第二章误差及数据分析的统计处理
- 格式:ppt
- 大小:659.00 KB
- 文档页数:58
第二章误差和分析数据的处理第一节误差及其产生的原因定量分析的任务是准确测定试样中各组分的含量,因此必须使分析结果具有一定的准确度。
不准确的分析结果将会导致生产上的损失、资源上的浪费和科学上的错误结论。
在定量分析中,由于受到分析方法、测量仪器、所用试剂和分析人员主观条件等方面的限制,故使测定的结果不可能和真实含量完全一致;即使是分析技术非常熟练的分析人员,用最完善的分析方法、最精密的仪器和最纯的试剂,在同一时间,同样条件下,对同一试样进行多次测定,其结果也不会完全一样。
这说明客观存在着难于避免的误差。
因此,人们在进行定量分析时,不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。
分析结果与真实结果之间的差值称为误差。
分析结果大于真实结果,误差为正;分析结果小于真实结果,误差为负。
一、误差的分类根据误差的性质与产生的原因,可将误差区分为系统误差和偶然误差两类。
(一)系统误差系统误差(systematic error)也叫可定误差(determination error),它是由某种确定的原因引起的,一般有固定的方向(正或负)和大小,重复测定可重复出现。
根据系统误差的来源,可区分为方法误差、仪器误差、试剂误差及操作误差等四种。
(1)方法误差:由于分析方法本身的缺陷或不够完善所引起的误差。
例如,在质量分析法中,由于沉淀的溶解或非被测组分的共沉淀;在滴定分析法中,由于滴定反应进行不完全,干扰离子的影响,测定终点和化学计量点不符合等,都会产生这种误差。
(2)仪器误差:由于所用仪器本身不够准确或未经校正所引起的误差。
例如,天平两臂不等长,砝码、滴定管刻度不够准确等,会使测定结果产生误差。
(3)试剂误差:由于试剂不纯和蒸馏水中含有杂质引入的误差。
(4)操作误差:由于操作人员的习惯与偏向而引起的误差。
例如,读取滴定管的读数时偏高或偏低,对某种颜色的变化辨别不够敏锐等所造成的误差。
第二章误差和分析数据处理•2.1 测量值的准确度和精密度•2.2 提高分析结果准确度的方法(自学)•2.3 有效数字及其运算规则•2.4 有限量测量数据的统计处理•2.5 相关分析和回归分析(自学)§2.1 测量值的准确度和精密度误差(Error) : 测量值与真值之差。
➢真值T (True value)某一物理量本身具有的客观存在的真实值。
真值是未知的、客观存在的量。
在特定情况下认为是已知的:1、理论真值(如化合物的理论组成)(如,NaCl中Cl的含量)2、计量学约定真值(如国际计量大会确定的长度、质量、物质的量单位等等)3、相对真值(如高一级精度的测量值相对于低一级精度的测量值)(例如,标准样品的标准值)误差分类•系统误差(Systematic error)—某种固定的因素造成的误差方法误差、仪器误差、试剂误差、操作误差•随机误差(Random error)—不定的因素造成的误差仪器误差、操作误差系统误差与随机误差的比较项目系统误差随机误差产生原因固定因素,有时不存在不定因素,总是存在分类方法误差、仪器与试剂误差、主观误差环境的变化因素、主观的变化因素等性质重现性、单向性(或周期性)、可测性服从概率统计规律、不可测性影响准确度精密度消除或减小的方法校正增加测定的次数系统误差的校正•方法系统误差——方法校正•主观系统误差——对照实验校正(外检)•仪器系统误差——对照实验校正•试剂系统误差——空白实验校正如何判断是否存在系统误差?E a = x –x T 相对误差x <x T 为负误差,说明测定结果偏低x >x T 为正误差,说明测定结果偏高误差越小,分析结果越接近真实值,准确度也越高x -x T x T x T E r = ——= ————常用%表示Ea 绝对误差 误差的表示:对一B 物质客观存在量为T 的分析对象进行分析,得到n 个个别测定值x 1、x 2、x 3、••• x n ,对n 个测定值进行平均,得到测定结果的平均值,那么:个别测定的误差为:T x i -测定结果的绝对误差为:T x E a -=测定结果的相对误差为:%100⨯=TE E a r 平均值偏差(deviation): 单次测量值与测量平均值之差。
第2章误差及分析数据的统计处理2.1 有效数字及其运算规则2.1.1有效数字指在分析工作中实际能测到的数字,它包括所有的准确数字和最后一位可疑数字。
在有效数字中, 只有最后一位数是不确定的,可疑的。
有效数字位数由仪器准确度决定,它直接影响测定的相对误差。
在科学实验中,对于任一物理量的测定,其准确度都是有一定限度的,例如:读取滴定管的刻度,甲得到23.43ml,乙得到23.42ml,丙得到23.44ml,这些四位数字中,前三位都是很准确的,第四位是估读出来的,所以稍有差别,称为可疑数字,但是它并不是臆造的,这4位数字都是有效数字。
有效数字就是实际能测到的数字,其位数的多少,反映测量的精确程度。
1.零的作用:在1.0008中,“0” 是有效数字;在0.0382中,“0”定位作用,不是有效数字;在0.0040中,前面3个“0”不是有效数字,后面一个“0”是有效数字。
在3600中,一般看成是4位有效数字,但它可能是2位或3位有效数字,分别写3.6×103,3.60×103或3.600×103较好。
注意:1.单位变换不影响有效数字的位数。
例如:1.0L=1.0×103ml ,不能写成1000ml2. pH ,pM ,lgc ,lgK 等对数值,有效数字的位数取决于小数部分(尾数)位 数,因整数部分代表该数的方次。
如pH=11.20,有效数字的位数为两位。
3. 有效数字的位数,直接与测定的相对误差有关。
例:测定某物质的含量为0.5180g ,即0.5180±0.0001g 相对误差%02.0%10051801±=⨯±=Er课堂练习:一、下列数据包括几位有效数字:(1)0.0330 (2)10.030(3)0.01020(4)8.7×10-5(5)PKa=4.74(6) PH=10.00二、见课后题第11页11题2.1.2 有效数字的运算规则2.1.2.1有效数字的修约规则在处理数据过程中,涉及到的各测量值的有效数字位数可能不同,因此需要按下面所述的计算规则,确定各测量值的有效数字位数,有效数字确定后,就要将它后面多余的数字舍弃,此过程称为“数字修约”。