TLC-JC-CGJD001 光纤温度传感器检测报告模板(监督) VA.0
- 格式:docx
- 大小:48.87 KB
- 文档页数:16
一、实验目的1. 理解光纤传感技术的基本原理,掌握光纤传感器在温度测量中的应用。
2. 学习光纤光栅温度传感器的制作方法,掌握其性能测试和数据分析。
3. 了解温度光纤传感器的实际应用场景,提高对光纤传感器技术的认识。
二、实验原理光纤传感器是一种基于光纤材料的光学传感器,具有抗电磁干扰、体积小、重量轻、防腐性好等优点。
光纤光栅温度传感器是光纤传感器的一种,其原理是利用光纤光栅的布拉格波长位移特性,即当光纤光栅的温度发生变化时,其反射或透射光的波长会发生偏移,从而实现对温度的测量。
三、实验仪器与材料1. 光纤光栅温度传感器2. 光纤光栅光谱分析仪3. 温度控制器4. 实验台5. 数据采集系统四、实验步骤1. 将光纤光栅温度传感器固定在实验台上,连接好光纤光谱分析仪和数据采集系统。
2. 调节温度控制器,使环境温度逐渐升高,记录光纤光栅光谱分析仪输出的光谱数据。
3. 重复步骤2,使环境温度逐渐降低,记录光谱数据。
4. 分析光谱数据,计算光纤光栅的布拉格波长位移与温度之间的关系。
五、实验数据与分析1. 实验数据:| 温度(℃) |布拉格波长(nm)||----------|--------------|| 20 | 1552.0 || 30 | 1553.5 || 40 | 1555.0 || 50 | 1556.5 || 60 | 1558.0 |2. 分析:通过实验数据可以看出,光纤光栅的布拉格波长随温度升高而增加,说明光纤光栅具有正的温度系数。
根据实验数据,可以拟合出光纤光栅的布拉格波长与温度之间的关系式:$$\lambda_B = 1552.0 + 0.0135T$$其中,$\lambda_B$为布拉格波长,$T$为温度。
六、实验结论1. 光纤光栅温度传感器具有良好的温度响应特性,可以实现对温度的精确测量。
2. 通过实验验证了光纤光栅的布拉格波长与温度之间的关系,为光纤光栅温度传感器的应用提供了理论依据。
波长调制型光纤温度传感器《光纤传感测试技术》课程作业报告提交时间:2011年10月27 日1 研究背景 (执笔人: )被测场或参量与敏感光纤相互作用,引起光纤中传输光的波长改变,进而通过测量光波长的变化来确定北侧参量的传感方法即为波长调制型光纤传感器。
光纤光栅传感器是一种典型的波长调制型光纤传感器。
基于光纤光栅的传感过程是通过外界参量对布拉格中心波长B λ的调制来获取传感信息,其数学表达式为:2B eff n λ=Λ式中:eff n 为纤芯的有效折射率;Λ是光栅周期。
这是一种波长调制型光纤温度传感器,它具有一下明显优势:(1)抗干扰能力强。
由于光纤传感器是利用光波传输信息,而光纤又是电绝缘、耐腐蚀的传输介质,因而不怕强电磁干扰,也不影响外界的电磁场,并且安全可靠。
这使它在各种大型机电、石油化工、冶金高压、强电磁干扰、易燃、易爆、强腐蚀环境中能方便而有效地传感,具有很高的可靠性和稳定性。
(2)传感探头结构简单,体积小,重量轻,外形可变,适合埋入大型结构中测量结构内部的应力 、应变及结构损伤,稳定性、重复性好,适用于许多应用场合,尤其是智能材料和结构。
(3)测量结果具有良好的重复性。
(4)便于构成各种形式的光纤传感网络。
(5)可用于外界参量的绝对测量。
(6)光栅的写入技术已经较为成熟,便于形成规模生产。
(7)轻巧柔软,可以在一根光纤中写入多个光栅,构成传感阵列,与波分复用和时分复用系统相结合,实现分布式传感。
由于以上优点,光纤光栅传感器在大型土木工程结构、航空航天等领域的健康检测以及能源化工等领域得到了广泛的应用。
但是它也存在一些不足之处。
因为光纤光栅传感的关键技术在于对波长漂移的检测,而目前对波长漂移的检测需要用较复杂的技术和较昂贵的仪器或光纤器件,需大功率的宽带光源或可调谐光源,其检测的分辨率和动态范围也受到一定的限制等。
光纤布拉格光栅无疑是一种优秀的光纤传感器,尤其在测量应力和应变的场合,具有其它一些传感器无法比拟的优点,被认为是智能结构中最有希望集成在材料内部,作为检测材料的结构和载荷,探测其损伤的传感器。
实验题目:光纤传感器实验目的:掌握干涉原理,自行制作光线干涉仪,使用它对某些物理量进行测量,加深对光纤传感理论的理解,以受到光纤技术基本操作技能的训练。
实验仪器:激光器及电源,光纤夹具,光纤剥线钳,宝石刀,激光功率计,五位调整架,显微镜,光纤传感实验仪,CCD及显示器,等等实验原理:(见预习报告)实验数据:1.光纤传感实验(室温:24.1℃)(1)升温过程(2)降温过程2.测量光纤的耦合效率在光波长为633nm 条件下,测得光功率计最大读数为712.3nw 。
数据处理:一.测量光纤的耦合效率在λ=633nW ,光的输出功率P1=2mW 情况下。
在调节过程中测得最大输出功率P2=712.3nW代入耦合效率η的计算公式:3.56×10-4二.光纤传感实验1.升温时利用Origin 作出拟合图像如下:2040ALinear Fit of AABEquationy = a + bAdj. R-Squ 0.99849ValueStandard ErA Intercep -153.307 1.96249ASlope5.485340.06163由上图可看出k=5.49±0.06条纹数温度/℃根据光纤温度灵敏度的计算公式,由于每移动一个条纹相位改变2π,则 Δφ=2π×m (m 为移动的条纹数)故灵敏度即为因l=29.0cm故其灵敏度为±1.30)rad/℃2.降温时利用Origin 作出拟合图像如下:30323436-40-20ALinear Fit of AABEquationy = a + Adj. R-Squ 0.9973ValueStandard Er A Intercep -271.754 3.74289ASlope7.4510.11111由上图可看出k=7.45±0.11同上:灵敏度为条纹数温度/℃因l=29.0cm故其灵敏度为±2.38)rad/℃由上述数据可看出,升温时与降温时灵敏度数据相差较大,这是因为在升温时温度变化较快,且仪表读数有滞后,所以测出数据较不准确,在降温时测出的数据是比较准确的。
光纤测试报告模板
一、基本信息
1. 测试日期:XXXX年XX月XX日
2. 测试地点:XXXXXX
3. 测试人员:XXXXXX
4. 光纤类型:单模/多模
5. 光纤长度:XX米
6. 测试设备:XXXXXX(型号、序列号)
二、测试环境
1. 室内/室外环境
2. 温度:XX°C
3. 湿度:XX%
4. 其他环境因素(如风速、气压等)
三、测试项目与结果
1. 光纤衰减测试:
a. 测试波长:XX nm/XX nm
b. 发送光功率:XX dBm
c. 接收光功率:XX dBm
d. 衰减值:XX dB(计算方式:发送光功率-接收光功率)
e. 测试结果分析:是否符合规范/标准(是/否)
2. 光纤回波损耗测试:
a. 测试波长:XX nm/XX nm
b. 回波损耗值:XX dB
c. 测试结果分析:是否符合规范/标准(是/否)
3. 光纤连接性能测试:
a. 连接方式:熔接/机械连接
b. 连接损耗:XX dB
c. 连接质量评估:优/良/中/差
d. 测试结果分析:是否符合规范/标准(是/否)
4. 其他测试项目(如光纤偏振模色散、光纤带宽等):
a. 测试项目名称:XXXXXX
b. 测试结果:XXXXXX
c. 测试结果分析:是否符合规范/标准(是/否)
四、总结与建议
1. 测试总结:对本次光纤测试的总体情况进行概述。
2. 问题与建议:列出在测试过程中发现的问题,并提出相应的改进建议。
3. 后续工作计划:根据测试结果,制定后续工作计划,如进行光纤修复、更换等。
课程设计报告学生姓名:学号:学院:电气工程学院班级: 电技091题目: 光线温度传感器测温设计指导教师:陈宏起职称: 2012 年 12 月 29 日光纤温度传感器的设计摘要:介绍了金属热膨胀式光纤温度传感器的设计,利用金属件的热膨胀的原理,通过绕制在金属件上的光纤损耗产生变化,当光源输出光功率稳定的情况下,探测器接收光功率受温度调制,通过光电转换,信号处理,完成温度的换算。
传感器以光纤为传输手段,以光作为信号载体,抗干扰能力强,测量结果稳定、可靠,灵敏度高。
关键词:光纤,传感器,在光通信系统中,光纤是用作远距离传输光波信号的媒质。
在实际光传输过程中,光纤易受外界环境因素的影响;如温度、压力和机械扰动等环境条件的变化引起光波量,如发光强度、相位、频率、偏振态等变化。
因此,人们发现如果能测出光波量的变化,就可以知道导致这些光波量变化的物理量的大小,于是出现了光纤传感技术。
一:光纤传感器的基本原理在光纤中传输的单色光波可用如下形式的方程表示E=错误!未找到引用源。
式中,错误!未找到引用源。
是光波的振幅:w是角频率;为初相角。
该式包含五个参数,即强度错误!未找到引用源。
、频率w、波长错误!未找到引用源。
、相位(wt+)和偏振态。
光纤传感器的工作原理就是用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已知调制的光信号进行检测,从而得到被测量。
当被测物理量作用于光纤传感头内传输的光波时,使的强度发生变化,就称为强度调制光纤传感器;当作用的结果使传输光的波长、相位或偏振态发生变化时,就相应的称为波长、相位或偏振调制型光纤传感器。
(一)强度调制1.发光强度调制传感器的调制原理光纤传感器中发光强度的调制的基本原理可简述为,以被测量所引起的发光强度变化,来实现对被测对象的检测和控制。
其基本原理如图5-39所示。
光源S发出的发光强度为错误!未找到引用源。
的光柱入传感头,在传感头内,光在被测物理量的作用下强度发生变化,即受到了外场的调制,使得输出发光强度错误!未找到引用源。
报告编号:×××<计量标志> <CNAS标志>检验报告产品型号产品名称光纤温度传感器申请单位检验类别产品认证初次/复评检验×××××××××检验中心注意事项1.报告无“检验报告专用章”或检验单位公章无效。
2.报告需加盖骑缝章。
3.复制报告未重新加盖“检验报告专用章”或检验单位公章无效.4.报告无主检、审核、批准人签字无效。
5.报告涂改无效。
6.部分复印本检验报告无效7.本检验报告仅对来样负责。
8.对检验报告若有异议,请于收到报告之日起十五日内向泰尔认证中心提出。
地址:××××××邮政编码:××××××电话:××××××传真:××××××网址:××××××E-MAIL:××××××检验报告检验情况一览表检验结果环境和机械性能试验条件样品信息1 样品信息描述××××××。
{如产品的结构、材质等}2 样品的关键材料信息:见附件3 样品照片{注明样品型号规格}检验使用仪表附件样品的关键材料信息报告编号:××××××检测委托书号:×××申请单位:××××××产品名称:×××产品型号:××××××××检验中心(公章)×××年××月××日。
传感器检测报告制表日期:2018-08-27 表单编号:WTFK180827001制表:王高耀审核:核准:备注:传感器出现问题现象详细描述1.通“过4-Directionnal Tilt Sensor ”测试板与电脑串口连接,SSCOM5.13.1串口/网络数据调试器测试,4-Directionnal Tilt Sensor传感器有5件未通过测试。
①出现问题原因分析:1810K 36062(3件)、1021Q 37182(2件)损坏或未焊好(估计原因)。
②建议解决问题方案:返修。
③出现此问题数量:5件,统计不良品为1%。
2. 4-Directionnal Tilt Sensor传感器有1件芯片1021Q 37103脱落,详见图片。
①出现问题原因分析:芯片焊接时间过长损坏脱落。
(估计原因)。
②建议解决问题方案:返修。
③出现此问题数量:1件,统计不良品为0.2%。
3. 通过“ 3-Axis Gyroscope Module”测试板与电脑串口连接,SSCOM5.13.1串口/网络数据调试器测试,3-Axis Gyroscope Module传感器有2件未通过测试。
①出现问题原因分析:芯片未焊好(估计原因)。
②建议解决问题方案:返修。
③出现此问题数量:2件,统计不良品为0.4%。
4.通“过Text-to-Speech Module ”测试板发送语音给Text-to-Speech Module传感器,有2个Text-to-Speech Module传感器未能正确输出语音。
①出现问题原因分析:原因1:芯片未焊好;原因2:拨码开关有问题(估计原因)。
②建议解决问题方案:返修。
③出现此问题数量:2件,统计不良品为2%。
5.通过“ LCD1602 模组”检测板与 LCD1602 模组连接检测,LCD1602 模组有2件LCD显示不正常,有“闪烁显示”问题。
①现问题原因分析:器件问题。
②建议解决问题方案:返修。
③出现此问题数量:2件,统计不良品为0.36%。
一、实验目的本实验旨在研究光纤温度传感器的温度灵敏度,通过对比不同类型光纤的温度响应特性,分析其温度灵敏度,并探讨影响温度灵敏度的主要因素。
实验过程中,我们将使用光纤光栅、刻纹光纤和微纳光纤三种类型的光纤进行测试,并对实验结果进行分析。
二、实验原理光纤温度传感器是基于光纤的光学特性,如光纤布拉格光栅(FBG)、刻纹光纤和微纳光纤等,对外界温度变化产生响应的原理进行设计的。
当光纤的温度发生变化时,其光学特性也会发生变化,从而实现对温度的测量。
1. 光纤布拉格光栅(FBG):FBG的温度灵敏度主要受其布拉格波长和温度系数的影响。
当温度升高时,光纤的布拉格波长会向长波长方向移动,即蓝移,反之则红移。
2. 刻纹光纤:刻纹光纤的温度灵敏度主要与光纤的结构参数有关,如刻纹深度和宽度。
当温度升高时,光纤的透射光谱会发生改变,其温度响应灵敏度可达10℃/nm。
3. 微纳光纤:微纳光纤的温度灵敏度主要与其结构、材料等因素有关。
当温度升高时,微纳光纤的透射光谱会发生改变,其温度响应灵敏度可达-13.1 pm/℃,比传统直线型微纳光纤灵敏度高3倍。
三、实验材料与设备1. 光纤材料:光纤布拉格光栅、刻纹光纤和微纳光纤。
2. 实验设备:光纤光谱分析仪、光纤连接器、温度控制器、加热器等。
四、实验步骤1. 准备实验装置:将光纤布拉格光栅、刻纹光纤和微纳光纤分别连接到光纤光谱分析仪的输入端。
2. 测试光纤温度响应:在光纤光谱分析仪的输出端接入光纤连接器,将光纤连接器连接到加热器上,逐渐升高温度,同时记录光纤的光谱变化。
3. 分析实验数据:对比三种类型光纤的温度响应特性,分析其温度灵敏度。
五、实验结果与分析1. 光纤布拉格光栅(FBG):实验结果显示,FBG的温度灵敏度系数KT达到82.69×10^-6/℃,在-80~0℃的低温度范围内具有良好的低温响应特性。
2. 刻纹光纤:实验结果显示,刻纹光纤的温度响应灵敏度可达10℃/nm,与结构参数有关。
光纤测试检查报告报告编号:2022-001报告日期:2022年3月15日1. 背景介绍光纤测试检查报告旨在对已安装的光纤进行全面的检测和评估,确保光纤的质量和性能符合相关标准和要求。
本报告将详细描述对光纤进行的各项测试以及测试结果的分析和评价。
2. 测试对象测试对象为位于某公司办公楼内的光纤网络系统,包括主干光缆、分支光缆以及终端设备的连接。
3. 测试仪器和方法3.1 测试仪器本次光纤测试使用了以下仪器设备:- OTDR(Optical Time Domain Reflectometer)光时域反射仪- 光源和光功率计- 光纤接头检测仪- 光纤光谱仪3.2 测试方法针对不同类型的测试,采用了以下方法:- OTDR测试:通过向光纤发送窄脉冲光信号,并记录光在光纤中传输时的反射信号和衰减情况,来评估光纤的长度、损耗和连接点的状态。
- 光源和光功率计测试:用于测量光纤中的光功率和衰减情况。
- 光纤接头检测:通过检测光纤连接点的损耗和反射情况,来评估连接点的质量。
- 光纤光谱仪:用于分析光纤中的光信号频谱特性。
4. 测试结果4.1 OTDR测试结果通过对主干光缆和分支光缆进行OTDR测试,我们得到了如下结果:- 主干光缆长度:2000米- 主干光缆衰减:0.2dB/km- 分支光缆1长度:500米- 分支光缆1衰减:0.3dB/km- 分支光缆2长度:300米- 分支光缆2衰减:0.25dB/km4.2 光源和光功率计测试结果通过对光纤传输中的信号衰减进行测试,我们得到了如下结果:- 光源输出功率:-5dBm- 光纤衰减:0.2dB4.3 光纤接头检测结果在对光纤接头进行检测后,我们得到了如下结果:- 接头1损耗:0.1dB- 接头1反射:-40dB- 接头2损耗:0.12dB- 接头2反射:-38dB4.4 光纤光谱仪测试结果通过对光纤传输中的光信号频谱进行测试,我们得到了如下结果:- 光纤中心波长:1550nm- 光纤带宽:10nm5. 结论和建议根据以上测试结果和分析,我们对光纤网络系统的状态进行了评估,并提出以下结论和建议:- 光纤网络各条线路的衰减值均在合理范围内,连接状态良好。
温度传感器实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)温度传感器实验报告一、 实验目的:1、了解各种电阻的特性与应用2、了解温度传感器的基本原理与应用 二、 实验器材传感器特性综合实验仪 温度控制单元 温度模块 万用表 导线等三、 实验步骤 1、AD590温度特性(1)、将主控箱上总电源关闭,把主控箱中温度检测与控制单元中的恒流加热电源输出与温度模块中的恒流输入连接起来。
(2)、将温度模块中的温控Pt100与主控箱的Pt100输入连接起来。
(3)、将温度模块中左上角的AD590接到传感器特性综合实验仪电路模块的a 、b 上(正端接a ,负端接b ),再将b 、d 连接起来,接成分压测量形式。
(4)、将主控箱的+5V 电源接入a 和地之间。
(5)、将d 和地与主控箱的电压表输入端相连(即测量1K 电阻两端的电压)。
(6)、开启主电源,改变温度控制器的SV 窗口的温度设置,以后每隔C 010设定一次,即Δt=C 010,读取数显表值,将结果填入下表:由于我们使用的是AD590温度集成模块,里面已经设置有如下关系:273+t=I (t 为AD590设定温度),因此可得测量温度与设定温度对照表如下:通过上表可清楚地看出之间的误差。
四、实验中应注意的事项1、加热器温度不能太高,控制在120℃以下,否则将可能损坏加热器。
2、采用放大电路测量时注意要调零。
3、在测量AD590时,不要将AD590的+、-端接反,因为反向电压输出数值是错误的,而且可能击穿AD590。
五、实验总结从这个实验中使我充分认识了AD590、PTC、NTC和PT100的温度特性和应用原理,学会了如何制作简单的温度计,也意识到了这些电阻由于会随温度而改变可以利用这一点来制作温度开关,通过温度的变化而使开关自动化,或通过改变温度而控制开关的通断。
传感器这一门很新奇,我渴望学会更多的知识,看到更多稀奇的东西,学好传感器这一门学科,与其他学科知识相结合,提升自己的能力,希望有一天我能亲自开发出更有用、更先进的传感器。
报告编号:×××<计量标志> <CNAS标志>检验报告产品型号产品名称 MPO型光纤活动连接器申请单位检验类别产品认证监督检验×××××××××检验中心注意事项1.报告无“检验报告专用章”或检验单位公章无效。
2.报告需加盖骑缝章。
3.复制报告未重新加盖“检验报告专用章”或检验单位公章无效.4.报告无主检、审核、批准人签字无效。
5.报告涂改无效。
6.部分复印本检验报告无效。
7.本检验报告仅对来样负责。
8.对检验报告若有异议,请于收到报告之日起十五日内向泰尔认证中心提出。
地址:××××××邮政编码:××××××电话:××××××传真:××××××网址:××××××E-MAIL:××××××检验报告批准:审核:主检:检验情况一览表检验结果环境和机械性能试验条件样品信息1样品信息描述××××××。
{如产品的结构、材质等}2 样品的关键材料信息:见附件3 样品照片{样品照片应能反映与检测委托书中一致的产品信息(如产品名称、型号/规格、生产厂家)}{注明样品型号规格}检验使用仪表附件样品的关键材料信息报告编号:××××××检测委托书号:×××申请单位:××××××产品名称:×××产品型号:××××××××检验中心(公章)×××年××月××日。
光纤温度传感特性研究摘要:采用光纤双光束干涉的方法研究并测量了其干涉条纹随温度的变化情况。
实验结果表明,测量方法简便可行,易于实现,实验现象明显。
关键词:光纤折射率,温度,干涉THE STUDY OF CHRACTERISTICS OF OPTICAL FIBER TEMPERATURE SENSOR Abstract:Adopting the method of interference of two light beams, the change of the interferometric fringes with temperature is measured. The experimentalresults show that the method is simple and easy to achieve. The phenomenonis evident. Keywords:optical fiber,temperature,interference一.引言光纤折射率不仅是波长的函数,而且与光纤的环境温度密切相关。
光纤折射率是光纤设计与制作的重要参数之一,也是商用化光纤产品的特性参数。
光纤折射率的温度相关特性对于光纤光缆设计、光纤传感器设计、光纤探测仪器和光纤测试等具有重要意义。
[1] 光通过在光纤内部的传输,受到外界因素(如温度等)的影响,光波的振幅、光强、香味、偏振态等会发生变化。
所以,如果测出这些光的参量随外界因素的变化规律便可利用光纤实现各种传导功能。
二.原理和仪器用激光器照射两根紧贴放置的形状一样的光纤的一端,由于激光相干性极高,在另一端能观察到明显的干涉条纹,通过改变其中一根光纤的局部温度,导致光纤内部折射率改变,从而光程发生变化,反映在干涉条纹上,即能观察到干涉条纹移动,记录条纹移动级数N,进而求的折射率改变,调节温度,得到该光纤折射率随温度变化关系。
其实验仪器如下图所示:图1 干涉法测光纤折射率的温度特性装置图令通过加热器的光相位为ϕ,波长为λ,加热器中光纤的长度为L,光纤折射率为n,则nL λπϕ2=∆ 当温度改变导致光纤折射率和长度改变时 )(2]))([(2n L L n nL L L n n ∆-∆≈-+∆∆+=λπλπϕ 考虑受温度影响,上式化为)(2TL L n T n T L ∆∆+∆∆=∆∆λπϕ 对于石英玻璃光纤n=1.456,∆n/∆T=10x10-6•10-C , 线膨胀系数=∆∆T L L 5x10-7•10-C ,用氦氖激光器波长约630nm ,带入即可得=∆∆TL ϕ107rad•10-C •m -1 即单位长度光纤变化单位温度产生的条纹移动为17级。