统计物理试题
- 格式:doc
- 大小:57.00 KB
- 文档页数:1
WORD 格式 整理 热力学·统计物理练习题一、填空题 . 本大题 70 个小题,把答案写在横线上。
1. 当热力学系统与外界无相互作用时 , 经过足够长时间 , 其宏观性质时 间改变,其所处的 为热力学平衡态。
2. 系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。
3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化 学参量等四类参量描述,但有 是独立的。
4.对于非孤立系统, 当其与外界作为一个整体处于热力学平衡态时,此时 的系统所处的状态是 。
5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视 为。
6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。
7.均匀物质系统的独立参量有 个,而过程方程独立参量只有个。
8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。
9.定容压力系数的意义是在 不变条件下系统的压强随的相 对变化。
10.等温压缩系数的意义是在 不变条件下系统的体积随的 相对变化。
11.循环关系的表达式为。
12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功 W Y i dy i ,其中 y i 是, Y i 是与 y i 相应的。
13. U B U A Q W ,其中 是作的功。
W14. dUQW0 ,-W 是作的功,且 -W 等于。
22( 、 均为热力学平衡态1、L2 为15.Q W QW ,L 1L 1 1 2 1L 2准静态过程)。
16.第一类永动机是指的永动机。
17.内能是 函数,内能的改变决定于和。
18.焓是函数,在等压过程中,焓的变化等于的热量。
19.理想气体内能温度有关,而与体积。
学习参考资料分享WORD 格式整理20.理想气体的焓温度的函数与无关。
21.热力学第二定律指明了一切与热现象有关的实际过程进行的。
统计物理期末试题及答案一、选择题(每题3分,共30分)1. 在统计物理中,描述粒子分布的函数是:A. 波函数B. 配分函数C. 统计权重D. 状态方程2. 温度的微观解释是:A. 粒子的平均动能B. 粒子的总动能C. 粒子的势能D. 粒子的动量3. 以下哪个量不是热力学系统的宏观状态量?A. 温度B. 体积C. 粒子数D. 动量4. 理想气体的熵变只与温度变化有关,这是因为:A. 理想气体分子间无相互作用B. 理想气体分子间有相互作用C. 理想气体分子间相互作用可以忽略D. 理想气体分子间相互作用对熵变有影响5. 根据玻尔兹曼统计,一个粒子在能量为E的态上的统计权重是:A. e^(-E/kT)B. e^(E/kT)C. e^(-E/kBT)D. e^(E/kBT)6. 一个系统从状态A到状态B的自由能变化等于:A. ΔF = ΔH - TΔSB. ΔF = ΔU - TΔSC. ΔF = ΔH + TΔSD. ΔF = ΔU + TΔS7. 热力学第二定律表明:A. 能量守恒B. 熵增原理C. 能量转换效率D. 热机效率8. 绝对零度是:A. 温度的下限B. 温度的上限C. 粒子动能的最小值D. 粒子动能的最大值9. 以下哪个过程是不可逆的?A. 理想气体的等温膨胀B. 理想气体的绝热膨胀C. 理想气体的等压膨胀D. 理想气体的等容膨胀10. 根据吉布斯自由能,一个化学反应在恒温恒压下自发进行的条件是:A. ΔG < 0B. ΔG > 0C. ΔG = 0D. ΔG ≠ 0二、填空题(每题2分,共20分)1. 在统计物理中,配分函数Z的定义是:Z = Σ e^(-E_i/kT),其中E_i是第i个能级的_________。
2. 一个系统从状态A到状态B的熵变可以通过公式ΔS = _________来计算。
3. 热力学第三定律指出,当温度趋近于绝对零度时,所有纯物质的完美晶体的_________趋于一个常数。
第21章 统计物理学基础一、作业教材:P193 - P19421-1(能量均分定理);21-2(理想气体内能,理想气体状态方程);21-3(麦克斯韦速率分布);21-4(能量均分定理,三种速率);21-5(统计方法,速率分布函数);21-6(三种速率);21-7(玻尔兹曼分布律);21-9(理想气体状态方程,方均根速率);21-10(平均碰撞频率和平均自由程);二、 典型题1. 一瓶氢气和一瓶氧气温度相同,若氢气分子的平均平动动能为 w = 6.21×10-21 J .试求:(1) 氧气分子的平均平动动能和方均根速率;(2) 氧气的温度。
(阿伏伽德罗常量N A =6.022×1023 mol -1,氧气分子摩尔质量m = 32 g ,玻尔兹曼常量k =1.38×10 -23 J·K -1)涉及知识点:温度概念,平均平动动能解:(1) ∵ T 相等, ∴氧气分子平均平动动能=氢气分子平均平动动能w=6.21×10-21 J .且 ()()483/22/12/12==m w v m/s(2) ()k w T 3/2==300 K .2. 水蒸气分解为同温度T 的氢气和氧气,即222O 21H O H +→,也就是1摩尔的水蒸气可分解成同温度的1摩尔氢气和21摩尔氧气。
当不计振动自由度时,求此过程中内能的增量。
涉及知识点:理想气体内能解: 1 mol H 2O 的内能 32i E RT RT == 分解成 1 mol H 2 522i E RT RT == 0.5 mol O 2 50.524i E RT RT ==5533244E RT RT RT RT ∆=+-= 3. 用绝热材料制成的一个容器,体积为 2V 0 ,被绝热板隔成 A , B 两部分,A 内储有 1 mol 单原子理想气体,B 内储有2 mol 双原子理想气体。
A ,B 两部分压强相等均为p 0 ,两部分体积均为V 0 ,求(1)两种气体各自的内能;(2)抽去绝热板,两种气体混合后处于平衡时的温度。
热力学与统计物理试题一、选择题1. 热力学第一定律表明,一个系统内能的微小改变等于它与周围环境交换的热量与它做的功之和。
若一个气体绝热膨胀,其内能的变化量为:A. 正值B. 负值C. 零D. 无法确定2. 理想气体状态方程为 \( pV = nRT \),其中 \( p \) 代表压力,\( V \) 代表体积,\( n \) 代表物质的量,\( R \) 是气体常数,\( T \) 代表温度。
若温度和物质的量保持不变,而压力增加,则体积的变化为:A. 增加B. 减小C. 不变D. 先增加后减小3. 熵是热力学中用来描述系统无序度的物理量。
在一个孤立系统中,熵的变化趋势是:A. 持续增加B. 持续减少C. 保持不变D. 在特定条件下增加或减少4. 麦克斯韦关系是热力学中描述状态函数之间关系的一组方程。
对于一个理想气体,其等体过程中的温度与熵的关系是:A. 正比B. 反比C. 无关D. 非线性关系5. 统计物理中,微观状态与宏观状态之间的关系是通过什么原理来描述的?A. 能量均分原理B. 等概率原理C. 熵最大原理D. 能量最小原理二、填空题1. 热力学第二定律可以表述为,在一个自发的过程中,熵总是倾向于增加,这个过程是________的。
2. 理想气体的内能只与温度有关,与体积和压力________。
3. 在热力学循环中,卡诺循环的效率是由两个热库的温度决定的,其效率公式为 \( \eta = 1 - \frac{T_{c}}{T_{h}} \),其中 \( T_{c} \) 是________的温度,\( T_{h} \) 是________的温度。
4. 统计物理中,一个系统的宏观状态可以通过多个不同的________来实现。
5. 按照玻尔兹曼熵的定义,一个系统的熵与它的微观状态数目的对数成正比,数学表达式为 \( S = k_B \ln W \),其中 \( k_B \) 是________常数。
第一章 习题10.(a)等温条件下,气体对外作功为22ln 2V VVVdVW pdV RT RT V===⎰⎰ln 2Q W RT =-=- ()0U ∆=(b)等压条件下,由PV RT =,得RTP V =所以 o o o o o o RT V P V V P W ==-=)2( 当体积为2V 时 22P VPV T T R R=== 1252TP P T Q C dT C T RT ===⎰11.(1) ()521 2.110P Q C n T T cal =-=⨯⎪⎭⎫⎝⎛==25041000n (2) 51.510VU nC T cal ∆=∆=⨯ (3)4610W Q U cal =-∆=⨯ (4) 因为0W =,所以51.510Q U cal =∆=⨯12.由热力学第肯定律Q d W d dU += (1)对于准静态过程有PdV W d -=对志向气体V dU C dT =气体在过程中汲取的热量为dTC Q d n =由此()n V C C dT PdV -= (2)由志向气体物态方程RT n PV += (3) 且 P VC C n R +-= 所以 ()()n V P V dT dVC C C C T V-=- (4) 对志向气体物态方程(3)求全微分有dV dP dT V P T+= (5)(4)与(5)联立,消去dTT ,有()()0n V n P dP dVC C C C P V-+-= (6)令n Pn V C C n C C -=-,可将(6)表示为0dV dPn V P += (7)若,,n V P C C C 均为常量,将(7)式积分即得nPV C = (8)式(8)表明,过程是多方过程.14. (a) 以T,P 为电阻器的状态参量,设想过程是在大气压下进行的,假如电阻器的温度也保持为27C 不变,则电阻器的熵作为状态函数也保持不变.(b) 若电阻器被绝热壳包装起来,电流产生的焦耳热Q 将全部被电阻器汲取而使其温度由i T 升为f T ,所以有2()P f imC T T i Rt -= 2600f i Pi RtT T K mC =+= (1卡 = 4.1868焦耳)139.1ln-•===∆⎰K cal T T mC TdT mC S ifT T p p fi15.依据热力学第肯定律得输血表达式Q d W d dU += (1)在绝热过程中,有0=Q d ,并考虑到对于志向气体dT C dU v = (2)外界对气体所作的功为:pdV w d -=,则有0=+pdV dT C v (3)由物态方程nRT pV =,全微分可得nRdT Vdp pdV =+ (4)考虑到对于志向气体有)1(-=-=γv v p C C C nR ,则上式变为dTC Vdp pdV v )1(-=+γ (5)把(5)和(3)式,有0=+pdV Vdp γ (6)所以有 V p V p sγ-=⎪⎭⎫⎝⎛∂∂ (7)若m 是空气的摩尔质量,m +是空气的质量,则有V m +=ρ和m m n +=ss s VV p p ⎪⎪⎭⎫⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ρρ ssV p m V p ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂+2ρ (8)将式(7)代入(8)式,有+=⎪⎪⎭⎫ ⎝⎛∂∂m pV p sγρ (9) 由此可得+=⎪⎪⎭⎫ ⎝⎛∂∂=m pV p v sγρ有物态方程RT m m nRT pV +==,代入上式,得m RTmpVv γγ==+17.(1) 0C 的水与温度为100C 的恒温热源接触后水温升为100C ,这一过程是不行逆过程.为求水、热源和整个系统的熵变,可以设想一个可逆过程,通过设想的可逆过程来求不行逆过程前后的熵变。
热力学与统计物理期末习题一、简答题1.什么是孤立系?什么是热力学平衡态?2.请写出熵增加原理?并写出熵增加原理的数学表达式?3.说明在S ,V 不变的情形下,平衡态的U 最小。
4.试解释关系式 ∑∑+=l l l l l l da d a dU εε 的物理意义?5.什么是玻色-爱因斯坦凝聚,理想玻色气体出现凝聚体的条件是什么?6.什么是热力学系统的强度量?什么是广延量?7.什么是热动平衡的熵判据?什么是等概率原理?请写出单元复相系的平衡条件。
8.写出吉布斯相律,并判断盐的水溶液的最大自由度数。
9.写出玻耳兹曼关系,并说明熵的统计意义。
10.请分别写出正则分布的量子表达式和经典表达式?11.简述卡诺定理及其推论。
12.什么是特性函数?若自由能F为特性函数,其自然变量是什么?13.说明一般情况下,不考虑电子对气体热容量贡献的原因。
14.写出热力学第二定律的数学表述,并简述其物理意义。
15.试讨论分布与微观状态之间的关系?16.请写出麦克斯韦关系。
17.什么是统计系综?18.利用能量均分定理,写出N个CO分子理想气体的内能与热容量(不考虑振动),并简要说明在常温范围,振动自由度对热容量贡献接近于零的原因。
19.简述经典统计理论在理想气体中遇到的困难。
20.理想玻色气体出现凝聚体的条件是什么?凝聚体有哪些性质?21.试给出热力学第一定律的语言描述和数学描述。
22.试给出热力学第二定律的语言描述和数学描述。
二、填空题1.均匀系统中与系统的质量或物质的量成正比的热力学量,称为 。
2.在等温等容过程中,系统的自由能永不 。
(填增加、减少或不变)3.体在节流过程前后,气体的 不变;理想气体经一节流过程,其焦汤系数=⎪⎪⎭⎫ ⎝⎛∂∂Hp T 。
4.一级相变的特点是 。
5.在满足经典极限条件1>>αe 时,玻色系统、费米系统以及玻耳兹曼系统的微观状态数满足关系 。
6.玻尔兹曼分布的热力学系统的内能U 的统计表达式是 。
一、单选题(每题2分,共10分)
1、F和G是厄密算符,则()
A、FG必为厄密算符;
B、FG−GF必为厄密算符;
C、i(FG+GF)必为厄密算符;
D、i(FG−GF)必为厄密算符
2、氢原子能级的特点是()
A、相邻两能级间距随量子数的增大而增大.
B、能级的绝对值随量子数的增大而增大.
C、相邻两能级间距随量子数的增大而减小.
D、能级随量子数的增大而减小.
3、.一维自由粒子的运动用平面波描写,则其能量的简并度为()
A、1;
B、3
C、2;
D、4
4、下列波函数为定态波函数的是()
A、ψ2
B、ψ1和ψ2
C、ψ3
D、ψ3和ψ4
5、X射线康普顿散射证实了( )
A、电子具有波动性;
B、光具有波动性;
C、光具有粒子性;
D、电子具有粒
二、请给出两套实验方案测量原子的质量;并给出两个不同的实验现象,证实自由原子能级是量子化。
(每个实验方案2.5分,共10分)
三、请用一句话说明在以下每一个实验证实了什么样的量子化特性,(1)光电效应;(2)黑体辐射;(3)夫兰克-赫兹实验;(4)戴维孙-革末实验;(5)、斯特恩-盖拉赫实验;(6)康普顿散射实验。
(每问2分,共12分)
四、一自由原子的总轨道角动量量子数为L=2,总自旋量子数为S=3/2,求自旋轨道耦合项
L S 的可能取值。
(8分)。
《热力学与统计物理》知识30道选择题1. 热力学过程中,系统内能变化的度量是(B )。
A. 压强B. 热量C. 温度D. 熵2. 下列物理量中,与物质的微观粒子状态有关的是(D )。
A. 内能B. 热容C. 压强D. 熵3. 理想气体的内能只与(A )有关。
A. 温度B. 压强C. 体积D. 物质的量4. 在热力学中,熵增加原理适用于(A )。
A. 孤立系统B. 开放系统C. 封闭系统D. 任意系统5. 热力学第二定律表明(C )。
A. 能量可以全部转化为功B. 热可以全部转化为功C. 自发过程总是朝着熵增加的方向进行D. 以上都不对6. 对于一个孤立系统,其熵(A )。
A. 总是增加的B. 总是减少的C. 保持不变D. 无法确定7. 下列哪个过程是不可逆的?(A )A. 热从高温物体流向低温物体B. 气体自由膨胀C. 理想气体等温膨胀D. 以上都不是8. 统计物理中,最基本的概率分布是(B )。
A. 正态分布B. 麦克斯韦-玻尔兹曼分布C. 均匀分布D. 指数分布9. 玻尔兹曼常数的符号是(B )。
A. kB. k B.C. RD. γ10. 在平衡态下,系统的微观状态数最(D )。
A. 多B. 少C. 不确定D. 大11. 热力学温度的单位是(K )。
A. ℃B. FC. JD. K12. 分子的平均动能与(A )成正比。
A. 温度B. 压强C. 体积D. 熵13. 熵的单位是(J/K )。
A. JB. J/KC. KD. 无单位14. 理想气体状态方程的表达式是(pV = nRT )。
A. pV = nRTB. p = nRT/VC. V = nRT/pD. 以上都不是15. 下列哪种物质的热容较大?(A )A. 水B. 铁C. 铜D. 以上都不是16. 统计物理中,粒子的能量是(B )。
A. 连续的B. 分立的C. 以上都不是D. 不确定17. 分子的动能取决于(A )。
A. 温度B. 压强C. 体积D. 以上都不是18. 热力学第一定律可以表示为(ΔU = Q + W )。
一.选择(25分)1.下列不是热学状态参量的是( )A.力学参量B.几何参量C.电流参量 D 。
化学参量2。
下列关于状态函数的定义正确的是( )A.系统的吉布斯函数是:G=U —TS+PVB 。
系统的自由能是:F=U+TSC 。
系统的焓是:H=U —PVD.系统的熵函数是:S=U/T3.彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是( )A.态函数B.内能 C 。
温度 D 。
熵4。
热力学第一定律的数学表达式可写为( )A 。
W Q U U AB +=- B.W Q U U B A +=-C 。
W Q U U A B -=-D 。
W Q U U B A -=-5.熵增加原理只适用于( )A 。
闭合系统 B.孤立系统 C 。
均匀系统 D.开放系统二.填空(25分)1.孤立系统的熵增加原理可用公式表示为( ).2.热力学基本微分方程du=( )。
3.热力学第二定律告诉我们,自然界中与热现象有关的实际过程都是()。
4.在S。
V不变的情况下,平衡态的()最小。
5。
在T。
VB不变的情形下,可以利用( )作为平衡判据。
三.简答(20分)1.什么是平衡态?平衡态具有哪些特点?2.什么是开系,闭系,孤立系?四.证明(10分)证明范氏气体的定容热容量只是温度的函数,与比容无关五.计算(20分)试求理想气体的体胀系数α,压强系数β,等温压缩系数T K参考答案一。
选择 1~5AACAB二。
填空1。
ds≧02。
Tds—pdv3。
不可逆的4。
内能5。
自由能判据三.简答1.一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会达到这样状态,系统的各种宏观性质在长时间内不发生变化,这样的状态称为热力学平衡态.特点:不限于孤立系统弛豫时间涨落热动平衡2.开系:与外界既有物质交换,又有能量交换的系统闭系:与外界没有物质交换,但有能量交换的系统,孤立系:与其他物体既没有物质交换也没有能量交换的系统四.证明解证:范氏气体()RT b v v a p =-⎪⎭⎫ ⎝⎛+2 T v U ⎪⎭⎫ ⎝⎛∂∂=T V T p ⎪⎭⎫ ⎝⎛∂∂—p =T 2va pb v R =-- T v U ⎪⎭⎫ ⎝⎛∂∂=2va ⇒)(),(0T f v a U v T U +-= =V C V T U ⎪⎭⎫ ⎝⎛∂∂=)(T f ' ;与v 无关。
一.简要回答下列问题
a) 等几率原理
b) 能量均分定理
c) 玻色--爱因斯坦凝聚
d) 自发对称破缺
二.设有N 个定域粒子组成的系统,粒子之间相互作用很弱,可以忽略。
设粒子只有三个非简并能级,能量分别为,0,εε-,系统处于平衡态,温度为T 。
求:
(1) 系统的配分函数和熵S 的表达式;
(2) 内能U 及热容C (T ),并求其0T T →→∞与的极限
(3) 0
()/?dT C T T ∞
=⎰
三.N 个二维各向同性简谐振子组成的近独立粒子系统处于平衡态(温度为T ),假设粒子遵
从Boltzmann 分布,其能量表达式是2
22221()()22
x y m p p x y m ωε=+++,量子化的本征能级是(1)n E n ω=+,其中n=0,1,2, 。
(1) 在什么条件下简谐振子能级量子化效应可以忽略?
(2) 分别在高温和低温条件下,计算系统的内能和热容量
提示:高温条件可直接利用能量均分定理; 低温条件首先要计算系统的配分函数
四.考虑二维自由电子气体系统,其能量色散关系为()22/2p x y p p m ε=+,m 为常数,设面积为S ,总的粒子数为N
(1)求零温下系统的化学势(0)μ及内能U
(2)不用计算,从物理分析判断低温下定容热容量与温度的关系是什么? 为什么?
五. 铁磁固体低温下的元激发称为自旋波,它可以看作是一种粒子数不守恒的玻色型元激发,其能谱为r p αε=,其中 ||p p →
=, α 和 r 均为常数。
(1) 求这种元激发的态密度)(εD ;
(2) 实验发现在足够低的温度下,热容2/3~T
C ,试由此确定r 。