高中数学选修1-1(人教版 练习):第一章 常用逻辑用语含答案
- 格式:doc
- 大小:68.00 KB
- 文档页数:12
一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.下列选项中,p 是q 的必要不充分条件的是( )A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数 3.“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1<0 C .∀x ∈R ,e x -x +1≤0 D .∃x ∈R ,e x -x +1≤0 4.命题“a ∀∈R ,20a >或20a =”的否定形式是( )A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <5.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.“x y <”是“1122log log x y >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.命题“,40x x ∀∈>R ”的否定是( ) A .,40x x ∀∉<R B .,40x x ∀∈≤R C .00,40xx ∃∉<RD .00,40x x ∃∈≤R8.若,a b ∈R ,使||||6a b +>成立的一个充分不必要条件是( ) A .6a b +≥B .6a ≥C .6b <-D .||3a ≥且3b ≥9.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( )A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭C .0011,22x x N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭10.命题“21,1x x ∀>>”的否定是( ) A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤11.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .2aB .2aC .2a -D .2a -12.“2x <”是“22320x x --<”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要二、填空题13.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________. 14.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题; 15.命题p :已知0a >,且满足对任意正实数x ,总有1ax x+≥成立.命题q :二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性.若“p 或q ⌝”与“q ”均为真命题,则实数a的取值范围为_________;16.若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则实数a 的取值范围是______.17.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.18.命题“x R ∀∈,使20x a -≥”是真命题,则a 的范围是________. 19.原命题“若1z 与2z 互为共轭复数,则2121z z z =”,则其逆命题,否命题,逆否命题中真命题的个数为___________. 20.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.三、解答题21.已知2:760p x x -+≤,22:230q x ax a -≤-.(1)若1a =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.已知A ={x |112x +-<0},B ={x |x 2-2x+1-m 2<0,m>0}. (1)若m =2,求A ∩B ;(2)若x ∈A 是x ∈B 的充分不必要条件,求实数m 的取值范围. 23.已知集合{}3A x x a =<+,501x B x x ⎧⎫-=>⎨⎬+⎩⎭.(1)若2a =-,求()RAB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 24.命题:p 函数()0,1xy cc c =>≠是R 上的单调减函数;命题:120q c -<.若p q∨是真命题,p q ∧是假命题,求常数c 的取值范围.25.在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. 26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.A解析:A 【分析】一一分析每个选项中,p q 的充分必要性即可. 【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件; 故选:A.3.B解析:B 【分析】由全称命题的否定即可得解. 【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题, 所以该命题的否定为:∃x ∈R ,e x -x +1<0. 故选:B.4.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.5.A解析:A 【分析】根据充分条件和必要条件的定义即可求解. 【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l , 若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件, 故选:A6.B解析:B 【分析】根据充分条件、必要条件的定义判断即可; 【详解】解:若0x y <<,则1122log log x y >不成立,故不具有充分性,因为12log y x =单调递减,若1122log log x y >,所以x y <,故有必要性,故选:B .7.D解析:D 【分析】利用全称命题的否定可得出结论. 【详解】命题“,40x x ∀∈>R ”的否定是“00,40x x ∃∈≤R ”,故选:D.8.C解析:C 【分析】利用不等式的性质以及充分条件、必要条件的定义逐一判断即可. 【详解】A ,3+36≥,不满足6a b +> ;B ,660a b =≥=,,不满足6a b +> ;C ,由6b <-可得6a b +>,反之,6a b +>,得不到6b <-,如2,5a b ==-.D ,33≥,33≥,不满足6a b +>. 故选:C9.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.10.D解析:D 【分析】根据命题的否定的定义写出命题的否定. 【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .11.A解析:A 【分析】转化成两个集合之间的包含关系求解即可. 【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a 故选:A12.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.二、填空题13.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为: 解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围. 【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立,故240a ∆=-<即22a -<<. 故答案为:(2,2)-.14.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①②【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②15.或【分析】依据题意知p 均为真命题再计算p 为真命题时的取值范围求公共解即得结果【详解】若或与均为真命题则p 均为真命题若命题为真命题即且满足对任意正实数总有成立而当且仅当时等号成立故则若命题为真命题即二解析:1143a ≤≤或23a ≥【分析】依据题意知p ,q 均为真命题,再计算p ,q 为真命题时a 的取值范围,求公共解即得结果. 【详解】若“p 或q ⌝”与“q ”均为真命题,则p ,q 均为真命题.若命题p 为真命题,即0a >,且满足对任意正实数x ,总有1ax x+≥成立,而a x x +≥=a x x =时等号成立,故min 1a x x ⎛⎫+= ⎪⎝⎭,则14a ≥. 若命题q 为真命题,即二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性, 由对称轴3x a =,故31a ≤或32a ≥,故13a ≤或23a ≥. 由p ,q 均为真命题,知14a ≥,且13a ≤或23a ≥, 故1143a ≤≤或23a ≥.故答案为:1143a ≤≤或23a ≥.16.【分析】由题意得从而解出实数a 的取值范围【详解】若命题使得成立是真命题则在上有解即解得或故答案为:【点睛】关键点点睛:开口向上的二次函数图象的应用 解析:()(),13,-∞-+∞【分析】由题意得()2140a ∆=-->,从而解出实数a 的取值范围. 【详解】若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则()2110x a x +-+<在R 上有解,即()2140a ∆=-->,解得3a >或1a <-. 故答案为:()(),13,-∞-+∞【点睛】关键点点睛:开口向上的二次函数图象的应用.17.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一) 【分析】由题意举出反例即可得解. 【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+, 所以x ,y ,z 的值依次可以为3,2,1. 故答案为:3,2,1(答案不唯一).18.【分析】等价于在恒成立即得解【详解】命题使是真命题等价于时恒成立所以在恒成立所以故答案为:【点睛】本题主要考查全称命题的真假求参数的问题的求解意在考查学生对该知识的理解掌握水平解析:0a ≤. 【分析】等价于2a x ≤在x ∈R 恒成立,即得解. 【详解】命题“x R ∀∈,使20x a -≥”是真命题等价于x ∈R 时,2x a ≥恒成立. 所以2a x ≤在x ∈R 恒成立, 所以0a ≤. 故答案为:0a ≤ 【点睛】本题主要考查全称命题的真假求参数的问题的求解,意在考查学生对该知识的理解掌握水平.19.1【分析】根据共轭复数的定义判断命题的真假根据逆命题的定义写出逆命题并判断真假再利用四种命题的真假关系判断否命题与逆否命题的真假【详解】解:根据共轭复数的定义原命题若与互为共轭复数则是真命题;其逆命解析:1 【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假. 【详解】解:根据共轭复数的定义,原命题"若1z 与2z 互为共轭复数,则2121z z z =”是真命题;其逆命题是:“若2121z z z =,则1z 与2z 互为共轭复数”,例10z =,23z =,满足条件,但是1z 与2z 不是共轭复数,原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题. 故答案为: 1 【点睛】本题考查原命题, 逆命题,否命题,逆否命题的真假,是基础题.原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.20.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】 解:p 是q 的充分而不必要条件,p q ∴⇒,20x x a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.三、解答题21.(1)(][)1,13,6-;(2)(,6][2,)-∞-⋃+∞.【分析】(1)分别解二次不等式求出命题p 、q 为真命题时x 的范围,由已知条件可得p ,q 一真一假,讨论p 真q 假、p 假q 真即可求解;(2)若p 是q 的充分不必要条件,可得不等式2760x x -+≤的解集是不等式22230x ax a --≤解集的真子集,讨论0a ≥和0a <时22230x ax a --≤的解集,借助数轴即可求解. 【详解】(1)由276(1)(6)0x x x x -+=-≤-,解得16x ≤≤.当1a =时,由223(3)(1)0x x x x --=-≤+,解得13x -≤≤. 因为“p q ∨”为真命题,“p q ∧”为假命题,所以p ,q 一真一假. 当p 真q 假时,[]1,6x ∈且(,1)(3,)x ∈-∞-⋃+∞,所以(]3,6x ∈; 当p 假q 真时,()(,6,1)x ∈-∞+∞且[]13,x ∈-,所以[)1,1x ∈-.故实数x 的取值范围为(][)1,13,6-.(2)根据(1)知,:16p x ≤≤.因为22:23(3)()0q x ax a x a x a -=-+≤-,且p 是q 的充分不必要条件,所以当0a ≥时,:3q a x a -≤≤,则136a a -≤⎧⎨≥⎩,解得2a ≥;当0a <时,:3q a x a ≤≤-, 则31,6a a ≤⎧⎨-≥⎩,解得6a ≤-. 综上,实数a 的取值范围为(,6][2,)-∞-⋃+∞. 【点睛】结论点睛:用集合的观点看充分不必要条件:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.(1){}12x x <<;(2)2m ≥ 【分析】(1)分别求两个集合,再求交集;(2)根据条件转化为A B ,列不等式求解. 【详解】 (1)1110022x x x -+<⇔<--,解得:12x <<, {}12A x x ∴=<<,()()22210110,0x x m x m x m m -+-<⇔-+--<>,解得:11m x m -<<+,{}11B x m x m ∴=-<<+;当2m =时,{}13B x x =-<<,{}12A B x x ∴⋂=<<;(2)若x ∈A 是x ∈B 的充分不必要条件,则A B , 1112m m -≤⎧∴⎨+≥⎩,解得:2m ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1){}11x x -<≤;(2)(],4-∞-.【分析】(1)先求出集合A ,B 和B R ,再利用交集运算即得结果; (2)先根据充分不必要条件得到集合A ,B 的包含关系,再列关系计算即可. 【详解】(1)∵{|1B x x =<-或}5x >,∴{}15R B x x =-≤≤, 当2a =-时,{}1A x x =<,因此,{}11R A B x x =-≤<;(2)∵x A ∈是x B ∈的充分不必要条件,∴A B ⊆,且A B ≠,又{}3A x x a =<+,{|1B x x =<-或}5x >.∴31a +≤-,解得4a ≤-.因此,实数a 的取值范围是(],4-∞-.24.()10,1,2⎛⎤+∞ ⎥⎝⎦.【分析】由p q ∨是真命题,p q ∧是假命题,得到,p q 一真一假,分两种情况,求出c 的范围.【详解】解:∵p q ∨是真命题,p q ∧是假命题,∴p ,q 中一个是真命题,一个是假命题.若p 真q 假,则有01,120,c c <<⎧⎨-≥⎩解得012c <≤; 若p 假q 真,则有1,120,c c >⎧⎨-<⎩解得1c >. 综上可知,满足条件的c 的取值范围是()10,1,2⎛⎤+∞ ⎥⎝⎦.本题考查了命题真假的应用,逻辑连结词的理解与应用,还考查转化与化归思想,分类讨论思想,属于中档题.25.(1)见解析;(2)见解析.【分析】(1)直线方程与抛物线方程联立,消去x 后利用韦达定理判断2121212121()4OA OB x x y y y y y y ⋅=+=+的值是否为3,从而确定此命题是否为真命题; (2)根据四种命题之间的关系写出该命题的逆命题,然后再利用直线与抛物线的位置关系知识来判断其真假.【详解】(1)证明:设过点(,)30T 的直线l 交抛物线22y x =于点1122(,),(,)A x y B x y ,当直线l 的斜率不存在时,直线l 的方程为3x =,此时,直线l 与抛物线相交于(3,A B ,所以963OA OB ⋅=-=,当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,22(3)y x y k x ⎧=⎨=-⎩,得2260ky y k --=, 则126y y =-, 又因为22112211,22x y x y ==, 所以212121212136()6344OA OB x x y y y y y y ⋅=+=+=-=, 综上所述,命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题;(2)逆命题是:“设直线l 与抛物线2y =2x 相交于A 、B 两点,如果OA OB ⋅=3,那么该直线过点2(1)3y x =+”,该命题是假命题, 例如:取抛物线上的点1(2,2),(,1)2A B ,此时OA OB ⋅=3,直线AB 的方程为2(1)3y x =+,而T (3,0)不在直线AB 上. 【点睛】该题考查的是有关判断命题真假的问题,涉及到的知识点有四种命题之间的关系,直线与抛物线的位置关系,向量的数量积,属于简单题目.26.(1)112a >;(2)11124a <<.(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<; 当p 假q 真时,有11214a a ⎧≤⎪⎪⎨⎪>⎪⎩则a 无解. 综上所述11124a <<. 【点睛】 由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p 或q”为真命题转化为并集的运算;把“p 且q”为真命题转化为交集的运算.。
高二数学(选修1-1 第一章 常用逻辑用语)姓名:_________班级:________ 得分:________一:选择题1、判断下列语句是真命题的为( ). (供题)A .若整数a是素数,则a是奇数B .指数函数是增函数吗?C .若平面上两条直线不相交,则这两条直线平行D .x>151.已知P :A ∩¢=¢,Q: A ∪¢=A,则下列判断错误的是( )(铁一中 张爱丽 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真1.已知P :2+2=5,Q:3>2,则下列判断错误的是( )(十二厂 闫春亮 供题)A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真3、对于两个命题:①,1sin 1x R x ∀∈-≤≤,②22,sin cos 1x R x x ∃∈+>,下列判断正确的是( )。
( 金台中学 唐宁 供题 两个数学符号教材未涉及,可以换为文字语言)A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真2.在下列命题中,真命题是( )(十二厂 闫春亮 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2.在下列命题中,真命题是( )(铁一中 张爱丽 供题)A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题2. “2x >”是“24x >”的( ). (斗鸡中学 张永春 供题)A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件3.已知P:(2x -3)2<1, Q:x(x -3)<0, 则P 是Q 的( )(铁一中 张爱丽 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件2、设,,l m n 均为直线,其中,m n 在平面a 内,则“”l α⊥是“l m ⊥且”l n ⊥的( )( 金台中学 唐宁 供题)A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.条件210p x ->:,条件2q x <-:,则p ⌝是q ⌝的( ). (斗鸡中学 张永春 供题)A. 充分但不必要条件B. 必要但不充分条件C. 充分且必要条件D. 既不充分也不必要条件3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )(十二厂 闫春亮 供题)A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件二:填空题11.在下列四个命题中,①若A 是B 的必要不充分条件,则非B 也是非A 的必要不充分条件②“⎩⎨⎧≤-=∆>04,02ac b a ”是“一元二次不等式20ax bx c ++≥的解集为R 的充要条件③“1x ≠”是“21x ≠”的充分不必要条件④“0x ≠”是“0x x +>”的必要不充分条件正确的有________.(填序号)(斗鸡中学 张永春 供题)11、已知命题p :x ∀∈R ,sin x x >,则p ⌝形式的命题是__ ( 金台中学 唐宁 供题)三:解答题15.已知集合{}{}22320,20A x x x B x x x m =-+==-+=且AB A =,求m 的取值范围.(斗鸡中学 张永春 供题)17.(命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。
105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数2.(2019 ·北京清华附中高一期中)“ x> 1”是“ < 1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D. 既不充分又不必要条件3.(2019 ·天津静海一中高一月考)命题“ V x> 0,x2 一1 > 一1”的否定是( )A. V x> 0,x2 一1 < 一1B. V x< 0,x2 一1 < 一1C. 3x> 0,x2 一1 < 一1D. 3x< 0,x2 一1 < 一14.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 05.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤06.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= -2D. m= -2 或m= 18.(2019 ·天津静海一中高一月考)已知p :log2 (x- 1) < 1 ,q : x2 - 2x- 3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________.13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________15.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 - x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是_______________________,该命题的否命题是___________________________.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.21.(2019·青冈县第一中学校高二月考( 文)) 已知,:关于的方程有实数根.( 1)若为真命题,求实数的取值范围;(2)若为真命题,为真命题,求实数的取值范围.22.(2019·湖南高二期中( 理)) 已知命题p : x2 + mx+ 1 = 0 有两个不相等的负根,命题q : 4x2 + 4(m一2)x+ 1 = 0 无实根,若p^ p为假,p八q为真,求实数m的取值范围.105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数【答案】C2.(2019 ·北京清华附中高一期中)“ x> 1”是“< 1”的( )A.充分而不必要条件C.充分必要条件B.必要而不充分条件D. 既不充分又不必要条件【答案】A3.(2019 ·天津静海一中高一月考)命题“ V x> 0, x2 一1 > 一1”的否定是( )A. V x> 0, x2 一1 < 一1B. V x< 0, x2 一1 < 一1C. 3x> 0, x2 一1 < 一 1D. 3x< 0, x2 一1 < 一1【答案】C4.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 0【答案】A5.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤0【答案】D6.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要【答案】A7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= 一2D. m= 一2 或m= 1 【答案】D8.(2019 ·天津静海一中高一月考)已知p :log2 (x一1) < 1 ,q : x2 一2x一3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要【答案】A9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件【答案】B10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分【答案】C7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.【答案】充分非必要12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________. 【答案】x> 6 (答案不唯一)13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________【答案】若a< 0 或b< 0 ,则ab< 015.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 一x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________【答案】真假15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)【答案】且16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是________________________________,该命题的否命题是___________________________. 【答案】面积相等的三角形不一定是全等三角形;若两个三角形的面积不相等,则这两个三角形不是全等三角形.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)【答案】假56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.【答案】恳x1共x<2}19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.【答案】( 1) a< 3 ;(2) a> 3 ;(3)充要条件} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.【答案】( 1) A 1, 2 ;(2) m 1或 m 2【解析】( 1) x 23x 2 0 x 1 x 2 0即 x1或x 2 ,A 1, 2 ;(2)若x B 是x A 的充分条件,则 B A ,x 2 m 1 x m 0 x 1 x m 0解得 x 1 或 x m ,当 m1时, B 1 ,满足 B A ,当 m 2 时, B 1, 2 ,同样满足B A ,所以 m1或 m 2 .21.(2019· 青 冈 县 第 一 中 学 校 高 二 月考 ( 文 )) 已 知有实数根.( 1)若为真命题,求实数的取值范围; (2)若为真命题,为真命题,求实数的取值范围.【答案】( 1);(2)【解析】( 1) 方程有实数根,得:(2)为真命题,为真命题为真命题,为假命题,即得 .22.(2019· 湖南 高 二期 中( 理)) 已 知命题 p : x2mx 1 0 有两个 不相等 的 负根 , 命题q : 4x 2 4(m 2)x 1 0 无实根,若p p 为假, p q 为真,求实数 m 的取值范围.【答案】 (1, 2]得;, : 关 于 的 方 程【解析】因为p⊥ p假,并且p q为真,故p假,而q真即x2 + mx+ 1 = 0不存在两个不等的负根,且4x2 +4(m 2)x+1= 0无实根.所以= 16(m 2)2 16 < 0 ,即1< m< 3,当1< m 2 时,x2 + mx+ 1 = 0不存在两个不等的负根,当2< m< 3时,x2 + mx+ 1 = 0存在两个不等的负根.所以m的取值范围是(1, 2]。
一、选择题1.命题“对任意的[3,)x ∈+∞,都有29x ”的否定是( ) A .对任意的[3,)x ∈+∞,都有29x < B .对任意的(,3)x ∈-∞,都有29x C .存在[3,)x ∈+∞,使得29x <D .存在[3,)x ∈+∞,使得29x2.命题“x R ∃∈,2230x x -+<”的否定是( ) A .x R ∃∈,2230x x -+≥ B .x R ∀∈,2230x x -+≥ C .x R ∃∉,2230x x -+≥D .x R ∀∉,2230x x -+≥3.命题“1x ∀≥,使得2270x x -+>”的否定是( )A .01x ∃≥,使得200270x x -+≤B .01x ∃<,使得200270x x -+≤C .1x ∀<,使得2270x x -+≤D .1x ∀≥,使得2270x x -+≤ 4.已知命题:(0,)p x ∀∈+∞,lg x x >,则p 的否定是( ) A .000(0,),lg x x x ∃∈+∞≤ B .(0,),lg x x x ∀∈+∞≤ C .000(0,),lg x x x ∃∈+∞>D .(0,),lg x x x ∀∈+∞<5.命题“x R ∀∈,2210x x -+>”的否定为( ) A .x R ∀∈,2210x x -+< B .x R ∀∉,2210x x -+> C .x R ∃∈,2210x x -+≥ D .x R ∃∈,2210x x -+≤ 6.已知直线l ,m 和平面α,直线l α⊄,直线m α⊂,则“//l m ”是“//l α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知命题()0:1,p x ∃∈+∞,使得0012x x +=;命题:q x R ∀∈,22350x x -+>.那么下列命题为真命题的是( ) A .p q ∧B .()p q ⌝∨C .()p q ∨⌝D .()()p q ⌝∧⌝8.命题p :存在0x R ∈,且使得0sin 1x =的否定形式为( ) A .存在0x R ∈,且使得0sin 1x ≠ B .不存在0x R ∈,且使得0sin 1x ≠ C .对于任意x ∈R ,都有sin 1x = D .对于任意x ∈R ,都有sin 1x ≠9.若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题,则实数m 的最大值为( ) AB.CD.10.“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 11.命题“0x ∀≥,20x x -≥”的否定是( ) A .0x ∃<,20x x -< B .0x ∀>,20x x -< C .0x ∃≥,20x x -≥D .0x ∃≥,20x x -<12.命题“21,0x x x ∀>->”的否定为( ) A .21,0x x x ∀>-≤ B .21,0x x x ∃>-≤ C .21,0x x x ∀≤-≤D .21,0x x x ∃≤-≤二、填空题13.命题“0x ∃≥,220x x -<”的否定是__________.14.已知p :“关于x ,y 的方程2224520()x y mx m m m R +-++-=∈表示圆”q :“实数m 满足()(4)0m a m a ---<.若p 是q 的充分不必要条件”,则实数a 的取值范围是__________.15.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题; 16.命题“若a 、b 都是偶数,则+a b 是偶数”的逆命题是_____________________________________.17.命题:“x R ∀∈,2210x x ++>”的否定为____________; 18.给出定义:若1122m x m -<≤+ (其中m 为整数),则m 叫做离实数x 最近的整 数,记作{}x m =.在此基础上给出下列关于函数{}()f x x x =-的四个命题: ①函数()y f x =的定义域为R ,值域为10,2⎡⎤⎢⎥⎣⎦;②函数()y f x =的图象关于直线()2kx k Z =∈对称; ③函数()y f x =是周期函数,最小正周期为1; ④函数()y f x =在11,22⎡⎤-⎢⎥⎣⎦上是增函数. 其中正确的命题的序号是________.19.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =的定义域是[3,+∞),则“p ∨q ”“p ∧q ”“p ⌝”中是真命题的为_________.20.设有两个命题:(1)不等式|||1|x x a -->的解集为∅;(2)函数()f x =a 的取值范围为三、解答题21.已知命题2:30p x mx -+≥对x R ∀∈恒成立,命题:q 方程22126x ym m+=--表示的曲线为焦点在x 轴上的椭圆,且p q ∨为真命题,求m 的取值范围.22.已知命题p :x R ∀∈,()2140x a x +-+>,命题q :[]1,2x ∃∈,220ax -≥.(1)若p ⌝为真,求实数a 的取值范围;(2)若p q ∧为假,p q ∨为真,求实数a 的取值范围.23.已知:集合2{|320},M x R x x =∈-+≤集合{|132}N x R m x m =∈+≤≤- (1)若“”x M ∈是“”x N ∈的充分不必要条件,求m 的取值范围. (2)若M N M ⋃=,求m 的取值范围.24.已知,x y 都是非零实数,且x y >,求证:11x y<的充要条件是0xy >.25.已知0a >,命题1:2p a m -<人,命题:q 椭圆2221xy a+=的离心率e 满足e ∈⎝⎭. (1)若q 是真命题,求实数a 取值范围;(2)若p 是q 的充分条件,且p 不是q 的必要条件,求实数m 的值.26.已知0a >,且1a ≠,命题p :函数()log 1a y x =+在()0,x ∈+∞内单调递减;q :曲线()2231y x a x =+-+与x 轴交于不同的两点.如果p 和q 有且只有一个真命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题“(),x M p x ∀∈”的否定为特称命题“()00,x M p x ∃∈⌝”即可得结果. 【详解】因为全称命题的否定是特称命题,否定全称命题时, 一是要将全称量词改写为存在量词,二是否定结论,所以“对任意的[3,)x ∈+∞,都有29x ”的否定是“存在[3,)x ∈+∞,使得29x <”,2.B解析:B 【分析】利用特称命题的否定可得出结论. 【详解】命题“x R ∃∈,2230x x -+<”为特称命题,该命题的否定为“x R ∀∈,2230x x -+≥”,故选:B.3.A解析:A 【分析】根据全称命题“(),x M p x ∀∈”的否定为特称命题“()00,x M p x ∃∈⌝”即可得结果. 【详解】因为全称命题的否定是特称命题,否定全称命题时, 一是要将全称量词改写为存在量词,二是否定结论,所以,命题1x ∀≥,使得2270x x -+>的否定为01x ∃≥,使得200270x x -+≤,故选:A4.A解析:A 【分析】直接根据全称命题的否定写出结论. 【详解】命题:(0,)p x ∀∈+∞,lg x x >为全称命题,故p 的否定是:000(0,),lg x x x ∃∈+∞≤. 故选:A 【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题.5.D解析:D 【分析】本题可根据全称命题的否定是特称命题得出结果. 【详解】因为全称命题的否定是特称命题,所以命题“x R ∀∈,2210x x -+>”的否定为“x R ∃∈,2210x x -+≤”, 故选:D.6.A【分析】根据两者之间的推出关系可得两者之间的条件关系. 【详解】由线面平行的判定定理可得:若//l m ,结合直线l α⊄,直线m α⊂可得//l α, 故“//l m ”能推出“//l α”.但//l α推不出//l m (如图所示),故“//l m ”是“//l α”的充分不必要条件, 故选:A.7.B解析:B 【分析】利用基本不等式可知命题p 为假命题,再由二次函数的判别式为负可知命题q 为真命题,最后根据复合命题的真值表可得()p q ⌝∨为真命题. 【详解】当()01,x ∈+∞,由基本不等式可知0012x x +≥(因为01x >,故等号不可取), 故命题p 为假命题,不等式22350x x -+>中,()234250∆=--⨯⨯< 故22350x x -+>恒成立,故命题q 为真命题,故p q ∧为假命题,()p q ⌝∨为真命题,所以()p q ∨⌝为假命题,()()p q ⌝∧⌝为假命题 故选: B8.D解析:D 【分析】根据含存在性量词的命题的否定,直接得出结论. 【详解】存在0x R ∈,且使得0sin 1x =的否定形式为: 对于任意x ∈R ,都有sin 1x ≠,故答案为:D9.B解析:B 【分析】将存在性命题进行否定,得全称命题为真,从而由tan tan()3x π≥-=m ≤【详解】若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题, 则“,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan x m ≥”是真命题,因为,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan tan()3x π≥-=m ≤.故选:B.10.B解析:B 【分析】先已知条件计算参数m 的取值,再根据包含关系判断充分条件和必要条件即可. 【详解】“函数2()(33)m f x m m x =-+是幂函数”等价于:2331m m -+=,即2320m m -+=,故1m =或2m =,即取值集合为{}1,2A =;“函数22()2g x mx m x m =-+值域为[)0,+∞”等价于:()2223()2g x mx m x m m x m m m =-+=-+-中,0m >且30m m -=,即()()110m m m +-=,故1m =,即取值集合为{}1B =.故B 是A 的真子集,“1m =或2m =”是“1m =”的必要不充分条件,即“函数2()(33)m f x m m x =-+是幂函数”是“函数22()2g x mx m x m =-+值域为[)0,+∞”的必要不充分条件. 故选:B. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)p 是q 的必要不充分条件,等价于q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件,等价于p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,等价于p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,等价于q 对应集合与p 对应集合互不包含.11.D解析:D 【分析】直接利用全称命题的否定是特称命题,将任意改成存在,并将结论否定即可. 【详解】根据全称命题的否定的定义可知,命题“0x ∀≥,20x x -≥”的否定是0x ∃≥,20x x -<.故选:D.12.B解析:B 【分析】由含量词命题否定的定义,写出命题的否定即可. 【详解】命题“1x ∀>,20x x ->”的否定是:1x ∃>,20x x -≤, 故选:B. 【点睛】关键点点睛:该题考查的是有关含有一个量词的命题的否定问题,正确解题的关键是要明确全称命题的否定是特称命题,注意表达形式即可.二、填空题13.【分析】根据全称命题与存在性命题的关系准确改写即可求解【详解】根据全称命题与存在性命题的关系可得命题的否定为故答案为: 解析:20,20x x x ∀≥-≥【分析】根据全称命题与存在性命题的关系,准确改写,即可求解. 【详解】根据全称命题与存在性命题的关系,可得命题“2200,x x x ∃-≥<”的否定为“20,20x x x ∀≥-≥”.故答案为:20,20x x x ∀≥-≥.14.【分析】根据充分不必要条件的定义结合圆的方程特征一元二次不等式的解法集合之间的关系进行求解即可【详解】当关于xy 的方程表示圆时由所以有即当实数m 满足时由即因为p 是q 的充分不必要条件所以即因此实数a解析:[3,2]--【分析】根据充分不必要条件的定义,结合圆的方程特征、一元二次不等式的解法、集合之间的关系进行求解即可. 【详解】当关于x ,y 的方程2224520()x y mx m m m R +-++-=∈表示圆时, 由2222224520(2)2x y mx m m x m y m m +-++-=⇒-+=--+, 所以有22021m m m --+>⇒-<<,即(2,1)∈-m , 当实数m 满足()(4)0m a m a ---<时,由()(4)04m a m a a m a ---<⇒<<+,即(,4)m a a ∈+ 因为p 是q 的充分不必要条件, 所以(2,1)- (,4)a a +,即14322a a a ≤+⎧⇒-≤≤-⎨≤-⎩,因此实数a 的取值范围是[3,2]--. 故答案为:[3,2]--15.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①② 【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②16.若是偶数则都是偶数【解析】逆命题就是将结论和条件互换位置即可故逆命题应该为:若是偶数则都是偶数故答案为若是偶数则都是偶数解析:若+a b 是偶数,则a 、b 都是偶数 【解析】逆命题就是将结论和条件互换位置即可.故逆命题应该为:若a b +是偶数,则a 、b 都是偶数.故答案为若a b +是偶数,则a 、b 都是偶数.17.【分析】根据全称命题的否定是特称命题进行求解即可【详解】解:命题是全称命题则命题的否定是特称命题命题的否定为故答案为:【点睛】本题主要考查含有量词的命题的否定根据全称命题的否定是特称命题是解决本题的解析:0x R ∃∈,200210x x ++≤【分析】根据全称命题的否定是特称命题进行求解即可. 【详解】解:命题是全称命题,则命题的否定是特称命题,∴命题“x R ∀∈,2210x x ++>”的否定为0x R ∃∈,200210x x ++≤. 故答案为:0x R ∃∈,200210x x ++≤.【点睛】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题是解决本题的关键,属于基础题.18.①②③【分析】根据函数的基本性质结合题中条件逐项判断即可得出结果【详解】①由定义知:所以即的值域为;故①对;②因为所以函数的图象关于直线对称;故②对;③因为所以函数是周期函数最小正周期为;故③对;④解析:①②③ 【分析】根据函数的基本性质,结合题中条件,逐项判断,即可得出结果. 【详解】 ① 由定义知:{}1122x x -<-≤,所以{}102x x ≤-≤,即{}()f x x x =-的值域为10,2⎡⎤⎢⎥⎣⎦;故①对; ② 因为{}{}()()f k x k x k x x x f x -=---=---=-,所以函数()y f x =的图象关于直线()2kx k Z =∈对称;故② 对; ③ 因为{}{}(1)11()f x x x x x f x +=+-+=-=,所以函数()y f x =是周期函数,最小正周期为1;故③ 对;④ 当12x =-时,1m =-,1122f ⎛⎫-= ⎪⎝⎭;当12x =时,0m =,1122f ⎛⎫= ⎪⎝⎭,此时1122⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭f f ,故④ 错.故答案为:①②③ 【点睛】本题主要考查命题真假的判定,熟记函数的基本性质即可,属于常考题型.19.【解析】∵若则或即不成立;故命题:是的充分条件为假命题;∵函数的定义域是∴命题为真命题;由复合命题真值表得:非p 为真命题;为真命题;假命题故答案为点睛:本题考查的知识点是复合命题的真假判定其中判断出解析:,p q p ⌝∨【解析】∵若0ab =,则0a =或0b =,即0a =不成立;故命题p :0ab =是0a =的充分条件,为假命题;∵函数y =[)3,+∞,∴命题q 为真命题;由复合命题真值表得:非p 为真命题;p q ∨为真命题;p q ∧假命题,故答案为,p q p ⌝∨.点睛:本题考查的知识点是复合命题的真假判定,其中判断出命题p 与命题q 的真假,是解答本题的关键,对复合命题真值表要牢记;根据充要条件的定义及函数定义域的求法,我们先判断出命题p 与命题q 的真假,再根据复合命题真值表,逐一判断题目中三个命题的真假,即可得到答案.20.【分析】分别求出两个命题为真时的的取值范围然后根据复合命题的真假确定结论【详解】其取值范围是不等式的解集为即恒成立若(1)为真命题则若(2)为真命题则(1)(2)均为真命题可得所以若(1)(2)至少 解析:(,1)(2,)-∞⋃+∞【分析】分别求出两个命题为真时的a 的取值范围,然后根据复合命题的真假确定结论. 【详解】1,1,121,01,1,0x x x x x x ≥⎧⎪--=-<<⎨⎪-≤⎩,其取值范围是[]1,1-,不等式|||1|x x a -->的解集为∅即|||1|x x a --≤恒成立,若(1)为真命题,则1a ≥, 若(2)为真命题,则240a -≤,22a -≤≤, (1)(2)均为真命题,可得12a ≤≤,所以若(1)(2)至少有一个是假命题,则1a <或2a >. 故答案为:(,1)(2,)-∞⋃+∞. 【点睛】本题考查由复合命题的真假求参数取值范围,解题时可先求出每个命题为真时的参数范围,然后根据复合命题的真值有确定结论.在遇到“至少”、“至多”等时可从反面入手比较简单.三、解答题21.[(4,6)-【分析】分别求出命题,p q 为真时m 的范围,然后求并集求得结论. 【详解】若p 为真命题,则2120m ∆=-≤,即m -≤若q 为真命题,则206026m m m m ->⎧⎪->⎨⎪->-⎩,得46m <<由于p q ∨为真命题,则m -≤46m <<∴m的取值范围为[(4,6)-.故答案为:[(4,6)-.【点睛】方法点睛:本题考查由命题的真假求参数,考查复合命题的真假判断.掌握复合命题的真值表是解题关键.复合命题的真值表:22.(1)3a ≤-或5a ≥;(2)[)13,5,2⎛⎫-+∞ ⎪⎝⎭.【分析】(1)p ⌝为真,则p 为假,由判别式求出实数a 的取值范围,并取补集即可;(2)p q ∧为假,p q ∨为真,则p 、q 一真一假,由p 真q 假和p 假q 真分别求出a 的取值范围取并集即可. 【详解】(1)若p 为真:22(1)162150a a a ∆=--=--<,解得35a -<<,∵p ⌝为真,∴p 为假,∴3a ≤-或5a ≥. (2)由(1)得:p 真35a -<<, 若q 为真:[]1,2x ∃∈,22a x ≥,∴12a ≥,∵p q ∧为假,p q ∨为真,∴p 、q 一真一假.①p 真q 假:3512a a -<<⎧⎪⎨<⎪⎩,∴132a -<<; ②p 假q 真:3512a a a ≤-≥⎧⎪⎨≥⎪⎩或,∴5a ≥. 综上:a 的取值范围是[)13,5,2⎛⎫-+∞ ⎪⎝⎭.【点睛】方法点睛:本题考查根据含有一个量词的命题的真假求参数的问题,p 或q 与p 且q 的真假判断如下:1. p 和q 都为真,则p 且q 为真;p 和q 有一个为假或者都为假,则p 且q 为假;2. p 和q 都为假,则p 或q 为假;p 和q 有一个为真或者都为真,则p 且q 为真. 23.(1){|0}m m ≤;(2)1{|}2m m ≥. 【分析】(1)首先解出集合{|12}M x x =≤≤,由条件可知M N ≠⊂,列不等式求m 的取值范围;(2)由条件可知N M ⊆,再分N =∅和N ≠∅两种情况列式求m 的取值范围. 【详解】解:(1){|12}M x x =≤≤,因为“”x M ∈是“”x N ∈的充分不必要条件,所以M N ≠⊂. 即:01113222m m m m ≤⎧+≤⎧⎪⇒⎨⎨-≥≤⎩⎪⎩,(等号不能同时取)0m ∴≤故m 的范围为{|0}m m ≤ (2)因为,MN M =所以N M ⊆①当N =∅时:132m m +>-,23m >所以 ②当N ≠∅时:2132311032212m m m m m m m ⎧≤⎪+≤-⎧⎪⎪+≥⇒≥⎨⎨⎪⎪-≤⎩⎪≥⎩, 即1223m ≤≤ 综上可得:m 的范围为1{|}2m m ≥【点睛】本题考查根据充分必要条件,以及集合的包含关系求参数的取值范围,重点考查转化与化归思想,计算能力,属于基础题型. 24.见解析 【分析】根据充要条件的定义进行证明即可. 【详解】(1)必要性:由11x y <,得11x y-<0,即0y x xy -<, 又由x y >,得0y x -<,所以0xy >. (2)充分性:由0xy >及x y >,得x y xy xy>,即11x y <.综上所述,11x y<的充要条件是0xy >. 【点睛】本题主要考查充分条件和必要条件的证明,根据充分条件和必要条件的定义是解决本题的关键.25.(1)()11,2,332a ⎛⎫∈⋃ ⎪⎝⎭;(2)52m =.【分析】(1)当1a >时,根据离心率e满足e ∈,即可求解实数a 取值范围;(2)由p 是q 的充分条件,且p 不是q 的必要条件,得出不等式组,即可求解实数m 的值.【详解】(1)当1a >时,∵2221381,49e e a =-<<,∴211194a <<,∴1132a <<, 综上所述()11,2,332a ⎛⎫∈⋃ ⎪⎝⎭(2)∵12a m -<,∴1122m a m -<<+,则题意可知 1123{1122m m -≥+≤或122{132m m -≥+≤,解得m φ∈或52m =,经检验,52m =满足题意,综上52m =.26.15,1,22⎡⎫⎛⎫+∞⎪⎪⎢⎣⎭⎝⎭【分析】根据对数函数和复合函数的单调性,可知p 为真命题时01a <<.由二次函数的性质,可知q 为真命题时52a >或102a <<,再根据p 和q 有且只有一个真命题,分p 为真命题,q 为假命题和p 假命题, q 为真命题两种情况讨论,即可求出结果.【详解】若p 为真命题,由“函数()log 1a y x =+在区间()0,∞+内单调递减”, 可知:01p a <<; 若q 为真命题,由“曲线()2231y x a x =+-+与x 轴交于不同的两点”,所以()22340a ∆=-->,解得52a >或12a <; 又0a >,且1a ≠, 所以5:2q a >或102a <<;又p 和q 有且只有一个真命题,当p 为真命题,q 为假命题时,0115022a a a <<⎧⎪⎨≤≤≤⎪⎩或,得1,12a ⎡⎫∈⎪⎢⎣⎭; 当p 假命题, q 为真命题时,0151022a a a a ≤≥⎧⎪⎨><<⎪⎩或或,即5,2a ⎛⎫+∞ ⎝∈⎪⎭.综上,a 的取值范围为: 15,1,22⎡⎫⎛⎫+∞⎪ ⎪⎢⎣⎭⎝⎭. 【点睛】本题考查了函数的性质、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.。
一、选择题1.下列选项中,p 是q 的必要不充分条件的是( ) A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数 2.“0m >”是“不等式20x x m -+>在R 上恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件 D .充分必要条件 3.“22320x x --<”的一个必要不充分条件可以是( )A .1x >-B .01x <<C .1122x -<< D .1x <4.“ 1.5x >-”是“10x +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知条件p :12x +>,条件q :x a >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围是( ) A .](,1-∞B .](,3-∞-C .[)1,-+∞D .[)1,+∞6.方程“22ax by c +=表示双曲线”是“0ab <”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件7.语句“若a b >,则a c b c +>+”是( ) A .不是陈述句B .真命题C .假命题D .不能判断真假8.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( )A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭C .0011,22x x N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭9.一个平面内存在一条与另一个平面垂直的直线是这两个平面垂直的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 10.“2x <”是“22320x x --<”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 11.设直线l 的方向向量是a ,平面α的法向量是n ,则“//l α”是“a n ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 12.已知α,R β∈,则“αβ=”是“sin sin αβ=”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题13.命题p :已知0a >,且满足对任意正实数x ,总有1ax x+≥成立.命题q :二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性.若“p 或q ⌝”与“q ”均为真命题,则实数a的取值范围为_________;14.已知命题p :0R x ∃∈,使得20010ax ax +-≥.若p ⌝是真命题,则实数a 的取值范围为________.15.已知命题“x R ∀∈,240x x a -+>”的否定是______.16.若“[]1,2,0x x a ∃∈-≤”是假命题,则实数a 的取值范围是__________.17.若命题“x R ∃∈,使得2kx x k >+成立”是假命题,则实数k 的取值范围是________. 18.下列五个命题中正确的是_____.(填序号)①若ABC 为锐角三角形,且满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则2a b =;②若cos cos a A b B =,则ABC 是等腰三角形;③若a b <,x ∈R ,则b b x a a x+<+; ④设等差数列{}n a 的前n 项和为n S ,若202011S S -=,则20211S >; ⑤函数2()f x =的最小值为2.19.写出命题“若22am bm <,则a b <”的否命题______. 20.命题“对任意x ∈R ,都有2x x ≤”的否定是____________.三、解答题21.已知命题p :不等式240x x m -+≥对x R ∀∈恒成立,命题q :2450m m --≥.若p q ∧为假命题,p q ∨为真命题,求实数m 的取值范围.22.已知0m >,2:4120p x x --≤,:22q m x m -≤≤+.(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若5m =,命题p 、q 其中一个是真命题,一个是假命题,求实数x 的取值范围. 23.已知25m >且2523,()23,()log 5m m f x x x g x x -≠=++=,:p 当x ∈R 时,()f x m >恒成立,:()q g x 在(0,)+∞上是增函数.(1)若q 为真命题,求m 的取值范围; (2)若p 为真命题,求m 的取值范围;(3)若在“p 且q ”和“p 或q ”中有且仅有一个是真命题,求m 的取值范围.24.设命题:p 关于x 的不等式1x a >(0a >且1)a ≠的解集为(,0)-∞;命题:q 函数()2()ln 2f x ax x =-+的定义域是R .如果命题“p q ∨”为真命题,“p q ∧”为假命题,求a的取值范围.25.已知:p 22a -<<,q :关于x 的方程20x x a -+=有实数根. (1)若q 为真命题,求实数a 的取值范围;(2)若p q ∨为真命题,q ⌝为真命题,求实数a 的取值范围.26.给定命题p :对任意实数x 都有210ax ax ++>成立;命题q :关于x 的方程20x x a -+=有实数根.如果p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】一一分析每个选项中,p q 的充分必要性即可. 【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件; 故选:A.2.B解析:B 【分析】不等式20x x m -+>在R 上恒成立转化为14m >,根据充分条件、必要条件可求解. 【详解】不等式20x x m -+>在R 上恒成立,等价于=140m ∆-<,即14m >当0m >时推不出14m >,104m m >⇒>成立,故“0m >”是“不等式20x x m -+>在R 上恒成立”的必要不充分条件, 故选:B3.A解析:A 【分析】先通过解二次不等式化简条件22320x x --<,再利用充分条件与必要条件的定义逐一判断即可. 【详解】22320x x --<等价于122x -<<,对于A ,122x -<<能推出1x >-,1x >-不能推出122x -<<,1x >-是22320x x --<的必要不充分条件;对于B ,122x -<<不能推出01x <<,01x <<能推出122x -<<,01x <<是22320x x --<的充分不必要条件;对于C ,122x -<<不能推出1122x -<<,1122x -<<能推出122x -<<,1122x -<<是22320x x --<的充分不必要条件; 对于D ,122x -<<不能推出1x <,1x <也不能推出122x -<<,1x <是22320x x --<的既不充分又不必要条件故选:A . 【点睛】方法点睛:判断一个条件是另一个条件的什么条件,一般先化简各个条件,再确定出哪一个是条件哪一个是结论;判断前者是否推出后者,后者是否推出前者,然后利用利用充分条件与必要条件的定义加以判断.4.B解析:B 【分析】 用集合法判断,即可. 【详解】10x +>,得1x >-,所以“ 1.5x >-是“1x >-”的必要不充分条件.故选B . 【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.5.D解析:D 【分析】根据充分不必要条件的定义及集合包含的关系求解. 【详解】123x x +>⇔<-或1x >,p ⌝是q ⌝的充分不必要条件,则q 是p 的充分不必要条件,所以1a ≥, 故选:D .【点睛】命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.6.A解析:A 【分析】根据双曲线的标准方程以及充分不必要条件的概念分析可得结果. 【详解】若方程22ax by c +=表示双曲线,则0,0ab c <≠;若0ab <,当0c 时,22ax by c +=化为220ax by +=不表示双曲线,所以方程“22ax by c +=表示双曲线”是“0ab <”的充分非必要条件.故选:A7.B解析:B 【分析】利用不等式的性质以及命题与真命题的定义求解即可. 【详解】因为可以判断真假的语句叫命题,判断为真的语句叫做真命题,而当a b >时,a c b c +>+一定 成立. 所以语句“若a b >,则a c b c +>+”是真命题 故选:B .8.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.9.C解析:C 【分析】利用线面垂直的判定定理来判断. 【详解】根据线面垂直的判定定理:一个平面内存在一条与另一个平面垂直的直线可以推出这两个平面垂直;反过来,两个平面垂直也能够推出一个平面内存在一条与另一个平面垂直的直线. 故选:C 【点睛】判断充要条件的四种方法:(1)定义法;(2)传递性法;(3)集合法;(4)等价命题法.10.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.11.A解析:A 【分析】分别从充分性和必要性两方面判断. 【详解】由//l α,得a n ⊥,则“//l α”是“a n ⊥”的充分条件,而a n ⊥不一定有//l α,也可能l α⊂,则“//l α”不是“a n ⊥”的必要条件.故选:A 【点睛】判断充要条件的四种方法:(1)定义法;(2)传递性法;(3)集合法;(4)等价命题法.12.A解析:A 【分析】由条件推结论可判断充分性,由结论推条件可判断必要性. 【详解】若“αβ=”,则“sin sin αβ=”必成立;但是“sin sin αβ=”,未必有“αβ=”,例如0,αβπ==. 所以“αβ=”是“sin sin αβ=”成立的充分不必要条件. 故选:A.二、填空题13.或【分析】依据题意知p 均为真命题再计算p 为真命题时的取值范围求公共解即得结果【详解】若或与均为真命题则p 均为真命题若命题为真命题即且满足对任意正实数总有成立而当且仅当时等号成立故则若命题为真命题即二解析:1143a ≤≤或23a ≥【分析】依据题意知p ,q 均为真命题,再计算p ,q 为真命题时a 的取值范围,求公共解即得结果. 【详解】若“p 或q ⌝”与“q ”均为真命题,则p ,q 均为真命题.若命题p 为真命题,即0a >,且满足对任意正实数x ,总有1ax x+≥成立,而a x x +≥=a x x =时等号成立,故min 1a x x ⎛⎫+= ⎪⎝⎭,则14a ≥. 若命题q 为真命题,即二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性, 由对称轴3x a =,故31a ≤或32a ≥,故13a ≤或23a ≥. 由p ,q 均为真命题,知14a ≥,且13a ≤或23a ≥,故1143a ≤≤或23a ≥.故答案为:1143a ≤≤或23a ≥.14.【分析】由得出然后分和讨论即可得结果【详解】解:由于则当时显然满足题意;当时解得综上可知:实数a 的取值范围是 解析:(]1,0-【分析】由p 得出p ⌝,然后分0a =和0a ≠讨论即可得结果. 【详解】解:由于2000:,210p x R ax ax ∃∈+-≥,则200020:,1p x R ax ax ∀∈+-<⌝, 当0a =时,10-<,显然满足题意; 当0a ≠时,2440a a a <⎧⎨∆=+<⎩,解得10a -<<, 综上可知:实数a 的取值范围是(]1,0-.15.【分析】由全称命题的否定即可得解【详解】因为命题为全称命题所以该命题的否定为故答案为:解析:x R ∃∈,240x x a -+≤ 【分析】由全称命题的否定即可得解. 【详解】因为命题“x R ∀∈,240x x a -+>”为全称命题, 所以该命题的否定为“x R ∃∈,240x x a -+≤”. 故答案为:x R ∃∈,240x x a -+≤.16.【分析】由题转化为命题为真命题即恒成立故可求解实数的取值范围【详解】由题转化为命题为真命题即恒成立又在上单调递增所以故故答案为:解析:()1+∞, 【分析】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立,故可求解实数a 的取值范围. 【详解】由题转化为命题“[]1,2x ∀∈,0x a ->”为真命题,即a x <恒成立, 又y x =在[]1,2上单调递增,所以min 1y =,故1a <.故答案为:()1+∞, 17.【分析】由题意可知命题是真命题可得出由此可解得实数的取值范围【详解】由于命题使得成立是假命题则命题是真命题所以解得因此实数的取值范围是故答案为:【点睛】本题考查利用特称命题的真假求参数同时也考查了一 解析:[]0,4【分析】由题意可知,命题“x R ∀∈,20x kx k -+≥”是真命题,可得出0∆≤,由此可解得实数k 的取值范围. 【详解】由于命题“x R ∃∈,使得2kx x k >+成立”是假命题,则命题“x R ∀∈,20x kx k -+≥” 是真命题.所以,240k k ∆=-≤,解得04k ≤≤. 因此,实数k 的取值范围是[]0,4. 故答案为:[]0,4. 【点睛】本题考查利用特称命题的真假求参数,同时也考查了一元二次不等式恒成立问题的求解,考查计算能力,属于基础题.18.①④【分析】利用三角函数恒等变换公式和正弦定理余弦定理判断①②由不等式的性质判断③根据等差数列前项和与等差数列性质判断④应用基本不等式判断⑤【详解】①∵∴∴又为锐角∴由正弦定理和①正确;②∵由正弦定解析:①④ 【分析】利用三角函数恒等变换公式和正弦定理、余弦定理判断①②,由不等式的性质判断③,根据等差数列前n 项和与等差数列性质判断④,应用基本不等式判断⑤. 【详解】①∵()sin 12cos 2sin cos cos sin B C A C A C +=+,∴sin 2sin cos sin cos sin()sin cos sin B B C A C A C A C B +=++=+,∴2sin cos sin cos B C A C =,又C 为锐角,cos 0C ≠,∴2sin sin B A =,由正弦定理和2b a =.①正确;②∵cos cos a A b B =,由正弦定理得sin cos sin cos A A B B =,即2sin cos 2sin cos A A B B =,sin 2sin 2A B =,又,A B 是三角形内角,∴22A B =或22180A B +=︒,∴A B =或90A B +=︒,ABC 是等腰三角形或直角三角形,②错;③0x =时,b b xa a x+=+,不等式不成立,③错误;④∵{}n a 是等差数列,202011S S -=,∴2320201a a a +++=,220202019()12a a +=,2202022019a a +=, ∴120212021220202021()2021202122021()122220192019a a S a a +==+=⨯=>,④正确;⑤22()2f x ===≥=,=,即241x +=时,等号成立,但2441x +≥>,因此不等式中等号不成立,2不是()f x 的最小值(可利用单调性得最小值为52).⑤错. 故答案为:①④ 【点睛】本题考查命题的真假判断,考查正弦定理、三角函数的恒等变换,不等式的性质,等差数列的性质与前n 项和,考查基本不等式求最值的条件.需要掌握的知识点较多,属于中档题.19.若则【分析】根据否命题的定义即可求出【详解】命题若则的否命题为若则故答案为若则【点睛】本题考查了四种命题之间的关系属于基础题解析:若22am bm ≥,则a b ≥ 【分析】根据否命题的定义即可求出. 【详解】命题“若22am bm <,则a b <”的否命题为若22am bm ≥,则a b ≥, 故答案为若22am bm ≥,则a b ≥ 【点睛】本题考查了四种命题之间的关系,属于基础题.20.存在使得【分析】全称改存在再否定结论即可【详解】命题对任意都有的否定是存在使得故答案为:存在使得【点睛】本题考查全称命题的否定属于基础题解析:存在0x R ∈,使得002x x >【分析】全称改存在,再否定结论即可 【详解】命题“对任意x ∈R ,都有2x x ≤”的否定是“存在0x R ∈,使得002x x >”故答案为:存在0x R ∈,使得002x x >【点睛】本题考查全称命题的否定,属于基础题三、解答题21.(,1][4,5)-∞-【分析】先求得命题,p q 为真命题时,实数m 的范围,再根据p q ∧为假命题,p q ∨为真命题,得到p 和q 一真一假,分类讨论,即可求解.【详解】若p 为真命题,即不等式240x x m -+≥对x R ∀∈恒成立,可得1640m -≤,解得4m ≥,若q 为真命题,由2450m m --≥,解得5m ≥或1m ≤-,因为p q ∧为假命题,p q ∨为真命题,所以p 和q 一真一假当p 真q 假时,可得415m m ≥⎧⎨-<<⎩,解得45m ≤< 当p 假q 真时,可得451m m m <⎧⎨≥≤-⎩或,解得1m ≤- 综上所述,实数m 的取值范围是(,1][4,5)-∞-.22.(1)[)4,+∞;(2)[)(]3,26,7--.【分析】 (1)由p 是q 的充分条件,可得出[][]2,62,2m m -⊆-+,可得出关于正实数m 的不等式组,由此可解得实数m 的取值范围;(2)求出q ,分p 真q 假和p 假q 真两种情况讨论,求出两种不同情况下x 的取值范围,综合可求得结果.【详解】解:解不等式24120x x --≤,解得26x -≤≤,即:26p x -≤≤.(1)p 是q 的充分条件,[]2,6-∴是[]2,2m m -+的子集,故02226m m m >⎧⎪-≤-⎨⎪+≥⎩,解得:4m ≥,所以m 的取值范围是[)4,+∞; (2)当5m =时,:37p m -≤≤,由于命题p 、q 其中一个是真命题,一个是假命题,分以下两种情况讨论:①p 真q 假时,2673x x x -≤≤⎧⎨><-⎩或,解得x ∈∅; ②p 假q 真时,6237x x x ><-⎧⎨-≤≤⎩或,解得32x -≤<-或67x <≤. 所以实数x 的取值范围为[)(]3,26,7--.【点睛】结论点睛:本题考查利用充分条件求参数,一般可根据如下规则求解:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,则q 对应集合与p 对应集合互不包含. 23.(1)3,5⎛⎫+∞ ⎪⎝⎭;(2)233,(,2)555⎛⎫⋃⎪⎝⎭;(3)23,[2,)55⎛⎫⋃+∞ ⎪⎝⎭. 【分析】(1)根据q 为真命题,由对数函数的底数大于1求解;(2)根据p 为真命题,则由min ()f x m >求解;(3)根据在“p 且q ”和“p 或q ”中有且仅有一个是真命题,则分p 真q 假,p 假q 真两种情况讨论求解.【详解】(1)因为q 为真命题,所以521m ->, 解得35m >,又25m >,且35m ≠, 所以m 的取值范围是3,5⎛⎫+∞ ⎪⎝⎭; (2)因为p 为真命题,所以min ()f x m >而()22()23122f x x x x =++=++≥,所以2m <,又25m >,且35m ≠, 所以m 的取值范围是233,(,2)555⎛⎫⋃⎪⎝⎭; (3)若在“p 且q ”和“p 或q ”中有且仅有一个是真命题,则可能有两种情况,p 真q 假,p 假q 真,当p 真q 假时,233,(,2)555m ⎛⎫∈⋃⎪⎝⎭,且23,55m ⎛⎫∈ ⎪⎝⎭, 所以23,55m ⎛⎫∈ ⎪⎝⎭, 当p 假q 真时,[2,)m ∈+∞,且3,5m ⎛⎫∈+∞ ⎪⎝⎭, 所以[2,)m ∈+∞,综上:m 的取值范围是23,[2,)55⎛⎫⋃+∞⎪⎝⎭【点睛】 本题主要考查命题真假的应用以及对数函数的单调性,不等式恒成立问题,还考查了逻辑推理的能力,属于中档题.24.()10,1,8⎛⎤+∞ ⎥⎝⎦【分析】先分别假设p ,q 为真命题,求出对应的a 的范围,再根据题意,得到p 和q 有且只有一个是真命题,由此可求出结果.【详解】由题意,若p 为真命题,则01a <<;若q 为真命题,则220ax x -+>对任意x ∈R 恒成立,所以0180a a >⎧⎨∆=-<⎩,解得18a >; 因为命题“p q ∨”为真命题,“p q ∧”为假命题,所以p 和q 有且只有一个是真命题. 若p 真q 假,则0118a a <<⎧⎪⎨≤⎪⎩,解得108a <≤; 若p 假q 真,则118a a >⎧⎪⎨>⎪⎩,综上所述:()10,1,8a ⎛⎤∈+∞ ⎥⎝⎦. 【点睛】本题主要考查由复合命题的真假求参数的问题,涉及一元二次不等式恒成立问题,属于基础题型.25.(1)14a ≤;(2)124a << 【分析】(1)关于x 的方程x 2﹣x+a=0有实数根,则△=1﹣4a≥0,解得a 的范围.(2)由题意得p 为真命题,q 为假命题求解即可.【详解】(1)方程20x x a -+=有实数根,得::140q a ∆=-≥得14a ≤; (2)p q ∨为真命题,q ⌝为真命题∴ p 为真命题,q 为假命题,即2214a a -<<⎧⎪⎨>⎪⎩得124a <<. 【点睛】本题考查了一元二次方程的实数根与判别式的关系、复合命题真假的判断方法,考查了推理能力,属于基础题.26.()1,0,44⎛⎫-∞ ⎪⎝⎭【分析】根据p q ∨为真命题,p q ∧为假命题,可判断出p 与q 一真一假,分类讨论即可得出实数a 的取值范围.【详解】对任意实数x 都有210ax ax ++>恒成立0a ⇔=或200440a a a a >⇔≤<∆=-<⎧⎨⎩; 关于x 的方程20x x a -+=有实数根11404a a ⇔∆=-≥⇔≤; 由于p q ∨为真命题,p q ∧为假命题,则p 与q 一真一假;(1)如果p 真,且q 假,有04a ≤<,且11444a a >⇒<<; (2)如果q 真,且p 假,有0a <或4a ≥,且104a a ≤⇒<. 所以实数a 的取值范围为:()1,0,44⎛⎫-∞ ⎪⎝⎭. 【点睛】 本题主要考查根据复合命题的真假求参数的取值范围,考查不等式恒成立问题及一元二次方程存在解问题,考查学生的计算求解能力,属于中档题.。
2018-2019学年选修1-1第一章训练卷常用逻辑用语(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题:"若0x ,0y ,则0xy",则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A .1B .2C .3D .42.命题“若A B ,则AB ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A .0B .2C .3D .43.给定空间中的直线l 及平面α,条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件4.已知p :若a A ,则b B ,那么命题p 是()A .若a A ,则b B B .若a A ,则b B C .若bB ,则aAD .若bB ,则aA5.命题“p且q ”与命题“p 或q ”都是假命题,则下列判断正确的是()A .命题“非p ”与“非q ”真假不同B .命题“非p ”与“非q ”至多有一个是假命题C .命题“非p ”与“q ”真假相同D .命题“非p 且非q ”是真命题6.已知a ,b 为任意非零向量,有下列命题:①|a |=|b |;②22a b ;③2aa b ,其中可以作为a b 的必要非充分条件的命题是()A .①B .①②C .②③D .①②③7.已知A 和B 两个命题,如果A 是B 的充分不必要条件,那么“A ”是“B ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.若向量,3x xR a,则“4x”是“5a”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件9.下列全称命题中,正确的是()A .,x y 锐角,sin sin s )n (i x y x y B .,x y 锐角,sin cos c )s (o x y x y C .,x y 锐角,cos sin c )s (o x y x y D .,x y锐角,cos cos s )n (i xy xy10.以下判断正确的是()A .命题“负数的平方是正数”不是全称命题B .命题“x Z ,32xx ”的否定是“x Z ,32xx ”C .“=2”是“函数()sin y x为偶函数”的充要条件D .“0b”是“关于x 的二次函数2f xaxbx c 是偶函数”的充要条件此卷只装订不密封班级姓名准考证号考场号座位号11.已知命题p :函数log 05()3f x x .的定义域为(-∞,3);命题q :若k<0,则函数()k h x x 在(0,)上是减函数,对以上两个命题,下列结论中正确的是()A .命题“p 且q ”为真B .命题“p 或q ”为假C .命题“p 或q ”为假D .命题“p ”且“q ”为假12.已知向量),(x y a ,co ()s ,sin b,其中x y R ,,,若4ab ,则2a b成立的一个必要不充分条件是()A .λ>3或λ<-3B .λ>1或λ<-1C .-3<λ<3D .-1<λ<1二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.“对顶角相等”的否定为________,否命题为________.14.令221:0p x ax x ,如果对xR ,p x 是真命题,则a 的取值范围是________.15.试写出一个能成为2()(0)21aa 的必要不充分条件________.16.给定下列结论:①已知命题p :?x ∈R ,tanx =1;命题q :?x ∈R ,210x x .则命题“p q ”是假命题;②已知直线1l :ax +3y -1=0,2l :x +by +1=0,则12l l 的充要条件是3a b;③若1sin 2,1sin3,则tan α=5tan β;④圆224210xyx y与直线12yx ,所得弦长为2.其中正确命题的序号为________(把你认为正确的命题序号都填上).三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知命题p :?非零向量a 、b 、c ,若0a b c,则bc .写出其否定和否命题,并说明真假.18.(12分)给定两个命题P :对任意实数x 都有210axax 恒成立;Q :关于x的方程20xx a有实数根.如果P ∧Q 为假命题,P ∨Q 为真命题,求实数a的取值范围.19.(12分)求证:一元二次方程22100ax x a有一个正根和一个负根的充分不必要条件是a<-1.20.(12分)已知p:2290x x a,q:22430680x xx x,且p是q的充分条件,求实数a的取值范围.21.(12分)给出命题p:“在平面直角坐标系xOy中,已知点P(2cosx+1,2cos2x +2)和Q(cosx,-1),?x∈[0,π],向量OP与OQ不垂直.”试判断该命题的真假并证明.22.(12分)已知ab≠0,求证:a+b=1的充要条件是33220a b ab a b.2018-2019学年选修1-1第一章训练卷常用逻辑用语(一)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】B【解析】由题得原命题“若0x,0y,则0xy ”是真命题,所以其逆否命题也是真命题.逆命题为:“若0xy,则0x,0y ”,是假命题,所以否命题也是假命题,所以四个命题中,真命题的个数为2.故答案为B .2.【答案】B 【解析】可设1,2A,1,2,3B,满足AB ,但A B ,故原命题为假命题,从而逆否命题为假命题.易知否命题、逆命题为真.3.【答案】C【解析】直线l 与平面α内两相交直线垂直?直线l 与平面α垂直,故选C .4.【答案】A【解析】命题“若p ,则q ”的否定形式是“若p ,则q ”.故选A .5.【答案】D【解析】p 且q 是假命题?p 和q 中至少有一个为假,则非p 和非q 至少有一个是真命题.p 或q 是假命题?p 和q 都是假命题,则非p 和非q 都是真命题.故选D .6.【答案】D【解析】由向量的运算即可判断.7.【答案】B【解析】由于“A?B ,A /B ”等价于“A B ,A /B ”,故“A ”是“B ”的必要不充分条件.故选B .8.【答案】A【解析】由“4x ”,得)3(4,a ,故5a;反之,由5a ,得4x .所以“4x ”是“5a”的充分而不必要条件.故选A .9.【答案】D 【解析】由于cos cos c (os sin sin )x y x y x y ,而当,x y锐角时,0cos 1y ,sin 1x,所以cos cos cos sin sin cos s (in )xy x y x yxy ,故选项D 正确.10.【答案】D【解析】A 为全称命题;B 中否定应为x Z ,320xx ;C 中应为充分不必要条件.D 选项正确.11.【答案】 D【解析】由题意知p 真,q 假.再进行判断.12.【答案】 B 【解析】由已知1b ,∴44a b,224xy.又∵22cos sinsin4sin 4x y xy a b ,由于2a b成立,则24,解得λ>2或λ<-2,这是2a b 成立的充要条件,因此2a b成立的一个必要不充分的条件是λ>1或λ<-1.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】对顶角不相等若两个角不是对顶角,则它们不相等【解析】“对顶角相等”的否定为“对顶角不相等”,否命题为“若两个角不是对顶角,则它们不相等”.14.【答案】1a【解析】由已知xR ,2210axx 恒成立.显然0a不合题意,所以0440aa?1a .15.【答案】1a (不惟一)【解析】2()(0)21a a 的解集记为B ={1|a a且a ≠2},所找的记为集合1Aa a ,则BA ,B /A .16.【答案】①③【解析】对于①易知p 真,q 真,故命题p q 假,①正确;对于②1l 与2l 垂直的充要条件应为a +3b =0;对于③利用两角和与差的正弦公式展开整理即得;对于④可求得弦长为455,④错.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析.【解析】p :?非零向量a 、b 、c ,若0abc,使bc .p 为真命题.否命题:?非零向量a 、b 、c ,若0a b c,则b c .否命题为真命题.18.【答案】1,0,44.【解析】命题P :对任意实数x 都有210axax恒成立,则“a =0”,或“a>0且240aa ”.解得0≤a<4.命题Q :关于x 的方程20xx a 有实数根,则140a,得14a.因为P ∧Q 为假命题,P ∨Q 为真命题,则P ,Q 有且仅有一个为真命题,故PQ 为真命题,或P Q 为真命题,则0414aa a或或0414a a,解得a<0或144a.所以实数a 的取值范围是1,0,44.19.【答案】见解析.【解析】一元二次方程22100axx a有一个正根和一个负根的充要条件是:4401a a ,并且10a,从而a<0.有一个正根和一个负根的充分不必要条件应该是{a|a<0}的真子集,a<-1符合题意.所以结论得证.20.【答案】a ≤9.【解析】由2243068x x xx,得1324x x,即2<x<3.∴q :2<x<3.设290|2Ax xx a ,B ={x|2<x<3},∵p q ,∴q?p .∴B?A .∴2<x<3包含于集合A ,即2<x<3满足不等式2290xxa.∴2<x<3满足不等式292ax x .∵当2<x<3时,222981819818192229,21616488xx xx x,即2819928x x,∴a ≤9.21.【答案】见解析.【解析】命题p 是假命题,证明如下:由OP 和OQ 不垂直,得cosx(2cosx +1)-(2cos2x +2)≠0,变形得:22cos cos 0xx ,所以cosx ≠0或1cos 2x.而当0,x时,cos 2,1cos32,故存在2x或3x,使向量OP OQ 成立,因而p 是假命题.22.【答案】见解析.【解析】必要性:∵a +b =1,∴b =1-a ,∴32332232111a bab a b a a a a aa323222133120aaaaaaa aa.充分性:∵33220abab ab,即22220a b a ab baab b,∴2210aab ba b ,又ab≠0,即a≠0且b≠0,∴22223024b ba ab b a,只有1a b.综上可知,当ab≠0时,a+b=1的充要条件是33220a b ab a b.。
目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组]第三章导数及其应用 [提高训练C组](数学选修1-1)第一章 常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个 4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
第一章常用逻辑用语1.1 命题及其关系1、命题(1)一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
(2)“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论。
2、四种命题(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。
其中一个命题叫做原命题(“若p,则q”),另一个叫做原命题的逆命题(“若q,则p”)。
(2)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题(“若p⌝,则q⌝”)。
(3)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题(“若q⌝,则p⌝”)。
3、四种命题间的相互关系例1下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5)2)2-;(2=(6)15x。
>例2指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分。
例3将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等。
例4证明:若022=x,则0=+yx。
-y1.2 充分条件与必要条件1、充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理得出q。
这是,我们就说,由p可推出q,记作qp⇒,并且说p是q的充分条件,q是p的必要条件。
2、充要条件一般地,如果既有qq⇒,就记作qp⇔。
第一章学业质量标准检测
时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列语句中,命题的个数是导学号 03624316( C )
①|x+2|;②-5∈Z;③π∉R;④{0}∈N.
A.1 B.2
C.3 D.4
[解析] ①不能判断真假,故不是命题,其他都是命题.
2.命题“若x2<1,则-1<x<1”的逆否命题是导学号 03624317( D ) A.若x2≥1,则x≥1,或x≤-1
B.若-1<x<1,则x2<1
C.若x>1或x<-1,则x2>1
D.若x≥1或x≤-1,则x2≥1
[解析] “-1<x<1”的否定为“x≤-1或x≥1”,故原命题的逆否命题为:“若x≥1或x≤-1,则x2≥1”.
3.有下列四个命题
①“若b=3,则b2=9”的逆命题;
②“全等三角形的面积相等”的否命题;
③“若c≤1,则x2+2x+c=0有实根”;
④“若A∪B=A,则A⊆B”的逆否命题.
其中真命题的个数是导学号 03624318( A )
A.1 B.2
C.3 D.4
[解析] “若b=3,则b2=9”的逆命题:“若b2=9,则b=3”,假;
“全等三角形的面积相等”的否命题是:“不全等的三角形,面积不相等”,假;
若c≤1,则方程x2+2x+c=0中,Δ=4-4c=4(1-c)≥0,故方程有实根;
“若A∪B=A,则A⊆B”为假,故其逆否命题为假.
4.(2017·北京文,7)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的导学号 03624319( A )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
[解析] 方法1:由题意知|m|≠0,|n|≠0.
设m与n的夹角为θ.
若存在负数λ,使得m=λn,
则m与n反向共线,θ=180°,
∴m·n=|m||n|cos θ=-|m||n|<0.
当90°<θ<180°时,m·n<0,此时不存在负数λ,使得m=λn.
故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.
故选A.
方法2:∵m=λn,
∴m ·n =λn ·n =λ|n|2.
∴当λ<0,n ≠0时,m ·n<0.
反之,由m ·n =|m||n|cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈(π2
,π],
当〈m ,n 〉∈(π2
,π)时,m ,n 不共线. 故“存在负数λ,使得m =λn ”是“m ·n<0”的充分而不必要条件. 故选A .
5.(2017·天津文,2)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的导学号 03624320( B )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件
[解析] ∵2-x ≥0,∴x ≤2.∵|x -1|≤1,∴0≤x ≤2.
∵当x ≤2时,不一定有x ≥0,当0≤x ≤2时,一定有x ≤2,
∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件.
故选B .
6.(2016·江西抚州高二检测)以下说法正确的个数是导学号 03624321( C )
(1)“b 2=ac ”是“b 为a ,c 的等比中项”的充分不必要条件;
(2)“|a|>|b|”是“a 2>b 2”的充要条件;
(3)“A =B ”是“tan A =tan B ”的充分不必要条件.
A .0个
B .1个。