傅里叶红外光谱仪测试原理及常用制样方法
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
傅里叶红外光谱仪atr法原理
傅里叶红外光谱仪使用的最常见的技术是ATR(全反射衰减法)技术,它利用红外光在材料表面与外部环境的交界处发生反射和透射的原理,进行光谱分析。
ATR技术的原理是在样品表面放置一块具有高折射率的透明晶体(如锂铌酸钠)作为ATR棱镜,将红外光从ATR棱镜下方的光纤引向棱镜表面。
光线从ATR棱镜表面进入样品,发生反射或透射,并在再次穿过棱镜时发生全反射,最终再次沿着光纤返回光谱仪进行检测。
当红外光通过样品时,它会与样品中的分子发生相互作用,这些相互作用会导致红外光的强度和频率发生变化。
通过测量红外光被样品吸收的强度和频率变化,可以确定样品中存在哪些分子,并将这些信息转化为光谱图。
ATR技术的优点是可以直接对固体、液体和薄膜等样品进行光谱测量,而不需要预处理或制备复杂的样品。
此外,它还可以在高温、高压和高湿度等严苛环境下进行分析。
因此,ATR 技术在化学、材料、生命科学等领域广泛应用。
傅里叶红外光谱仪(FTIR)(仅供参考)一.实验目的:1.了解FTIR的工作原理以及仪器的操作。
2.通过对多孔硅的测试,初步学会分析方法。
二.实验原理:1.傅里叶红外光谱仪的工作原理:FTIR光谱仪由3部分组成:红外光学台(光学系统)、计算机和打印机。
而红外光学台是红外光谱仪的最主要部分。
红外光学台由红外光源、光阑、干涉仪、样品室、检测器以及各种红外反射镜、氦氖激光器、控制电路和电源组成。
下图所示为红外光学台基本光路图。
傅里叶变换红外光谱是将迈克尔逊干涉仪动镜扫描时采集的数据点进行傅立叶变换得到的。
动镜在移动过程中,在一定的长度范围内,在大小有限,距离相等的位置采集数据,由这些数据点组成干涉图,然后对它进行傅立叶变换,得到一定范围内的红外光谱图。
每一个数据点由两个数组成,对应于X轴和Y轴。
对应同一个数据点,X值和Y值决定于光谱图的表示方式。
因此,在采集数据之前,需要设定光谱的横纵坐标单位。
红外光谱图的横坐标单位有两种表示法:波数和波长。
通常以波数为单位。
而对于纵坐标,对于采用透射法测定样品的透射光谱,光谱图的纵坐标只有两种表示方法,即透射率T 和吸光度A。
透射率T是由红外光透过样品的光强I和红外光透过背景(通常是空光路)的光强I0的比值,通常采用百分数(%)表示。
吸光度A是透射率T倒数的对数。
透射率光谱图虽然能直观地看出样品对红外光的吸收情况,但是透射率光谱的透射率与样品的质量不成正比关系,即透射率光谱不能用于红外光谱的定量分析。
而吸光度光谱的吸光度值A在一定范围内与样品的厚度和样品的浓度成正比关系,所以大都以吸光度表示红外光谱图。
本实验运用的仪器是Nicolet 380 智能傅立叶红外光谱仪。
2.傅里叶红外光谱仪的主要特点:⑴具有很高的分辨能力,在整个光谱范围内分辨能力达到0.1cm-1。
⑵具有极高的波数准确度,波数准确度可以达到0.01cm-1。
⑶杂散光的影响度低,通常在全光谱范围杂散光影响低于0.3%。
傅里叶红外光谱仪工作原理及应用傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。
它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。
可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。
FTIR工作原理:光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。
两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。
干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。
FTIR主要特点:1.信噪比高:傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。
2. 重现性好:傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。
3. 扫描速度快:傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集求平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。
简单来说,红外光谱具有特征性强、分析快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较高、应用范围广(固态、液态或气态样品都能应用;无机、有机、高分子化合物均可检测)等特点,其与色谱(GC-IR)联用或TGA(TGA-IR)联用,定性功能强大。
傅里叶红外光谱仪的原理及应用傅里叶红外光谱仪的原理及应用一、傅里叶红外光谱仪的基本原理:傅里叶红外光谱仪(Fourier transform infrared spectrometer, FTIR)通过分析样品中不同波长的红外辐射和参比物中的红外辐射之间的差异,来确定样品中化学键的种类和结构以及分子的振动和转动状态。
具体来说,光谱仪通过将入射的白光通过一个Michelson干涉仪分解成不同频率的单色光,然后照射在样品上面,并测量反射或透射回来的光,在红外区域内记录样品所吸收的光谱,最后将获得的信号通过傅里叶变换转换成频谱图,得到样品中各种不同振动模式所对应的吸收峰,从而对样品进行检测和分析。
二、傅里叶红外光谱仪的优点:1. 快速分析:傅里叶红外光谱仪可以在短时间内得到样品的红外光谱,实现高效的化学分析。
2. 非破坏性分析:傅里叶红外光谱仪不需要对样品进行物理改变或破坏,避免了可能出现的误差。
3. 高精度分析:傅里叶红外光谱仪的精度高,可以检测样品中的微量化学组成。
4. 多样性分析:傅里叶红外光谱仪不仅可以检测有机化合物,还可以检测小分子无机物。
三、傅里叶红外光谱仪的应用:1. 医药行业:傅里叶红外光谱仪可以用于新药研制中的药物成分分析、质量控制和药物稳定性研究。
2. 化妆品行业:傅里叶红外光谱仪可以用于化妆品质量控制和成分分析,确保产品的稳定性和质量。
3. 食品行业:傅里叶红外光谱仪可以用于食品成分和质量分析,帮助食品企业保障产品质量和食品安全。
4. 环境监测:傅里叶红外光谱仪可以用于大气、水、土壤等环境中的有机和无机物检测,保障环境安全。
总之,傅里叶红外光谱仪作为一种高效、精准、非破坏性的化学分析手段,已经成为化学、医药、化妆品、食品、环境等领域的重要工具,并不断得到改进和创新,为各行业的发展进步带来越来越多的应用价值。
傅里叶红外光谱仪测结晶度傅里叶红外光谱仪(FTIR)是一种常用的非破坏性分析技术,可以在常温常压下对各种物质进行分析。
FTIR测量的样品可以是气体、液体和固体,由于它具有快速、高效、精度高、可靠性强等特点,被广泛应用于化学、石油、医药、农业等领域。
本文主要介绍归一化傅里叶变换红外光谱(NIR),傅里叶红外光谱仪分析结晶度的原理、方法以及应用。
一、NIR技术近红外(NIR)区域(波数4000-8000cm-1)是红外辐射和可见光之间的区域。
在这个波段内,物质的分子振动在较高的振动地位处,与红外光的相互作用变弱,使得样品的散射和吸收看起来相对较小,因此光的透过性好。
NIR区域分子的振动与拉伸通常都不明显,而是单一的复杂组合振动,呈现出一系列复杂而浅的谱线。
由于NIR光谱对样品的要求较低,所以NIR有许多独特的优势:1.非破坏性:NIR仪器可以对样品进行非破坏性测试,减少样品浪费和实验成本。
2.快速性:NIR测量速度快,通常可以在数秒到数分钟内完成,适用于大批量样品分析。
3.多样性:NIR仪器可以测试多种样品,包括液体、固体和气体,并可以检测组成、结构、含水量、结晶度等性质。
4.准确性:NIR技术可以提供高度准确的结果,并可以进行定量分析和质量控制。
在材料科学中,结晶度是指材料结晶形态的程度和完整性的度量。
材料的结晶度可以由多种方法进行测量。
其中傅里叶红外光谱仪是一种常用的测量方法之一。
当样品中的光经过傅里叶红外光谱仪,被样品中的吸收和散射作用所改变,因此测量的是反射光谱和透射光谱。
对于固态样品,结晶度的变化会导致样品中的分子振动能级发生变化,从而导致样品红外光谱图谱的相应改变。
对于大多数矿物和多晶材料而言,其结晶度会影响样品的反射和透射,在FTIR中,对样品进行光谱仪分析时,会针对样品进行两种分析,一种是ATR(表面增强红外吸收光谱)模式,另一种是漫反射模式。
ATR模式是FTIR中常用的反射式光谱分析方法之一,它将样品压在内部棱镜上,将FTIR光谱分析仪的入射光强与样品的反射光进行比较。
傅里叶红外光谱仪器工作原理傅里叶红外光谱仪(Fourier Transform Infrared Spectrometer,也称为FTIR)是一种常见的红外光谱分析方法。
它利用样品对不同波长的红外光的吸收和散射来获取样品的结构和组成信息。
傅立叶红外光谱仪是通过测量样品对不同波长的光吸收强度来获得红外光谱,并将得到的信号转化为傅里叶变换的光谱图。
傅立叶红外光谱仪的主要构成部分包括光源、样品室、光学系统、探测器和数据处理系统。
光源:傅立叶红外光谱仪通常采用红外线辐射源,如红外灯。
红外线辐射源会发出连续的光谱辐射,其中包含了多个红外波长,用于与待测试样品相互作用。
样品室:样品室用于容纳待测试的样品。
通常样品室是一个密封的空间,以防止外界干扰。
样品室的设计和材料对光谱的测量结果有一定的影响。
光学系统:光学系统通常由准直系统、分光系统和检测系统组成。
准直系统将从光源出发的光束聚焦到样品室中,以达到适当的光强度。
分光系统负责将经过样品的光束分解成不同的波长,通常通过光栅进行分光。
检测系统则负责测量光谱分解后不同波长的光强度。
探测器:傅立叶红外光谱仪常用的探测器是红外线探测器,如半导体探测器和压电探测器。
探测器能够将通过样品的光强度转化为电信号,以便进一步的信号处理。
数据处理系统:通过将探测器测得的电信号进行傅立叶变换,可以得到红外光谱图。
傅立叶变换将时域的电信号转化为频域的谱图,其中各个峰对应着不同波长的光。
数据处理系统将得到的谱图显示并保存,以供后续的分析和解释。
傅立叶红外光谱仪的工作原理可以总结为以下几个步骤:1.光源发出连续的红外光。
2.光经过准直系统聚焦到样品室中的样品上。
3.样品吸收或散射红外光,其中吸收光的强度与样品的化学组成和结构相关。
4.当经过样品的光经过分光系统时,不同波长的红外光被分离成不同的方向。
5.分光后的光被转化为电信号,并通过探测器测量光的强度。
6.探测器将得到的电信号转化为数字信号,并输入到数据处理系统中。
傅里叶红外光谱仪测反射率傅里叶红外光谱仪是一种分析物质分子结构和化学键信息的高精度仪器。
该仪器基于物质分子对红外线的吸收谱进行研究和分析。
而在测量过程中,反射率也是一个非常重要的参数。
下面我们就来详细介绍傅里叶红外光谱仪测反射率的相关知识。
一、傅里叶红外光谱仪的基本原理傅里叶红外光谱仪是一种基于傅里叶变换技术的红外光谱分析仪器。
它能够将物质分子吸收的红外线谱转变为频率的函数,并把这个频率函数转换为时间函数。
这样就可以得到红外线吸收谱的图像,进而分析物质分子的结构和化学键信息。
二、傅里叶红外光谱仪测反射率的原理傅里叶红外光谱仪测量物质反射率的原理是基于反射率和吸收率的关系。
物质对红外线的反射率和吸收率是一种互补的关系,在光谱的不同波段有不同的值。
通过测量物质在红外光谱的不同波段的反射率,可以推算出物质在该波段的吸收率,从而研究物质分子的结构和化学键信息。
三、傅里叶红外光谱仪测反射率的步骤1. 样品制备:将待测样品制备成固体、液体或气态样品,然后处理成均匀、厚度适中的片状或涂在无反射的基底上。
2. 样品放置:将样品放置在光路上,使其准确定位到接受光源。
3. 校准仪器:使用标准样品进行坐标校准和反射率和吸收率的标定。
4. 测量反射率:使用傅里叶红外光谱仪,利用反射式光学系统测量样品在红外光谱波段内的反射率。
5. 函数转换:通过傅里叶变换将反射率谱转换为吸收谱图像。
6. 分析数据:处理吸收谱的数据,分析物质分子的结构和化学键信息。
四、傅里叶红外光谱仪测反射率应注意事项1. 样品制备必须均匀,且厚度适中,否则会影响反射率测量的精度。
2. 样品的放置位置必须准确,否则可能会失真。
3. 必须使用标准样品进行坐标校准和反射率和吸收率的标定,以保证测量的准确性。
4. 测量时必须保持谱仪和样品间隙的干燥,以避免水蒸气吸收谱干扰。
5. 测量过程中,必须避免光路变化干扰。
以上是傅里叶红外光谱仪测反射率的相关知识,希望能够对您了解傅里叶红外光谱仪的测量过程和注意事项有所帮助。
傅里叶红外光谱仪测试傅里叶红外光谱仪测试一、前言红外光谱技术已经成为当前重要的分析手段之一,但是红外光谱需要专门的设备。
傅里叶红外光谱仪凭借其高效、高精度的性能特点,已经成为红外光谱分析领域的主流设备之一。
本文将以傅里叶红外光谱仪测试为例,介绍傅里叶红外光谱仪的原理、应用及测试过程。
二、傅里叶红外光谱仪原理傅里叶红外光谱仪原理基于不同样品的吸收光谱图形会影响红外光谱仪的输出信号。
仪器会在该波段上扫描样品并测量每个波长处的光学响应,然后将其转换为一个吸收光谱的曲线。
在这个过程中,样品所吸收的红外光产生的能量也会被测量出来。
这些测得的数据会通过数据分析软件处理,转换成谱线图,从而让用户更准确地分析样品材料。
三、傅里叶红外光谱仪应用傅里叶红外光谱仪广泛应用于医药、环境、生物、食品、化工等领域。
该仪器可以用于分析有机化合物、高分子材料、纤维素质、天然橡胶、塑料、油毡、颜料、脂肪、乳制品、酒类、糖类等物质。
四、傅里叶红外光谱仪测试过程1.检测前准备工作首先确认傅里叶红外光谱仪仪器是否正常,检查材料样品是否准备好。
2.样品制备取一定的物质样品量,并将其制成透明的薄片,透光率达到90%以上。
3.样品测试将样品片固定于样品盘上,调整光谱仪参数以保证合适的测试条件。
启动仪器,对该样品进行扫描。
扫描完成后,将数据导入计算机,并进行数据处理。
4.数据处理使用数据处理软件将扫描得到的红外光谱图转化为吸收率、透过率、透射率等数据,并进行峰拟合和谱峰分析等处理。
五、结论傅里叶红外光谱仪在分析材料与化合物中扮演着重要的角色,其准确度、速度和非破坏性成为其最重要的特点。
通过本文介绍的测试过程,可以更好地了解傅里叶红外光谱仪的原理、应用及测试方法。
傅里叶红外测定方法前言傅里叶红外(FT-IR)光谱法是一种以光谱的形式研究物质结构的实验方法,可以用来检测有机物质、焦炭、石油及其制品中的各种化学结构,是分子结构和化学反应机理的理想工具。
傅里叶红外波段可以表征组成结构中的吸收线,从而可以研究结构单元的组成位置、数目、局部结构及稳定性,以及它们之间的相互关系。
一、实验原理傅里叶红外光谱是一种利用电磁波透过样品射入检测仪器,携带振动的能量波。
分子几何结构、相互作用键的强弱、热力学差分等都会对振动的能量波产生影响,从而造成改变波长,经过光栅精确折射,引发各种分子吸收谱,以改变红外辐射幅度,把它以峰,谷或曲线的形式表现出来,从而可以研究其复杂的组成以及结构,而称为傅里叶红外光谱实验。
二、实验目的1. 了解傅里叶红外光谱实验的原理。
2. 学会搭建并使用傅里叶红外仪进行实验。
3. 使用傅里叶红外光谱测定有机物的结构。
三、实验步骤1.开机:实验前需将傅立叶红外光谱仪打开,确认仪器工作正常,然后将样品放入仪器中。
2.电脑操作:确定测试参数,选定检测的波数范围,调整参数,确定各项数据的强度和灵敏度,选择保存实验结果的格式,并确定所需实验条件。
3.取读取数据:在指定的波数范围内,从仪器中读取数据,并用计算机处理,将数据变换成光谱图型。
4.观察结果:将处理后的数据结果转换成光谱图,观察其变化,以此来研究该物质的结构组成、性质及反应机理。
四、实验结果根据结果图型,可以判断该样品结构的组成、性质及反应机理,推断出样品的化学组成和分子结构。
五、结论从本次实验结果中可以得出结论:傅里叶红外光谱实验是一种分子结构和化学反应机理研究的理想工具,可以较为精确地研究物质组成以及反应机理。
傅里叶红外光谱仪测试原理及常用制样方法
傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成,它的工作原理就是迈克耳逊干涉仪的原理。
迈克耳逊干涉仪的光路如图所示,图中已调到M2与M1垂直。
∑是面光源(由被单色光或白光照亮的一块毛玻璃充当),面上每一点都向各个方向射出光线,又称扩展光源,图中只画出由S点射出光线中的一条来说明光路。
这条光线进入分束板G1后,在半透膜上被分成两条光线,反射光线①和透射光线②,分别射向M1和M2又被反射回来。
反射后,光线①再次进入G1并穿出,光线②再次穿过补偿板G2并被G1上的半透膜反射,最后两条光线平行射向探测器的透镜E,会聚于焦平面上的一点,探测器也可以是观测者的眼睛。
由于光线①和光线②是用分振幅法获得的相干光,故可产生干涉。
光路中加补偿板G2的作用是使分束后的光线①和光线②都以相等的光程分别通过G1、G2两次,补偿了只有G1而产生的附加光程差。
M2′是M2被G1上半透膜反射所成的虚象,在观测者看来好象M2位于M2′的位置并与M1平行,在它们之间形成了一个空气薄膜。
移动M1即可改变空气膜的厚度,当M1接近M2′时厚度减小,直至二者重合时厚度为零,继续同向移动,M1还可穿越M2′的另一测形成空气膜。
最后通过观测干涉条纹的分布情况就可以获得我们所要的信息。
如果是傅里叶变换红外光谱仪,那还要加上对干涉信息的数据处理系统而最终获得我们的数据图表。
二.紫外;-;可见分光光度计定量分析法的依据是什么?
比耳(Beer)确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。
○1. 朗伯定律
当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。
人们定义:溶液对单色光的吸收程度为吸光度。
公式表示为A=Lg (I0/It)
○2.比耳定律
当一束单色光通过液层厚度一定的均匀溶液时,溶液中的吸光物质的浓度增大dC,则透
射光强度将减弱dI,-dI与入射光光强度I与dc的积成正比。
∴−dI ∝I•dc -dI/I=k3•dc
A=Lg(I0/It)=K4 •C
这是吸光度与浓度的定量关系,是紫外;-;可见分光光度分析的定量依据,称Beer 定律,
k4;--;与入射光波长、溶液性质、液层厚度及温度有关,故当上述条件一定时,吸光度与溶
液浓度成正比.
3.朗伯--比耳定律
若同时考虑液层厚度和溶液浓度对吸光度的影响,即把朗伯定律和比耳定律合并起来得:A = k b C
K;--;与入射光波长、溶液性质及温度有关的常数
当一束波长为λ的单色光通过均匀溶液时,其吸光度与溶液浓度和光线通过的液层厚度的
乘积成正比。
即为朗伯;--;比耳定律。
其中K的取值与C、b的单位不同而不同。
若C以g/L表示,b以cm表示。
则K 以a表示,,称吸光系数,单位L/g.cm ∴A = a b C
三.红外光谱分析中固体式样的常用制样方法有哪些?
1.压片法。
在研钵中研磨成细粉末与干燥的溴化钾粉末混合均匀,装入模具,在压片机上压制成片测试。
2. 糊状法
在研钵中,将干燥的样品研磨成细粉末。
然后滴入1~2滴液体石蜡混研成糊状,涂于KBr或NaCl晶片上测试。
四.双光束分光光度计与单光束分光光度计比有哪些优点?
双光束分光光度计比单光束分光光度计结构复杂,可实现吸收光谱的自动扫描,扩大波长的应用范围,消除光源强度波动所带来的影响。
具有较高的测量精密度和准确度,而且测量方便快捷,特别适合进行结构分析。