆柱体的表面积是小圆柱体的3倍。
那么,小圆柱体的体积是大圆柱体的 1/3.9.一个高10厘米的圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米,则这个圆柱体的体积是 314.0 立方厘米。
(π取3.14)10.如果将一个实心的楔形圆柱体金属零件放入一个盛有水的足够高的圆柱形中,尺寸如图所示,则该的水位将上升1.5 厘米。
11.把一个底面半径是9厘米的圆柱形木块沿底面直径竖直分成相同的两块,表面积增加了360平方厘米,则该圆柱的体积是720π 立方厘米。
12.将高为4cm,底面直径为6cm的圆柱A展开侧面,得到一个长为4cm,宽为6π cm的矩形,再将其围成不同于A的另一个圆柱B,则圆柱B的体积为72π cm³。
小升初数学复习专题《立体图形》练习一、填空题1.圆锥是由两个面组成,其中一个面是平面,另一个面是。
2.正方体的棱长是2a厘米,它的表面积是平方厘米,体积是立方厘米。
3.小明家挖了一个长为6m、宽为5m、深为2m的长方体地窖,这个地窖占地m2。
4.一个圆锥的体积是4.2dm3,底面积是0.9 dm2,高是。
5.一个正方体木块的棱长是6cm,把它削成一个最大的圆柱体,圆柱体的体积是cm3,再把这个圆柱体削成一个最大的圆锥体,圆锥体的体积约是cm3.6.圆柱的侧面沿高展开后是形或形。
一个圆柱的侧面沿高展开是正方形,正方形的边长是12.56cm,圆柱的底面积是cm2。
7.圆柱有个面是大小相同的圆,有一个面是面,圆柱的两个底面是半径相等的两个圆,两个底面间的距离叫做,圆柱周围的曲面叫做面。
8.把一个底面半径6厘米、高8厘米的圆柱体,切拼成一个近似的长方体,表面积比原来增加了平方厘米。
9.如图,在直角三角形MON中,MO=2cm,NO=5cm,如果分别以MO、NO边为轴旋转一周形M成圆锥,那么以MO为轴和以NO为轴的圆锥体积之比是。
二、单选题10.下面的图形中,()是正方体的展开图。
A.B.C.D.11.把一个圆柱的侧面展开,不可能得到()。
A.长方形B.正方形C.平行四边形D.梯形12.下列图形由()组成。
A.圆锥和圆柱B.圆柱和球体C.圆锥和球体D.圆锥和圆台13.小强测量一个土豆的体积,在一个棱长1分米的正方体容器中装了一些水,水面距离杯口2厘米(如图)。
他把土豆浸没在水中,有部分水溢出,接着他又把土豆取出来,水面下降了3厘米,土豆的体积是()立方厘米。
A.200B.500C.100D.30014.如图(单位:厘米),酒瓶中装有一些酒,倒进一只酒杯中,酒杯的直径是酒瓶内直径的一半,共能倒满()杯。
A.10B.15C.20D.3015.将一个棱长是6分米的正方体木块削成一个最大的圆锥,圆锥的体积是()立方分米。
通用版小升初专项复习:立体图形一、填空题1.下面图形以红色线为轴旋转后会得到圆锥吗,如果是说出圆锥的高和底面半径。
2.至少用个棱长1cm的小正方体可以拼成一个较大的正方体。
拼成这个大正方体的体积是,表面积是。
3.把一块长8dm、宽6dm、高5dm的长方体分割成两个完全相同的小长方体,则它的表面积最多增加dm2,最少增加dm2。
4.绕着一个圆锥形状的碎石堆的外边缘走一圈,要走18.84米.如果这堆碎石的高是2.4米,它的体积是立方米?5.一个底面半径是20cm、高是15cm的圆柱形铁块,可以熔铸成个底面直径是20cm、高是15cm的圆锥形铁块。
(损耗不计)6.一个圆柱的底面周长是6.28厘米,高5厘米,它的侧面积是,表面积是,体积是。
7.把一个底面直径为3厘米、高是5厘米的圆柱体沿直径切割成两个半圆柱,表面积增加了。
8.把一个棱长是3dm的正方体,切削成最大的圆柱,这个圆柱的侧面积是dm2。
9.5x=4y,那么x∶y=∶.二、单选题10.下面图形中,折叠后能围成正方体的是()。
A.B.C.D.11.一个圆锥的体积是141.3cm3,与它等底等高的圆柱的体积是()cm3。
A.47.1B.141.3C.282.6D.423.912.有一堆小麦如下图,从上面及侧面看,形状大致会是()A.三角形,圆形B.梯形,圆形C.圆形,长方形D.圆形,三角形13.如下图,这块石头的体积约是()cm3。
A.500B.1000C.5000D.6000 14.一个圆锥的体积是100立方厘米,底面积是50平方厘米,它的高是()厘米。
A.2B.23C.6D.1015.奇奇将圆柱内的水倒入()圆锥内,正好倒满。
A.B.C.D.16.学校买来420本课外书,按照人数的比分配给六年级3个班。
六(1)班42人,六(2)班50人,六(3)班48人。
六(3)班可分得()本。
A.126B.140C.144D.15017.如图所示的展开图中是左边的正方体的展开图的是()A.B.C.D.18.用一块长56.52cm、宽31.4cm的长方形铁皮,配上一块直径()cm的圆形铁皮可以做成一个容积最大的水桶。
苏教版数学小升初总复习例立体图形专项训练一、认真填空。
(每空4 分,共36 分)1.用6 升水正好倒满等底等高的一个圆柱形容器和一个圆锥形容器。
圆柱形容器的容积是( )升,圆锥形容器的容积是( )升。
2.把4 个棱长为1 厘米的正方体拼成一个长方体,拼成的长方体中表面积较小的是( )平方厘米。
3.如图是一个正方体的平面展开图,每个面上都有一个数,且满足相对的两个面上的数互为倒数,那么mn的值是( )。
4.一个棱长是2 分米的正方体容器中装满了水,将水全部倒入一个底面积是4 平方分米的圆锥形容器中,正好装满,这个圆锥形容器的高是( )分米。
5.做一节圆柱形通风管,底面直径是4 分米,侧面展开后正好是正方形,那么至少需要铁皮( )平方分米。
6.如图,一个直角三角形,以较长的直角边所在直线为轴旋转一周,形成圆锥A,以较短的直角边所在直线为轴旋转一周,形成圆锥B。
圆锥A 与圆锥B体积的最简整数比是( )。
7.【南通市】转化是我们在学习数学中经常用到的一种思想,如图,我们用两个完全相同的梯形拼成平行四边形,推导出了梯形的面积公式。
用这样的思路,可以求出图中立体图形的体积是( )立方分米。
如果要为这个立体图形制作一个长方体包装盒,至少要用( )平方分米的硬纸板。
(接头处忽略不计)二、慎重选择。
(每小题4 分,共20 分)1.如图,从一个正方体木块中挖去一个小正方体,它的体积减少了,表面积( )。
A.不变B.减少了C.增加了2.将一个底面周长是6.28 厘米的圆柱沿着底面直径和高平均切成若干份,拼成一个近似的长方体后,表面积增加了12.56 平方厘米,这个圆柱的高是( )厘米。
A.1 B.2 C.3.14 D.6.283.一个圆柱和一个圆锥的体积相等,圆柱的底面周长是圆锥底面周长的2倍,圆柱的高是圆锥高的( )。
A.112B.16C.6 倍D.144.【苏州市改编】华华在一个长方体玻璃容器中摆了若干个体积为1 立方厘米的小正方体。
小升初重点专题:立体图形计算题(专项训练)-学校数学六班级下册苏教版1.计算下面图形的体积2.操作题(1)求出长方体的表面积和棱长总和(单位:厘米)(2)求出正方体的体积。
(单位:厘米)3.下面是长方体的表面开放图,请算出它的表面积和体积(单位:厘米)4.石块的体积是多少cm35.将一个底边为4cm、高为3cm的直角三角形沿高旋转一周,求得到的图形的体积。
6.梁师傅有一个工具箱(如下图所示),工具箱的下半部分是棱长为20 cm的正方体,上半部分是圆柱的一半,请你算出它的体积和表面积。
7.如图是一个长方体纸盒的开放图,请算这个长方体的表面积。
8.观看长方体的开放图(下图),计算出这个长方体的表面积。
9.求下图的体积10.计算下面图形的表面积。
11.求下面图形的表面积。
12.计算下面图形的体积。
(单位:cm)(1)(2)13.分别计算下列各图形的体积。
你有什么发觉?(1)(2)(3)14.将图中的长方形,以虚线为轴旋转一周,得到的立体图形的体积是多少?15.一个底面周长为25.12厘米的圆柱体,从中间斜着截去一半后,截成的形体如下图,截后的体积是多少?16.求图形的表面积和体积。
17.下图是一个长方体灯笼面的开放图,假如要依据这个尺寸制作一个灯笼,至少需要多大面积的材料?18.一块长方形铁皮(如图),从四个角各切掉一个边长为3cm的正方形,然后做成盒子.这个盒子用了多少铁皮?它的容积有多少?19.如图是一种钢制的配件(图中数据单位:cm)请计算它的表面积和体积.答案解析部分1.【答案】解:3.14×3×3×8÷3=28.26×8÷3=226.08÷3=75.36(立方分米)答:圆锥的体积是75.36立方分米。
2.【答案】(1)解:(8×5+8×4+5×4)×2=(40+32+20)×2=92×2=184(平方厘米)(8+5+4)×4=17×4=68(厘米)答:长方体的表面积是184平方厘米,棱长总和是68厘米。
小升初分类练习题(一)立体图形姓名一、分析填空1、把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体,截成两个长方体,使这两个长方体的表面积之和最大.这时表面积之和是()平方厘米.2、把两个棱长都是a的正方体拼在一起成一个长方体,这个长方体的表面积是两个正方体表面积之和的() ()。
3、一个长方体的底面、侧面和前面的面积分别是12平方厘米、8平方厘米和6平方厘米.那么它的体积是()立方厘米。
4、把一根长8分米的长方体木料,正好锯成4个一样的正方体,表面积一共增加了()平方分米。
5、一个立体图形,从正面和右面看到的如下图.这个至少由()个正方体组成,最多可以由()个正方体组成.6、一个圆锥的体积是40立方厘米,比与它等底的圆柱体积小20立方厘米,如果圆锥的高10厘米,圆柱的高是()厘米7、有一个正方体,边长是5.如果它的左上方截去一个边长分别是5、3、2的长方体(如图),求它的表面积减少了()%。
8、一个圆锥的底面周长是一个圆柱的底面周长的2倍,并且圆柱的高是圆锥高的34,那么,圆柱的体积与圆锥体积的比是()。
9、一个和一个,底面直径的比是2:3,体积的比是3:2,高的比是()10、圆柱的底面半径等于圆锥的底面直径,圆柱的高与圆锥高的比是2:3,那么,圆柱体积是圆锥体积的()%。
11、一个圆锥与圆柱的底面积相等,已知圆锥的体积与圆柱体积的比是3:4,圆柱的高是4.8cm,圆锥的高是()cm12、一根圆柱,把它截成9个圆柱所得的表面积总和,比截成6个圆柱所得的表面积总和多180平方厘米,原来的底面积是()平方厘米。
13、把一个高是6分米的圆柱的底面分成许多个相等的扇形,然后把这个沿着扇形展开,拼成一个与它等底等高的近似长方体.这个长方体的表面积比增加了48平方分米,圆柱的体积是()立方分米。
14、小明做了这样一面旗,如下图,以BC为轴旋转一周形成一个立体图形,红色部分与绿色部分的体积比是()15、一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比是()。
2023-2024学年人教版六年级下册数学小升初专题训练:立体图形一、单选题1.一个底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是40厘米的正方形,这个铁箱的容积是() 升。
A.400B.4000C.4D.402.小明在一个底面积为48 cm2的长方体水槽中放入了一块石头(完全浸没,水未溢出)。
水面上升了2cm.这块石头的体积是() cm3.A.24B.50C.96D.1923.一块长是3分米,宽是2分米,体积是25.2立方分米的长方体木料,()完全放入一个长是3.1分米,宽是2.1分米,高是4分米的长方体纸箱内(纸箱厚度忽略不计)。
A.能B.不能C.不一定能D.条件不足,无法确定4.张华想将四个完全相同的小正方体纸箱堆放在墙角,()露在外面的面积最小。
A.B.C.D.5.一个长方体的长、宽、高分别扩大到原来的2倍,它的表面积扩大到原来的()倍。
A.2B.4C.6D.86.下面图()可以围成一个圆柱。
A.B.C.D.二、判断题7.等底等高的正方体、长方体,圆柱和圆锥的体积都相等。
()8.把28L水倒入一个从里面量长40cm、宽25cm、高40cm的长方体玻璃水槽中,这时水面距水槽口28cm。
()9.一个圆柱的侧面展开图是一个正方形,这个圆柱的底面直径与高的比是1:π。
()10.一个圆柱和一个圆锥的底面半径的比为2:1,高的比为1:1,那么圆柱和圆锥的体积比是4:1。
()11.8 个小正方体拼成的大正方体,拿走一个小正方体,如图,它的表面积和体积都变小了。
()12.一个圆柱的高不变,它的底面半径扩大到原来的2倍,体积扩大到原来的8倍。
()三、填空题13.在一个长10厘米、宽8厘米、高7厘米的长方体盒子里面最多能放个棱长为2厘米的小正方体。
(小正方体不外露)14.把两个底面直径为6cm,高为5cm 的圆柱拼成一个大圆柱,表面积(填“增加”或“减少”)cm2。
15.如图,把底面直径为6cm 的圆柱沿直径切成若干等份,拼成一个近似的长方体,这个长方体的表面积比原来增加60cm2,那么长方体的体积是cm3。
三、立体图形
例8. 用棱长是1厘米的立方块拼成如图所示的立体图形,问该图形的表面积是多少平方厘米?
例9.从边长为18厘米的正方形硬纸板的四角各去掉一个大小相同的正方形,然后,沿虚线折叠成一个无盖的长方体容器,这个容器的体积最大可以是多少立方厘米?
例10. 如图,用高都是l米,底面半径分别为l.5米、1米和0.5米的3个圆柱组成一个物
体.问这个物体的表面积是多少平方米?(π取3 14.)
例11.如图所示为一个棱长12厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是多少立方厘米?(π取3.14)
例12.在一只底面直径是40厘米,高度很高的圆柱形水缸里,有一个直径10厘米,高48厘米的圆锥形铸件完全浸于水中,取出铸件后,水缸里的水面将下降多少厘米?
例13. 皮球掉在一个盛有水的圆柱形水桶中,皮球的直径为12厘米,水桶底面直径为60厘米.皮球有3
2的体积浸在水中(右图)问皮球掉进水中后,水桶的水面升高多少厘米?
例l4. 有一块铁皮,是一个半径为5,圆心角为216°的扇形,要将它卷成一个圆锥,问:
(1) 围成圆锥的底面周长是多少?
(2) 围成圆锥的底面半径是多少?
(3) 围成圆锥的高是多少?
(4) 围成圆锥的体积是多少々。