(完整版)定义新运算(可编辑修改word版)
- 格式:docx
- 大小:24.11 KB
- 文档页数:4
小学数学定义新运算一.什么是定义新运算我们已经学过了加、减、乘、除运算。
在有些情况下,常把「有多步含加、减、乘、除的运算」用某种新的符号表示,这就是定义了新的运算。
见到了这种用新的符号所定义的运算后,就按它所规定的「运算程序」进行运算,直到得出最后结果。
例如,设A、B表示自然数,如果定义符号「※」表示的运算如下:A※B=3×A+4×B那么,根据新运算「※」的定义,就可以计算6※7如下:6※7=3×6+4×7=46。
如果定义符号「※」表示的运算为:A※B=A÷B×2+3×A-2,那么,按此定义去计算4※2的话,就有:4※2=4÷2×2+3×4-2=2×2+12-2=14。
二.定义新运算需要注意的几个问题按照新定义的运算求某个算式的结果,关键是要正确理解这种新运算的意义,如上面举例中的运算符号「※」所表示的运算并不是一种固定的算法,而是因题而异,不同的题目有不同的规定,我们应当严格按不同的规定进行运算。
需要注意的是:(1)有括号时,应当先算括号里的;(2)新定义的运算往往不一定具备交换律和结合律,不能随便套用这些运算定律来解题。
(3)上面例举中所定义的运算使用了符号「※」来定义,但并不是说只有「※」才是规定运算的符号,可能用△,#,…等符号。
符号的种类是次要的,符号所定义的运算按照怎样的程序来进行才是主要的。
三.典型例题例1设a,b表示整数(包括0),规定「*」的运算为a*b=a÷b×2+3×a-b,计算:169*13。
分析与解答动手算之前,先让我们弄清「*」是怎么一种运算程序,按规定,a*b的值是用a除以b,把商数乘2之后,再加上a的3倍,最后减去b,这些运算有两个特点:(1)各步运算都是大家熟悉的四则运算;(2)各步运算的先后次序要按规定的顺序办。
那么,根据「*」的规定,我们可以计算得到:169*13=169÷13×2+3×169-13=520。
第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2、设a*b=a2+2b,那么求10*6和5*(2*8)。
3、设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1、设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2、设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3、设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4=________。
定义新运算知识与方法:对于常用的加、减、乘、除等运算,我们已经熟知它们的运算法则和计算方法,如6+ 2=8, 6X2=12等。
都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。
由此可见,一种运算实际就是两个数与一个数的一种对应方法。
对应法则不同就是不同的运算。
当然,这个对应法则应该是对应任意两个数。
通过这个法则都有一个唯一确定的数与它们对应。
这节课,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。
解决定义新运算这类题的关键:是抓住定义的本质借用“ +、一、X、十”四则运算进行的,解答时要弄活新运算与四则运算的关系。
特别注意运算顺序,每个新定义的运算符号只能在本题中使用,新运算不一定符合运算定律。
例1:设a、b都表示数,规定:aAb =3X a— 2X b。
试计算:(1) 3A2; (2) 2A3。
练习1:1. 设a b都表示数,规定:a。
b=5X a— 2X b。
试计算3042. 设a b都表示数,规定:a*b=3x a+ 2X b。
试计算:5*6例2:对于两个数a与b,规定b=3a+ 2a,试计算( 3^5)练习2:1.对于两个数a与b,规定:aOb=a+3b,试计算405062.对于两个数A与B,规定:A△ B=2X A — B,试计算5A6A7例3:对于两个数a, b,规定:a金b=ax b+ a+ b,试计算:9 ®练习3:1.对于两个数a, b,规定:a$b=ax b— ( a+ b),试计算:6 ® 7.2..对于两个数A与B,规定:A GB=A X B-2,试计算:8 99例4:如果2、3=2 + 3 + 4, 5A4=5+ 6+ 7+ 8,那么按此规律计算:(1) 3A5;(2) 8A3。
练习4:1.如果4A2=4X 5, 2A3=2X 3X 4,那么按此规律计算:5A4。
2.如果24=24- (2+ 4), 3V6=36- (3 + 6), 6V3=63- (6+ 3),那么按此规律计算:7V2.例5:对于两个数a与b,规定aDb=a(a+1)+(a+2)+・・・(a+b— 1)。
完整版)六年级奥数定义新运算及答案1.根据定义,(2※3)※5=(3+2)×3※5=5×15=75.2.根据定义,a△5=(a-2)×5=30,解得a=8.3.根据定义,(18,12)+[18,12]=6+36=42.4.先计算括号内的值:(68)(35)=(6+8-1)+(3×5-2)=(13)+(13)=26,再将4与26相乘,得到104.5.=8,=25,=2,因此++××>=+>=29.6.根据定义,x⊙5=3x-10,5⊙x=3×5-2x,因此有3x-10+5=2x+15,解得x=20.7.根据定义,a※b=(b+a)×b,因此4※5=(5+4)×5=45.8.根据定义,(x※3)※4=x(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)(x+7),因此x=7.9.根据定义,1※2=a+b-c,2※3=2a+3b-6c,因此有a+b-c=3,2a+3b-6c=4,解得a=2,b=1,c=0,因此m的数值是0.10.(1) 根据定义,4△3=1,8△5=3,因此(4△3)+(8△5)=1+3=4;(2) 根据定义,2△3=-1,(-1)△4=3,因此(2△3)△4=3;(3) 根据定义,2△5=-3,3△4=1,因此(2△5)△(3△4)=-2.11.(1) 根据定义,3※4=1,1※9=8,因此(3※4)※9=8;(2) 这个运算不满足交换律,也不满足结合律,因为a※b的结果取决于a和b的大小关系。
12.(1) 根据定义,(2※3)※4=13,2※(3※4)=28;(2) 根据定义,a※3=(2a+3)/(2b+a),因此有2a+3=6,2b+a=9,解得a=3,b=3/2.13.根据定义,12⊙21=252-3=249,5⊙15=75-5=70.4⊗26。
4×26﹣2。
小学奥数——定义新运算1、设a,b都表示数,规定a△b=3×a-2×b。
①求4△3,3△4。
②求(17△6)△2, 17△(6△2)。
③如果已知5△b=5,求b。
2、定义运算※为a※b=a×b-(a+b),①求5※7,7※5;②求12※(3※4),(12※3)※4;③如果3※(5※x)=3,求x.3、4、如果4※2=14,5※3=22,3※5=4,7※18=31,求6※9的值。
5、设a▽b=a×b+a-b,求5▽8。
6、规定:a△b=a+(a+1)+(a+2)+……(a+b-1),其中a,b表示自然数。
(1)求1△100的值;(2)已知x△10=75,求x。
7. 设ba,表示两个不同的数,规定baba43+=∆.求6)78(∆∆.8. 定义运算⊖为a⊖b=5×)(baba+-⨯. 求11⊖12.9. ba,表示两个数,记为:a※b=2×bba41-⨯.求8※(4※16).10. 设yx,为两个不同的数,规定x□y4)(÷+=yx.求a□16=10中a的值.11. 规定a ba ba b +⨯=.求2 10 10的值.12. Q P ,表示两个数,P ※Q =2QP +,如3※4=243+=3.5.求4※(6※8);如果x ※(6※8)=6,那么=x ?13. 定义新运算x ⊕yx y 1+=.求3⊕(2⊕4)的值.14. 有一个数学运算符号“⊗”,使下列算式成立:4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50.求7⊗3=?15. 对于数b a ,规定运算“▽”为)5()3(-⨯+=∇b a b a .求)76(5∇∇的值.16. y x ,表示两个数,规定新运算“ ”及“△”如下:x y x y 56+=,x △xy y 3=.求(2 3)△4的值..【读一读】 狼&羊羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼。
第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*()+(),求13*5和13*(5*4)。
练习1:1、将新运算“*”定义为:a*()×().。
求27*9。
2、设a*2+2b,那么求10*6和5*(2*8)。
【例题2】设p、q是两个数,规定:p△4×()÷2。
求3△(4△6)。
练习2:1、设p、q是两个数,规定p△q=4×q-()÷2,求5△(6△4)。
2、设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4;210*2。
练习3:1、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4。
2、规定,那么8*5。
【例题4】规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A是几?练习4:1、规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果1/⑧-1/⑨=1/⑨×A,那么。
定义新运算导言在数学中,运算是一种数学操作,用于对数值或数值集合进行处理和计算。
常见的运算包括加法、减法、乘法和除法等。
然而,在某些场景下,常规运算无法满足需求,因此需要定义新的运算。
新运算的定义新运算是指不属于常规运算范畴的一种数学操作。
它可以对数值进行加工处理,从而获得满足特定需求的结果。
与常规运算不同的是,新运算可能具有不同的符号、规则和运算法则。
新运算的特点1.创新性:新运算是一种相对于常规运算的创新,它提供了新的数学方式和解决问题的途径。
2.特殊性:新运算通常具有特殊的性质和规则,与常规运算存在差异。
3.应用性:新运算在特定领域或问题中具有较高的应用价值,能够更好地解决特定问题。
新运算的例子例子一:矩阵运算矩阵运算是一种常见的新运算。
它对矩阵进行加、减、乘等操作,从而获得矩阵相加、相减、相乘后的结果。
矩阵运算在线性代数、计算机图形学等领域具有广泛的应用,例如图像处理、机器学习等。
例子二:向量运算向量运算是指对向量进行处理和计算的一种新运算。
它可以进行向量的加法、减法、点积、叉积等操作,从而获得向量的相加、相减、点积、叉积等结果。
向量运算在物理学、力学等领域具有重要的应用,例如力的合成、求解位置等。
新运算的运算法则新运算的运算法则是指确定新运算的规则和操作方式。
它可以保证新运算的正确性和可靠性。
不同的新运算可能有不同的运算法则,以下是一些常见的运算法则:1.封闭性:新运算中的结果仍然属于原有运算的数值集合。
2.结合律和交换律:新运算满足结合律和交换律,可以改变运算顺序或数值顺序而不影响结果。
3.幂等性:多次进行新运算的结果与一次运算的结果相同。
4.分配律:新运算与其他运算之间满足分配律,可以在不同运算之间进行组合。
结语通过定义新运算,我们可以拓展数学领域的研究和应用范围,寻找更加适用于特定问题的数学工具和方法。
新运算的引入和应用将促进数学学科的发展和创新,对于解决实际问题和推动科学进步具有重要的意义。
△*△p 4 6 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:、 、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题 1】假设 a*b=(a+b)+(a-b),求 13*5 和 13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于 a 和 b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在 13*(5*4)中,就要先算小括号里的(5*4)。
练习 1:13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=261.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求 27*9。
2.设 a*b=a2+2b ,那么求 10*6 和 5*(2*8)。
3.设 a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题 2】设 p 、q 是两个数,规定: q=4×q-(p+q)÷2。
求 △3错误!6)。
【思路导航】根据定义先算 4△6。
在这里“ ”是新的运算符号。
△3 错误! 6)=△3 【×6-(4+6)÷2】=△3 19=4×19-(3+19)÷2练习 2:1.设 p 、q 是两个数,规定 △p q =4×q -(p+q )÷2,求 △5 △( 4)。
精品文档52.设p、q是两个数,规定△p q=p2+(p-q)×2。
第一讲定义新运算
一、教学目标:
1、知识与技能:理解新定义符号的含义,严格按新的规则操作。
2、过程与方法:经历新定义运算算式转化成一般的+、-、×、÷数学式子的过程,培养学生运用数学转化思想指导思维活动的能力。
3、情意目标:通过将新定义运算转化成一般运算的过程,使学生感受数学中转化的思想方法;体验学习与运用数学法则、规定解决数学问题的成功.
二、教学重难点:
1、教学重点:理解新定义,按照新定义的式子代入数值。
2、教学难点:把定义的新运算转化成我们所熟悉的四则运算。
三、教学方法:引导发现法
四、教学过程:
(一)导入:
1、看图大比拼(准备几张生活中常见标志的图片)。
2、我做指挥官(用手势代替语言指挥)。
3、在下面的括号内填入适当的运算符号,使得等式成立。
5()2=7 6()3=3 100()2=50 13()3=39
4、趣味引导:
生活中我们都知道羊和狼在一起时,狼要吃掉羊,所以当狼和羊在一起时,我们用△符号表示狼战胜羊:狼△羊= 羊△狼= 羊△羊= 狼△狼=
在动画片《喜洋洋与灰太狼》中,羊群总是能化险为夷战胜狼,因此我们用☆符号表示羊战胜狼:羊☆狼= 狼☆羊= 羊☆羊= 狼☆狼=
5、已知符号“#”表示 a#b=a+b,求:3#5、5#9、88#13 的值?(体现对应思想和解题的三个步骤)
加强认识:已知符号“*”表示:a*b=b-a,求:3*9、60*72 的值?
小结:定义新运算是指运用某种特殊的符号表示的一种特定运算形式;它是人们整合旧的运算规则,利用新的符合表示出的一种运算方式;解决此类问题,关键是要正确理解新定义的算式含义,能够将新定义的运算方法转化为旧的运算规则。
一般新运算问题的解题三个步骤:(1)弄清新符号的算式意义;(2)找准问题中数字与定义算式中字母的对应;(3)将对应数字代入算式计算
(二)例题引导:
第一类:(直接运算型)
例题引导:①表示求两个平均数的运算,则a①b=(a+b)÷2,当 a=5,b=15 时,求a①b?例 1:已知符号“△”表示:a△b=(a+b)×6,求:10△3,6△9的值?
练习:(1)对定义运算※为a※b=(a+b)×2。
求5※7和17※5的结果?
(2)对于任意的两个数a 和b,规定a b= 3a-b÷3。
求6 9 和9 6 的值。
例题延伸:若A * B 表示(A+3×B)×B,求5 * 7 的值。
练习:若 a#b 表示(a×a+2×b)-a×b,求 5#6、30#14 的值?
小结:在直接运算类型中,要明确符号代表的算式意义,利用对应思想将题干中的字母转化为数字,再结合旧运算解决;其中特别需要注意的是在转化过程中,新符号前后的字母与数字必须一一对应(即:新运算中不含交换律规则)
例2:已知符号@表示:a@b=(a-b)×(a+b),求:(8@3)@4 的值?
练习:(1)已知x*y=x×y-(x+y),求:5*(10*6)的值?
(2)已知A#B=(7×A+B)×(A+3×B),求 5#(7#2)和(5#7)#2 的值?
小结:(1)明确新运算符号及算式的意义;(2)含有括号的运算中按照既有运算规则:先算小括号再算中括号最后算大括号;(3)把计算出一个括号的值当做一步。
特别需要注意的是:严格按照括号顺序计算,不能简单的使用结合律。
例 3:设a*b 表示a 的3 倍减去 b 的2 倍,计算:7*6 和(5*4)*3 的结果。
练习:(1)设a※b表示a 与b 的积减去 a 与b 的差,试求7※3的值。
4 的值。
(2)已知a b 表示a 除以3 的余数乘b,求13
小结:在没有算式的新运算符号问题中,解决问题的关键在于要将题干中的文字语言转化为数学语言,能够根据题意列出新符号代表的数学算式。
P Q
例 4:P、Q 表示两个数,P△Q=,求4△(6△9)的值是多少?
3
a +b
练习:(1)如果a b= ,那么1998 2000 的值是多少?
2
a + 1
(2)定义新运算为a△b=,那么7△(5△3)的值是多少?
b
小结:对于此类定义新运算,解题的关键在于要弄清楚分数线的含义。
第二类:(观察规律型)
导入:如果1※2=1+11
5※4=5+55+555+5555
8※=5=8+88+888+8888+88888
计算(3※2)×5
例五:规定a b=a+(a+1)+(a+2)+(a+3)+. ... +(a+b+1),其中a、b 表示自然数。
(1)求1 100 的值。
(2)已知一个数x 10=75,求这个数x 是多少?
练习:(1)已知“⊙”表示一种新的运算符号,已知:2⊙3= 2 + 3 + 4 ;7⊙2= 7 + 8 :3⊙5 = 3 + 4 + 5 + 6 + 7 ,……,求:20⊙9=
”表示一种新的运算符号,已知:34=4+5+6,6 3=3+4+5+6+7+8,求5 9 (2)已知
“
和4 6 的值?
(3)已知符号☆表示:4☆3=4+8+12;3☆4=3+6+9+12;5☆6=5+10+15+20+25+30,求:(20☆5)÷(10☆3)=
小结:找规律型新运算,关键在于根据题中给出的数字算式认识到新符号代表的算式结构及
规律。
●(选学内容)第三类:(反解型)
例 6:如果a△ b 表示
(a - 2) ⨯b ,例如3△ 4= (3 - 2) ⨯ 4 = 4 ,那么 ,当a△ 5=30 时 , a= .
练习:(1)如果a⊙b 表示3×a-2×b,例如4⊙5=3×4-2×5=2,那么当a⊙8=11时,求a=?(2)规定新运算※:a※b=6×a-b.若a※(4※1)=7,则a= .
小结:反解型新运算,关键是将含有字母的问题换成含有字母的算式,根据问题的值,利用
已学的倒退法去还原字母代表的数字。
我来争第一(趣味小知识):
一般我们都认为手枪指向谁,谁好像是有危险的,下面的规则同学们能看懂吗
规定:警察小偷=警察,警察小偷=小偷.
那么:(猎人小兔)(山羊白菜)
2014 年春季四年级精英班第一课家庭作业
一、基础题:
1、定义新运算“△”:a△b= a÷b×3,求(1)24△6;(2)36△9。
2、对于任意两个自然数 a、b,定义一种新运算“*”:a*b=a×b+a÷b,求 75*5=?,12*4=?
3、已知一个符号“#”表示 a 的 3 倍与 b 之差再加 1 的和,求:7#9 和 9#7 的值?
二、提高题:
4、规定 a*b=(a+b)÷2,求(1*9)*9 的值。
5、规定 X○+Y=(X+Y)÷4求:2○+(3○+5)的值。
6、已知:a@b 表示(a+b)×(a-b),求:(10@6)@5 的值?
7、规定a○+b,表示自然数 a 到b 的各个数之和,例如:3 ○+10=3+4+5+6+7+8+9+10=52,求:1 ○+20 和10○+20 的值?。