电磁学赵凯华答案第6章麦克斯韦电磁理论
- 格式:doc
- 大小:232.01 KB
- 文档页数:10
赵凯华所编电磁学第二版答案Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT第一章静电场§静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
---------------------------------------------------------------------------------------------------------------------§电场电场强度思考题:1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。
电磁学第四版习题解读:赵凯华引言电磁学作为物理学中的重要分支,其理论体系和应用范围都十分广泛。
赵凯华的《电磁学》第四版是一本深受欢迎的教材,不仅系统介绍了电磁学的基本理论,而且配有大量的题,有助于读者更好地理解和掌握电磁学的相关知识。
本文档将针对该教材中的部分题进行解读,以帮助读者更好地巩固电磁学的理论知识。
目录1. 电荷与电场2. 电流与磁场3. 电磁感应4. 麦克斯韦方程组5. 电磁波6. 静电场中的导体和电介质7. 稳恒电流场8. 稳恒磁场9. 电磁场的能量与动量10. 电磁场的传播与辐射内容解读1. 电荷与电场题1-1解读:该题主要考察点电荷的电场强度计算。
根据库仑定律和电场强度的定义,可以得到点电荷的电场强度公式。
题1-2解读:该题主要考察电场线的基本性质。
电场线的疏密表示电场强度的相对大小,电场线某点的切线方向表示该点的电场强度方向。
2. 电流与磁场题2-1解读:该题主要考察毕奥-萨伐尔定律的应用。
根据毕奥-萨伐尔定律,可以求出空间中任意一点处的磁场强度。
题2-2解读:该题主要考察安培环路定律的应用。
根据安培环路定律,可以求出闭合回路所包围的电流。
3. 电磁感应题3-1解读:该题主要考察法拉第电磁感应定律的应用。
根据法拉第电磁感应定律,可以求出闭合回路中的感应电动势。
题3-2解读:该题主要考察楞次定律的应用。
根据楞次定律,可以判断感应电流的方向。
4. 麦克斯韦方程组题4-1解读:该题主要考察高斯定律的应用。
根据高斯定律,可以求解静电场中的电荷分布。
题4-2解读:该题主要考察安培定律的应用。
根据安培定律,可以求解稳恒电流场中的磁场分布。
5. 电磁波题5-1解读:该题主要考察电磁波的基本性质。
根据电磁波的波动方程,可以求解电磁波的传播速度和波长。
题5-2解读:该题主要考察电磁波的产生和发射。
根据麦克斯韦方程组,可以分析电磁波的产生机制。
6. 静电场中的导体和电介质题6-1解读:该题主要考察静电场中导体的静电平衡。
第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
--------------------------------------------------------------------------------------------------------------------- §1.2 电场电场强度思考题:1、在地球表面上通常有一竖直方向的电场,电子在此电场中受到一个向上的力,电场强度的方向朝上还是朝下?答:电子受力方向与电场强度方向相反,因此电场强度方向朝下。
2、在一个带正电的大导体附近P点放置一个试探点电荷q0(q0>0),实际测得它受力F。
若考虑到电荷量q0不是足够小的,则F/ q0比P点的场强E大还是小?若大导体带负电,情况如何?答:q0不是足够小时,会影响大导体球上电荷的分布。
电磁学第四版赵凯华习题答案解析第一章:电磁现象和电磁场基本定律
1. 问题:什么是电磁学?
答案:电磁学是研究电荷和电流相互作用所产生的现象和规律的科学。
2. 问题:什么是电磁场?
答案:电磁场是指由电荷和电流引起的空间中存在的物理场。
3. 问题:什么是电场?
答案:电场是指电荷在周围空间中所产生的物理场。
4. 问题:什么是磁场?
答案:磁场是指电流或磁体在周围空间中所产生的物理场。
5. 问题:电磁场有哪些基本定律?
答案:电磁场的基本定律有高斯定律、安培定律、法拉第定律和麦克斯韦方程组。
第二章:静电场
1. 问题:什么是静电场?
答案:静电场是指电荷分布不随时间变化的电场。
2. 问题:什么是电势?
答案:电势是指单位正电荷在电场中所具有的能量。
3. 问题:什么是电势差?
答案:电势差是指在电场中从一个点到另一个点所需做的功。
4. 问题:什么是电势能?
答案:电势能是指带电粒子在电场中由于位置改变而具有的能量。
5. 问题:什么是电容?
答案:电容是指导体上带电量与导体电势差之间的比值。
以上是电磁学第四版赵凯华习题的部分答案解析。
详细的解析请参考教材。
第一章静电场§1.1 静电的基本现象和基本规律思考题:1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。
你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。
你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。
然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。
本方法不要求两球大小相等。
因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
2、带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。
试解释之。
答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。
但接触棒后往往带上同种电荷而相互排斥。
3、用手握铜棒与丝绸摩擦,铜棒不能带电。
戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。
为什么两种情况有不同结果?答:人体是导体。
当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。
戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
计算题:1、真空中两个点电荷q1=1.0×10-10C,q2=1.0×10-11C,相距100mm,求q1受的力。
解:2、真空中两个点电荷q与Q,相距5.0mm,吸引力为40达因。
已知q=1.2×10-6C,求Q。
解:1达因=克·厘米/秒=10-5牛顿3、为了得到一库仑电量大小的概念,试计算两个都是一库仑的点电荷在真空中相距一米时的相互作用力和相距一千米时的相互作用力。
解:4、氢原子由一个质子(即氢原子核)和一个电子组成。
根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r=5.29×10-11m。
已知质子质量M=1.67×10-27kg,电子质量m=9.11×10-31kg。
6.2 自由空间中一均匀平面波的磁场强度为)cos()(0x wt H a a H z y π-+= m A /求:(1)波的传播方向;(2)波长和频率;(3)电场强度; (4)瞬时坡印廷矢量。
解:)cos()(0x wt H a a H z y π-+=m A /(1) 波沿+x 方向传播(2) 由题意得:k=π rad/m , 波长m k 22==πλ , 频率Hz c f 8105.1⨯==λ (3))cos(120)(0x wt H a a a H E z y x ππη--=⨯= m v / (4))(cos 24020x wt H a H E S x ππ-=⨯= 2/m w 6.3无耗媒质的相对介电常数4=r ε,相对磁导率1=r μ,一平面电磁波沿+z 方向传播,其电场强度的表达式为)106cos(80z t E a E y β-⨯=求:(1)电磁波的相速;(2)波阻抗和β;(3)磁场强度的瞬时表达式;(4)平均坡印廷矢量。
解:(1)s m cv r r p /105.118⨯===εμμε(2))(6000Ω===πεεμμεμηrr , m r a d c w w r r /4===εμμεβ (3))4106cos(60180z t E a E a H x z -⨯-=⨯=πη m A / (4)π120]Re[2120*E a H E S z av =⨯= 2/m w6.4一均匀平面波从海水表面(x=0)沿+x 方向向海水中传播。
在x=0处,电场强度为m v t a E y /)10cos(1007π =,若海水的80=r ε,1=r μ,m s /4=γ。
求:(1)衰减常数、相位常数、波阻抗、相位速度、波长、趋肤深度;(2)写出海水中的电场强度表达式;(3)电场强度的振幅衰减到表面值的1%时,波传播的距离;(4)当x=0.8m 时,电场和磁场得表达式;(5)如果电磁波的频率变为f=50kHz ,重复(3)的计算。
1 一平行板电容器的两极板都是半径为的圆导体片,在充电时,其中电场强度的变化率为:。
试求:(1)两极板间的位移电流;(2)极板边缘的磁感应强度。
解: (1)如图所示,根据电容器极板带电情况,可知电场强度的方向水平向右(电位移矢量的方向与的方向相同)。
因电容器中为真空,故。
忽略边缘效应,电场只分布在两板之间的空间内,且为匀强电场。
已知圆板的面积,故穿过该面积的的通量为由位移电流的定义式,得电容器两板间位移电流为因,所以的方向与的方向相同,即位移电流的方向与的方向相同。
(2)由于忽略边缘效应,则可认为两极板间的电场变化率是相同的,则极板间的位移电流是轴对称分布的,因此由它所产生的磁场对于两板中心线也具有轴对称性。
在平行板电容器中沿极板边缘作以半径为的圆,其上的大小相等,选积分方向与方向一致,则由安培环路定理可得(全电流)因在电容器内传导电流,位移电流为,则全电流为所以极板边缘的磁感应强度为根据右手螺旋定则,可知电容器边缘处的磁感应强度的方向,如图所示。
2 一平行板电容器的两极板为圆形金属板,面积均为,接于一交流电源时,板上的电荷随时间变化,即。
试求:(1)电容器中的位移电流密度的大小;(2)设为由圆板中心到该点的距离,两板之间的磁感应强度分布。
解: (1)由题意可知,,对于平行板电容器电位移矢量的大小为所以,位移电流密度的大小为(2)由于电容器内无传导电流,故。
又由于位移电流具有轴对称性,故可用安培环路求解磁感应强度。
设为圆板中心到场点的距离,并以为半径做圆周路径。
根据全电流安培环路定理可知通过所围面积的位移电流为所以.最后可得3. 如图(a)所示,用二面积为的大圆盘组成一间距为的平行板电容器,用两根长导线垂直地接在二圆盘的中心。
今用可调电源使此电容器以恒定的电流充电,试求:(1)此电容器中位移电流密度;(2)如图(b)所示,电容器中点的磁感应强度;(3)证明在此电容器中从半径为﹑厚度为的圆柱体表面流进的电磁能与圆柱体内增加的电磁能相等。
1 一平行板电容器的两极板都是半径为的圆导体片,在充电时,其中电场强度的变化率为:。
试求:(1)两极板间的位移电流;(2)极板边缘的磁感应强度。
解: (1)如图所示,根据电容器极板带电情况,可知电场强度的方向水平向右(电位移矢量
的方向与的方向相同)。
因电容器中为真空,故。
忽略边缘效应,电场只分布在两板之间的空间内,且为匀强电场。
已知圆板的面积,故穿过该面积的的通量为
由位移电流的定义式,得电容器两板间位移电流为
因,所以的方向与的方向相同,即位移电流的方向与的方向相同。
(2)由于忽略边缘效应,则可认为两极板间的电场变化率是相同的,则极板间的位移电流是轴对称分布的,因此由它所产生的磁场对于两板中心线也具有轴对称性。
在平行板电容器中沿极板边缘作以半径为的圆,其上的大小相等,选积分方向与方向一致,
则由安培环路定理可得(全电流)
因在电容器内传导电流,位移电流为,则全电流为
所以极板边缘的磁感应强度为
根据右手螺旋定则,可知电容器边缘处的磁感应强度的方向,如图所示。
2 一平行板电容器的两极板为圆形金属板,面积均为,接于一交流电源时,板上的电荷随时间变化,即。
试求:(1)电容器中的位移电流密度的大小;(2)设为由圆板中心到该点的距离,两板之间的磁感应强度分布。
解: (1)由题意可知,,对于平行板电容器电位移矢量的大小为
所以,位移电流密度的大小为
(2)由于电容器内无传导电流,故。
又由于位移电流具有轴对称性,故可用安培环路求解磁感应强度。
设为圆板中心到场点的距离,并以为半径做圆周路径。
根据全电流安培环路定理可知通过所围面积的位移电流为
所以.最后可得
3. 如图(a)所示,用二面积为的大圆盘组成一间距为的平行板电容器,用两根长导线垂直地接在二圆盘的中心。
今用可调电源使此电容器以恒定的电流充电,试求:(1)此电容器中位移电流密度;(2)如图(b)所示,电容器中点的磁感应强度;(3)证明在此电容器中从半径为﹑厚度为的圆柱体表面流进的电磁能与圆柱体内增加的电磁能相等。
解:(1)由全电流概念可知,全电流是连续的。
电容器中位移电流密度的方向应如图(c)所示,其大小为
通过电源给电容器充电时,使电容器极板上电荷随时间变化,从而使极板间电场发生变化。
因此,也可以这样来求:
因为由于,因此所以
(2)由于传导电流和位移电流均呈轴对称,故磁场也呈轴对称,显然过点的线应为圆心在对称轴上的圆,如图(c)所示。
根据全电流安培环路定理,将
用于此线上,有
得所以
(3)在电容器中作半径为﹑厚度为的圆柱体,如图(d)所示。
由坡印廷矢量分析可知,垂直指向圆柱体的侧壁,这表明电磁场的能量是从侧壁流入圆柱体内的。
在单位时间内流入的能量为
因为所以
由于传导电流和位移电流都不随时间变化,故磁场和磁场的能量也都不随时间变化。
但电容器中的电场是随时间增强的,故电场的能量是随时间增加的。
图(d)中圆柱体内单位时间内增加的电场的能量为
显然,单位时间内流入圆柱体的能量与圆柱体内增加的能量相等。
4 如图所示,已知电路中直流电源的电动势为﹑电阻,电容器的电容
,试求:(1)接通电源瞬时电容器极板间的位移电流;(2)时,
电容器极板间的位移电流;(3)位移电流可持续多长时间。
(通常认为经过10倍电路时间常数后电流小到可忽略不计)
解: 对串联电路的暂态过程有求解该方程得:
,
表示极板上的电荷量是随时间变化。
在电容器内,由上题结论得电容器中的位移电流为
对应不同的情况,可求得(1)在接通电源的瞬时,电容器极板间的位移电流。
(2)当时,
(3)在时可认为电流忽略不计,即。
所以
5 一球形电容器,其内导体半径为,外导体半径为,两极板之间充有相对介电
常数为的介质。
现在电容器上加电压,内球与外球的电压为,假设
不太大,以致电容器电场分布与静电场情形近似相等,试求介质中的位移电流密度以及通过半径为的球面的位移电流。
解: 设电容器极板上带有电荷,由位移电流密度公式可知
由于球形电容器具有球形对称,用电场高斯定理求出球形极板间的电位移矢量为(为径向单位向量)
球形电容器极板间的电势差为
与上式联立,消去,得
所以位移电流密度为
在电容器中,作半径为的球面,通过它的位移电流为
的流向沿径向,且随时间变化。
6 如图所示,电荷以速度向点运动(到点的距离以表示)。
在
点处作一半径为的圆,圆面与垂直。
试求通过该圆面的位移电流和圆周上各点处
的磁感应强度。
解: 电荷在其周围要激发电场,同时由于电荷运动,根据麦克斯韦假设,此时随时间变化的电场又激发磁场。
设时间穿过圆面上的电位移通量为为使计算简便,可以为球心,为半径,为小圆半径的底面,做一球冠,球面上各点的的大小相等,穿过题意圆面的电位移通量与穿过球冠的电位移通量相等。
即
代入位移电流的定义式,得
取半径为的圆为积分回路,由麦克斯韦方程,有
由于运动沿圆面的轴线,系统具有对称性,所以环路上各点的大小相等,即
得
写成矢量形式有这正是运动电荷产生的磁场公式。
7 如图所示,由电容为的电容器和自感系数为的线圈构成一振荡电路,若忽略线路中的电阻,充电后电容器所带电量的幅值为。
试求:(1)
充电时电容器两极板间电位差随时间的变化率;(2)电路中电流随时间的变化率;(3)电场和磁场能量分别随时间的变化率。
解:在图示中,将开关先后扳向位置2,1使电容器充﹑放电,便可在电路中产生电流的周期性变化。
设电路中电荷随时间的变化规律为则电路中的充﹑放电流为由于在电路中,,所以回路的振荡频率由题意可知,
所以
代入电容器的电容公式,有
表明电容器两极板间电压随时间作用周期性变化。
已知电路中电荷变化规律,则有
电容器储存的电场能量为
线圈储存的磁场能量为
整个电路系统的总能量
8.试证明麦克斯韦方程组中蕴含了电荷守恒定律。
解: 由麦克斯韦方程(为传导电流)
设想闭合曲线缩小为一点,相应地以为边界的曲面将变成一个闭合面,在这种情况下有,
即因此传导电流
而代入上式得
结果表明,如果一个地方没有电荷量的减小,就不可能从那里流出电荷来。
这就是电荷守恒定律的数学表达式,因此麦克斯韦方程组中蕴含了电荷守恒定律。