AHP层次分析法方法步骤
- 格式:pptx
- 大小:1.28 MB
- 文档页数:56
层次分析法步骤2篇层次分析法步骤层次分析法(AHP)是用来确定复杂决策结构下最佳决策方案的重要工具之一,对于需要评估不同因素的决策情境非常有用。
AHP 是由美国数学科学家托马斯·L·塞蒂(Thomas L. Saaty)在20世纪70年代初期发明的。
AHP 包含一系列步骤,并建立了一个多级层次结构。
层次分析法大概可以分为以下几个步骤:1.确定目标首先,我们需要明确评估体系的目标,以及需要评估的决策为何。
下一步是将目标具体地划分为一些易于理解和可度量的细分目标。
2.建立层次结构接下来,我们需要建立一个层次结构,以确定每个细分目标之间的相对重要性。
要建立一个有用的层次结构,需要从总目标开始,逐个确定每个元素的重要性和层次。
每个层次结构都必须有一个总目标,一些次要目标,以及指导每个目标的因素。
3.制定判断矩阵然后建立判断矩阵,以确定目标之间的相对重要性。
判断矩阵是一个方阵,其中包含每个目标之间的权重关系。
选择一对目标并进行两两比较,以确定其之间的相对重要性程度。
4.计算加权表通过加权矩阵计算每个目标的权重,从而形成一个加权表。
这个步骤列出了每个目标的重要性得分,以及它们对于整体目标的权重。
5.进行一致性检查在模型建立过程中,要保证做到一致性,才能确保结果可靠。
所以需要对所有的判断矩阵进行一致性检查,检查矩阵中的数据是否一致。
如果矩阵值不一致,需要进行调整和重新评估。
6.评估决策最后,将加权表用于评估决策,以确定哪个选择最符合总体目标。
根据加权表中的权重计算每个决策的得分,并对得分进行排序,最终选出最佳的决策方案。
总之,层次分析法是一种可靠的决策分析工具,它通过将大目标和子目标简化为易于比较的部分,提供了一种定量决策分析框架。
虽然该方法需要一定的理解和技能,但是它可以用于各种决策问题,并提供一个可复制的方法来评估决策方案。
接下来,我们将更深入地了解每个步骤,以便更好地使用 AHP。
一、层次分析法概述。
层次分析法(Analytic Hierarchy Process简称AHP)是美国运筹学家T. L. Saaty教授于70年代初期提出的, AHP是对定性问题进行定量分析的一种简便、灵活而又实用的多准则决策方法。
它的特点是把复杂问题中的各种因素通过划分为相互联系的有序层次,使之条理化,根据对一定客观现实的主观判断结构(主要是两两比较)把专家意见和分析者的客观判断结果直接而有效地结合起来,将一层次元素两两比较的重要性进行定量描述。
而后,利用数学方法计算反映每一层次元素的相对重要性次序的权值,通过所有层次之间的总排序计算所有元素的相对权重并进行排序。
该方法自1982年被介绍到我国以来,以其定性与定量相结合地处理各种决策因素的特点,以及其系统灵活简洁的优点,迅速地在我国社会经济各个领域内,如能源系统分析、城市规划、经济管理、科研评价等,得到了广泛的重视和应用。
二、层次分析法的用途举例。
例如,某人准备选购一台电冰箱,他对市场上的6种不同类型的电冰箱进行了解后,在决定买那一款式是,往往不是直接进行比较,因为存在许多不可比的因素,而是选取一些中间指标进行考察。
例如电冰箱的容量、制冷级别、价格、型式、耗电量、外界信誉、售后服务等。
然后再考虑各种型号冰箱在上述各中间标准下的优劣排序。
借助这种排序,最终作出选购决策。
在决策时,由于6种电冰箱对于每个中间标准的优劣排序一般是不一致的,因此,决策者首先要对这7个标准的重要度作一个估计,给出一种排序,然后把6种冰箱分别对每一个标准的排序权重找出来,最后把这些信息数据综合,得到针对总目标即购买电冰箱的排序权重。
有了这个权重向量,决策就很容易了。
三、层次分析法的步骤。
(1)通过对系统的深刻认识,确定该系统的总目标,弄清规划决策所涉及的范围、所要采取的措施方案和政策、实现目标的准则、策略和各种约束条件等,广泛地收集信息。
(2)建立一个多层次的递阶结构,按目标的不同、实现功能的差异,将系统分为几个等级层次。
AHP层次分析法AHP层次分析法是一种解决多目标复杂问题的定性和定量相结合进行计算决策权重的研究方法。
层次分析法基本原理AHP层次分析法是将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。
AHP层次分析法的操作步骤完整的AHP层次分析法通常包括五个步骤:第一步:建立层次结构模型在深入分析问题的基础上,将决策的目标、考虑的因素和决策对象按相关关系分为最高层、中间层和最低层。
●最高层:决策的目的、要解决的问题●中间层(若干层):考虑的因素、决策的准则●最底层:决策时的备选方案比如现在想选择一个最佳旅游景点,当前有三个选择标准(分别是景色,门票和交通),并且对应有三种选择方案。
现通过旅游专家打分,希望结合三个选择标准,选出最佳方案,层次模型大致如下图:第二步:标度确定和构造判断矩阵通过各因素之间的两两比较确定合适的标度。
在建立层次结构之后,需要比较因子及下属指标的各个比重,为实现定性向定量转化需要有定量的标度,此过程需要结合专家打分最终得到判断矩阵表格。
比如对旅游景点选择的4个影响因素(分别是景色,门票,交通和拥挤度)进行评价(即专家评价),最终得出四个影响因素的权重。
采用1-5分标度法(也或者1-9标度法),即比如门票相对景色更加重要,此时门票打3分,那么景色相对于门票就是取其倒数1/3即0.3333分。
交通相对于景色来更重要为2分,景色相对于交通就是0.5分等。
如果A因素相对B因素非常重要,此时打5分(最高5分),那么B因素相对于A因素就是1/5即0.2分如果使用SPSSAU进行分析,操作此步骤时,需要设置【判断矩阵阶数】,可以理解为需要评价权重的因素个数,并且在白色单元格处输入各项分别的名字以及专家打分,蓝色底纹处会自动变化,不需要输入。
AHP层次分析法算法流程AHP(Analytic Hierarchy Process)层次分析法是一种用于决策问题的数学模型和方法,它通过对问题进行分析和层次化处理,准确地确定各影响因素的权重,从而帮助决策者做出最佳选择。
下面是AHP层次分析法的算法流程:1.确定决策的目标:明确待解决问题的最终目标。
例如,选择供应商、评估项目风险等。
2.建立层次结构:将问题分解成若干个层次,从最终目标开始逐级向下,形成一个层次结构。
最终目标位于最顶层,中间层次为各个子目标,最底层是各个可选方案或决策因素。
3.构建判断矩阵:对于每个相邻的层次,评价它们之间的相对重要性。
在层次结构矩阵中,将每一对子目标之间的相对重要性填入,构建一个判断矩阵。
判断矩阵的大小等于层次中的层数的平方。
4.设置标准化比较尺度:由于决策者往往无法准确比较不同层次之间的重要性,AHP引入了一套标准化比较尺度来帮助决策者进行判断。
常用的标准化比较尺度包括9级尺度和4级尺度。
5.一致性检验:在判断矩阵中填入各个单元格后,需要进行一致性检验,判断矩阵是否满足一致性。
一致性是指判断矩阵的矩阵元素之间的相互关系是否合理。
6.层次单排序:利用判断矩阵计算每个子目标的权重向量,通过对判断矩阵的特征向量进行归一化来获得权重向量。
7.一致性检验:再次进行一致性检验,验证计算得到的权重向量的一致性。
8.综合决策:将各个子目标的权重向量与它们对应的可选方案或决策因素进行综合,得出最终的决策。
9.灵敏度分析:根据实际情况进行灵敏度分析,检验得出的权重向量对最终决策的影响,以及各个决策因素的敏感程度。
10.结果分析与解释:对最终决策进行分析和解释,确保决策的科学性和合理性,为问题的解决和决策的执行提供支持。
AHP层次分析法通过逐层比较,将问题分解为易于理解和处理的小块,通过判断矩阵和权重向量计算,确定各个子目标的重要性和最终的决策。
它能够提供量化的决策依据,并具有一定的灵活性和可解释性。
层次分析法(AHP)————————————————————————————————作者:————————————————————————————————日期:层次分析法(AHP)对于草地农业生态系统这个涉及复杂的社会、经济、生态问题的系统,过去的系统分析与设计常常凭经验,靠主观判断进行,缺乏应有的科学性,因而往往造成重大失误。
层次分析法是一种新的定性分析与定量分析相结合的系统分析方法,是将人的主观判断用数量形式表达和处理的方法,简称AHP(The Analytic Hierarchy Process)法。
近年来,层次分析法在草地农业生态系统的系统分析、设计与决策中日益受到重视。
1层次分析法的基本方法和步骤层次分析法是把复杂问题分解成各个组成因素,又将这些因素按支配关系分组形成递阶层次结构。
通过两两比较的方式确定各个因素相对重要性,然后综合决策者的判断,确定决策方案相对重要性的总排序。
运用层次分析法进行系统分析、设计、决策时,可分为4个步骤进行;(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;(2)对同一层次的各元素关于上一层中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;(3)由判断矩阵计算被比较元素对于该准则的相对权重;(4)计算各层元素对系统目标的合成权重,并进行排序,2递阶层次结构的建立首先把系统问题条理化、层次化,构造出一个层次分析的结构模型。
在模型中,复杂问题被分解,分解后各组成部分称为元素,这些元素又按属性分成若干组,形成不同层次。
同一层次的元素作为准则对下一层的某些元素起支配作用,同时它又受上面层次元素的支配。
层次可分为三类;(1)最高层:这一层次中只有一个元素,它是问题的预定目标或理想结果,因此也叫目标层;(2)中间层:这一层次包括要实现目标所涉及的中间环节中需要考虑的准则。
该层可由若干层次组成,因而有准则和子准则之分,这一层也叫准则层;(3)最底层:这一层次包括为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
供给商的选择一、层次分析法根本原理供给商的选择多采用层次分析法。
层次分析法〔Analytia1 Hierarchy Process,简称AHP〕是美国匹兹堡大学教授A.L.Saaty于20世纪70年代提出的一种系统分析方法。
AHP是一种能将定性分析与定量分析相结合的系统分析方法。
AHP是分析多目标、多准那么的复杂大系统的有力工具。
它具有思路清晰、方法简便、适用面广、系统性强等特点,最适宜于解决那些难以完全用定量方法进行分析的决策问题,便于普及推广,可成为人们工作和生活中思考问题、解决问题的一种方法。
将AHP引入决策,是决策科学化的一大进步。
应用AHP解决问题的思路是:首先, 把要解决的问题分层系列化, 即根据问题的性质和要到达的目标,将问题分解为不同的组成因素,按照因素之间的相互影响和隶属关系将其分层聚类组合,形成一个递阶的、有序的层次结构模型。
然后,对模型中每一层次因素的相对重要性,依据人们对客观现实的判断给予定量表示,再用数学方法确定每一层次全部因素相对重要性次序的权值。
最后,通过综合计算各层因素相对重要性的权值,得到最低层〔方案层〕相对于最高层〔总目标〕的相对重要性次序的组合权值,以此作为评价和选择决策方案的依据。
现举例来说明层次分析法的根本原理。
假定有n个物体, 它们的重量分别为 W1、W2、……,Wn,并且假定它们的重量和为1个单位,即。
两两比拟它们之间的重量很容易得出判断矩阵:显然 aij=1/ aji , aii=1aij=aik/ ajk ; i,j,k=1,2,…,n用重量向量W=[W1,W2,……,Wn]右乘A矩阵,其结果为从上式不难看出,以n个物体重量为分量的向量W是判断矩阵的特征向量。
根据矩阵理论,n为上述矩阵A的唯一非零的,同时也是最大的特征值,而W是该特征值所对应的特征向量。
上面的例子显示,如果有一组物体需要估算它们的相对重量,而又没有称重仪器,那么可以通过两两比拟这组物体相对重量的方法,得出每对物体的重量比值,从而形成判断矩阵,通过求解判断矩阵的最大特征值和所对应的特征向量,就可以计算出这组物体的相对重量。