《Gaussian入门》
- 格式:ppt
- 大小:8.36 MB
- 文档页数:92
1“零点能”是指:量子在绝对温度的零点下仍会保持震动的能量,这个振动幅度会随着温度增加而加大。
“零点能”就是原子核旋转惯性能。
我们生活生产除核中子间斥力能外都是利用的核旋能,包括身体发热所需能量等,当然也包括燃烧、发光、发热和“磁”线圈产生的“磁力”。
零点能是对分子的电子能量的矫正,表明了在0K 温度下的分子的振动能量对电子能量的影响。
当比较OK 时的热动力学性质时,零点能需要被加到总能量中。
2密度泛函理论的基本原理是: 体系的基态能量是由电子的密度唯一确定的,其基本方程为Kohn-Sham方程, 它与HF方程在形式上完全一样, 只不过是用交换相关泛函代替HF的交换部分而已.在原理上是可以精确计算的,如果可以确定它的精确泛函的话。
但是, 由于其泛函没有一套系统的方法来逼近精确泛函,因此其必须从经验来确定泛函.这就是DFT近似的根源。
3 当体系变的松散时,ab initio 和DFT 基本上得不到最稳定的结构,你可以先用分子力学去优化一下。
或者你需要固定的原子是不是太大,如果可以作为环境处理的话,可以考虑QM/MM。
另外,初次优化基组不要用太大,逐步提高。
4如果你计算freq有个很小的虚频,可以用改变网格来消虚频。
默认的网格是75302,加入这个命令是指定99590网格。
5 L9999 出错就是说在默认的循环次数里未完成所要求的工作,无法写输出文件。
6一般地,优化所得驻点的性质(极小点还是过渡态)要靠频率来确定;而对过渡态,要确定反应路径(即到底是哪个反应的过渡态)必需要做IRC 了,不然靠不住的(往往用QST 找到的过渡态并不一定就是连接输入反应物和产物的过渡态)。
7在我们用QST2 或QST3 来优化过渡态时,需输入反应物和产物,实际上反应物和产物的输入顺序是没有关系的。
就是说,先输反应物后输产物和先输产物后输反应物得到的是同样的过渡态。
这也好理解,QST2 里对过渡态的初始猜测实际上是程序自动将输入的反应物和产物的各变量取个平均,所以输入顺序是没有关系的。
新手入门:Gaussian09通过DFT优化分子结构计算出HOMO/LUMO 轨道基础教程(零基础小白操作指南)所需软件:化学硕士研究生理论计算纯手打经验分享,制作人:坑里的铁蛋菌1.创建打开,File→New→Creat new molecule group在创建面板画出所需计算分子式(以苯环为例)。
图1-1菜单栏图1-2画图界面2.计算菜单栏:依次选择Caculate→Gaussian calculation set up→job type:选择opt+Frep图1-3job type参数Method选择参数如下图:图1-4Method参数其中Basis set中计算方法可根据自身情况选择,图示参数为最简化计算方法。
Method之后的参数系统默认即可,不影响计算结果。
图1-5其它参数界面Submit提交;会提示保存,根据提示界面进行保存(注意保存路径必需全英文);保存文件后弹出转向高斯对话框,点击OK,跳出高斯计算对话框;等待计算结束(计算过程中保持Gauss09Revision计算对话框进行中,Gauss view09可关闭不影响计算)图1-6提交界面图1-7提示保存图1-8保存路径全英文图1-9保存文件后弹出转向高斯对话框图1-10高斯开始计算计算完成,对话框弹出,选择是关闭对话框。
图1-11计算完成弹出对话框3.数据分析打开存储路径,计算完成后,共生成三个文件.图1-12存储路径打开Gauss view09,将后缀为.chk的文件拖入其中。
可以得到经过优化的结构。
图1-13结构优化后的苯环进入菜单栏Edit-->MOs选项,得到窗口如图1-15图1-14MOs选项选中visualize-->单击update,将开始进行电子云渲染。
图1-15MOs点击后呈现页面图1-16电子云渲染4.数据加工渲染结束后,对话框中呈现出HOMO与LUMO轨道的空间电子云分布图,可进行具体分析,单机轨道旁的小方块对HOMO和LUMO轨道进行切换。
Gaussi an 量子化学计算技术与应用Gaussian 是做半经验计算和从头计算使用最广泛的量子化学软件,可研究诸如分子轨道,结构优化,过渡态搜索,热力学性质,偶极矩和多极矩,电子密度和电势,极化率和超极化率,红外和拉曼光谱,NMR,垂直电离能和电子亲合能,化学反应机理,势能曲面和激发能 QM/MM 计算等化学领域的许多课题。
应用非常广泛,而且易于上手。
一、理论计算化学理论及相关程序入门1 理论计算化学简介1.1 理论计算化学概述1.2 HF理论及后HF方法(高精度量化方法)1.3 密度泛函理论和方法1.4 不同理论计算方法的优缺点及初步选择1.5 基组及如何初步选择基组2 Gaussian安装及GaussView安装及基本操作2.1 Gaussian安装及设置(Win版和Linux版)2.2 GaussView安装及设置2.3 GaussView使用及结构构建3 Linux、Vi编辑器等及Gaussian基本介绍3.1 学习Linux基本命令及Vi编辑器3.2 详细认识输入文件和输出文件(Win和Linux)3.3 构建Gaussian输入文件并提交任务二、Gaussian专题操作及计算实例4 Gaussian专题操作Ⅰ:(均含操作实例)4.1 结构几何优化及稳定性初判4.2 单点能(能量)的计算及如何取值4.3 开壳层与闭壳层计算4.4 频率计算及振动分析(Freq)4.5 原子受力计算及分析(Force)4.6 溶剂模型设置及计算(Solvent)5 Gaussian专题操作Ⅱ:(均含操作实例)5.1 分子轨道、轨道能级计算及查看5.2 HOMO/LUMO图的绘制5.3 布居数分析、偶极矩等计算及查看5.4 电子密度、静电势计算及绘制(SCF、ESP)5.5 自然键轨道分析(NBO)三、 Gaussian进阶操作及计算实例6 Gaussian进阶操作I:势能面相关(均含操作实例)6.1 势能面扫描 (PES)6.2 过渡态搜索(TS和QTS)6.3 反应路径IRC等6.4 反应能垒:熵,焓,自由能等7 Gaussian进阶操作II:——各类光谱计算及绘制(均含操作实例)7.1 紫外吸收,荧光和磷光7.2 红外光谱IR7.3 拉曼光谱RAMAN7.4 核磁共振谱NMR7.5 电子/振动圆二色谱(ECD/VCD)7.6 外加电场与磁场(Field)8 Gaussian进阶操作III:——激发态专题8.1 垂直激发能与绝热激发能8.2 垂直电离能与电子亲和能8.3 重整化能(重组能)8.4 激发态势能面8.5 激发态能量转移(EET)8.6 自然跃迁轨道(NTO)8.7 激发态计算方法讨论9 Gaussian进阶操作IV:——高精度和多尺度计算方法9.1 多参考态(CASSCF)方法及操作9.2 背景电荷法9.3 ONIOM方法与QM/MM方法及操作9.4 结合能( Binding Energy )和相互作用能(包含BSSE 修正,色散修正等)9.5 非平衡溶剂效应及其修正四、 Gaussian计算专题与实践应用10 Gaussian综合专题I:Gaussian报错及其解决方案10.1 如何查看报错及解决Gaussian常见报错10.2 专项:SCF不收敛解决方案10.3 专项:几何优化不收敛(势能面扫描不收敛)解决方案10.4 专项:消除虚频等解决方案10.5 专项:波函数稳定性解决方案11 Gaussian综合专题II:常用密度泛函和基组分类、特点及选择问题11.1 Jacobi之梯下的交换相关能量泛函11.2 常见交换相关泛函优缺点及用法11.3 长程修正泛函、色散修正泛函等11.4 常见基组特点及用法选择(自定义基组等,基组重叠误差等)12 Gaussian文献I: 聚集诱导荧光(AIE)和激发态分子内质子转移(ESIPT)12.1 聚集诱导荧光(AIE)与聚集诱导猝灭(ACQ)12.2 激发态质子转移ESIPT12.3 晶体结构及分子建模12.4 QM/MM与ONIOM计算12.5 重整化能,圆锥交叉及质子转移(文献:Dyes and Pigments Volume 204, August 2022, 110396 )13 Gaussian文献专题II: 热激活延迟荧光(TADF)13.1 热激活延迟荧光TADF机理13.2 分子内能量转移Jablonski图13.3 旋轨耦合与各类激发能13.4 辐射速率、非辐射速率、(反)系间穿越等13.5 评估荧光效率(文献: ACS Materials Lett. 2022, 4, 3, 487–496 )14 其他量化软件简介及总结Molcas/Molpro, Q-chem, lammps, Momap, ADF, Gromacs等详情:【腾讯文档】Gaussian量子化学、LAMMPS分子动力学课程。