【免费下载】VS中直线的绘制计算机图形学实验报告一
- 格式:pdf
- 大小:457.93 KB
- 文档页数:6
《计算机图形学》实验报告目录1实验2:直线的生成 (1)1.1实验要求和目的 (1)1.2实验课时 (1)1.3实验环境 (1)1.4实验内容 (1)1.5核心代码 (3)1.6实验结果 (7)1.6.1DDA算法 (10)1.6.2Mid-Bresenham算法 (11)1.7心得与体会 (12)2实验4:BSpline曲线绘制 (13)2.1实验要求和目的 (13)2.2实验课时 (13)2.3实验环境 (13)2.4实验内容 (13)2.5核心代码 (16)2.6实验结果 (18)2.6.1B-样条算法 (19)2.6.2Bezeir算法 (22)2.7心得与体会 (24)附录 (25)BSpline曲线控制点的测试数据 (25)数据1 (25)数据2 (27)数据3 (29)数据4 (30)数据5 (31)数据6 (33)数据7 (36)数据8 (38)1实验2:直线的生成1.1实验要求和目的理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析实验数据的能力;编程实现DDA算法、Bresenham中点算法;对于给定起点和终点的直线,分别调用DDA算法和Bresenham中点算法进行批量绘制,并记录两种算法的绘制时间;利用excel 等数据分析软件,将试验结果编制成表格,并绘制折线图比较两种算法的性能。
1.2实验课时3学时1.3实验环境本试验提供自带实验平台·开发环境:Visual C++ 6.0·实验平台:Free_Curve(自制平台)1.4实验内容本实验提供名为 Experiment_Frame_One的平台,该平台提供基本绘制、设置、输入功能,学生在此基础上实现·平台界面:如图1.4.1所示·设置:通过view->setting菜单进入,如图1.4.2所示·输入:通过view->input…菜单进入,如图1.4.3所示·实现算法:▪DDA算法:void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1)▪Mid_Bresenham算法:voidCExperiment_Frame_OneView::Mid_Bresenham(int X0, int Y0, int X1, int Y1)图 1.4.1 总界面图 1.4.2 设置界面图 1.4.3 输入界面1.5核心代码本次实验的核心代码如下所示。
贵州大学实验报告
学院:计算机科学与技术专业:计算机科学与技术班级:计科131
算法原理:
与DDA算
法相似,
Bresenham
画线算法也
要在每列象
素中找到与
理想直线最逼近的象素点。
根据直线的斜率来确定变量在x或y方向递增一个单位。
另一个方向y或x的增量为0或1,它取决于实际直线与最接近网格点位置的距离。
这一距离称为误差。
算法的巧妙构思,使每次只需检查误差项(增量)的符号即可。
定义决策变量:d =d+k (0<k<1)设0<k<1,如直线上的一点为(x,y),则下一点为:(x+1,y) (d< 或(x+1,y+1)(d>=当d>1时,让d=d-1,以保证0<=d<1,d0=0
令e = (0<k<1),则e0 =
则下一点为:
(x+1,y),(e<0)
(x+1,y+1)(e>=0)
当e >0时, 让e =e-1,(重新初始化误差项)由于算法只用到误差项的符号,为了改用整数以避免除法,可以作如下替换:
e = 2*e*dx定义决策变量e= 2*e*dx,则e0 = -dx,e=e +2*dy
printf("输入有误,请重新输入\n");
break;
}
}
return 0;
}
实
验
结
果
实
验总结
通过这次试验我对于中点生成算法和Bresenham生成算法有了进一步的了解,在平时上课的基础上对计算机图形学有了更深的认识,同时对课程内容也更加了解。
计算机图形学实验报告
在计算机图形学课程中,实验是不可或缺的一部分。
通过实验,我们可以更好地理解课程中所学的知识,并且在实践中掌握这些
知识。
在本次实验中,我学习了如何使用OpenGL绘制三维图形,并了解了一些基本的图形变换和视图变换。
首先,我们需要通过OpenGL的基本命令来绘制基本图形,例
如线段、矩形、圆等。
这些基本的绘制命令需要首先设置OpenGL 的状态,例如绘制颜色、线段宽度等,才能正确地绘制出所需的
图形。
然后,在实验中我们学习了图形的变换。
变换是指通过一定的
规则将图形的形状、位置、大小等进行改变。
我们可以通过平移、旋转、缩放等变换来改变图形。
变换需要按照一定的顺序进行,
例如先进行旋转再进行平移等。
在OpenGL中,我们可以通过设
置变换矩阵来完成图形的变换。
变换矩阵包含了平移、旋转、缩
放等信息,通过矩阵乘法可以完成图形的复合变换。
最后,视图变换是指将三维场景中的图形投影到二维平面上,
成为我们所见到的图形。
在实验中,我们学习了透视投影和正交
投影两种方式。
透视投影是指将场景中的图形按照视点不同而产
生不同的远近缩放,使得图形呈现出三维感。
而正交投影则是简单地将场景中的图形按照平行投影的方式呈现在屏幕上。
在OpenGL中,我们可以通过设置视图矩阵和投影矩阵来完成视图变换。
通过本次实验,我对于计算机图形学有了更深入的了解,并掌握了一些基本的图形绘制和变换知识。
在今后的学习中,我将继续学习更高级的图形绘制技术,并应用于实际的项目中。
计算机图形学实验报告⼀实验⼀直线、圆、椭圆的⽣成算法⼀、实验⽬的与内容⽬的:利⽤实验使我对所学的图形⽣成算法加深印象,并且练习书写规范的实验报告格式。
1、了解VC编程环境中常⽤控件命令和绘图函数,掌握处理图形的基本⽅法;2、实现直线⽣成算法:数值微分法、中点画线法、Bresenham画线法;3、实现圆的⽣成算法:简单画圆法、中点画圆法、Bresenham画圆法;4、实现椭圆⽣成算法:中点画椭圆法。
⼆、实验前准备:算法分析使⽤开发环境VC++6.0,建⽴⼯程MFC AppWizard exe,选择单⽂档。
进⼊IDR_MAINFRAME,编辑菜单栏,对需要处理的菜单项标题“建⽴类向导”,添加消息映射函数,在映射的函数处添加相应算法的程序代码,就可以完成整个程序。
算法的学习和理解是图形学学习的重要部分,以下对各种算法进⾏分析和总结:1、DDA算法⽣成直线斜率是DDA算法的关键,⽤两点坐标很容易可以得到斜率k,但这⾥要注意k是float。
如果k的绝对值在0和1之间,每次画点x++,y+k再进⾏四舍五⼊(因为x此时⽐y的变化快)。
否则,y++。
也就是为了保持每次+k(或1/k)要⼩于1。
不⽤对k的正负有太多考虑,例如point1(100,100),point2(200,200),可能得到k=-1,这时我们就从point1开始画点,所得的结果是相同的。
2、中点画线法判别式是中点画线法的关键,(0<=k<=1)判别式是为了判断下⼀个点是在当前点正右边还是右上⽅,是和中点⽐较的结果。
d的含义下⼀个点到中点的垂直距离,它的正负可以做下⼀个位置的判断。
初值:d = 2*a + b,增量:上⼀个点d>=0,则d+2*a,上⼀个点d<=0,则d+2*(a+b)。
3、Bresenham算法⽣成直线由误差d的符号来决定下⼀个像素是在正右⽅合适右上⽅。
d的实际意义是实际点到模拟点的垂直距离,我们让它保持在1以内(>=1时,做-1)。
贵州大学实验报告学院:计算机科学与技术专业:计算机科学与技术班级:计科131如果 d<0,则M在理想直线下方,选右上方P1点;如果 d=0,则M在理想直线上,选P1/ P2点。
由于d是xi和yi的线性函数,可采用增量计算提高运算效率。
1.如由pi点确定在是正右方P2点(d>0).,则新的中点M仅在x方向加1,新的d值为:d new=F(xi+2,yi+0.5)=a(xi+2)+b(yi+0.5)+c而 d old=F(xi+1,yi+0.5)=a(xi+1)+b(yi+0.5)+cd new=d old+a= d old-dy2.如由pi点确定是右上方P1点(d<0),则新的中点M在x和y方向都增加1,新的d值为d new=F(xi+2,yi+1.5)=a(xi+2)+b(yi+1.5)+c而 d old=F(xi+1,yi+0.5)=a(xi+1)+b(yi+0.5)+cd new=d old+a+b= d old-dy+dx在每一步中,根据前一次第二迭中计算出的d值的符号,在正右方和右上方的两个点中进行选择。
d的初始值: d0=F(x0+1,y0+0.5)=F(x0,y0)+a+b/2=a+b/2=-dy+dx/2 F(x0,y0)=0,(x0,y0)在直线上。
为了消除d的分数,重新定义 F(x,y)=2(ax+by+c)则每一步需要计算的d new 是简单的整数加法dy=y1-y0,dx=x1-x0d0=-2dy+dxd new=d old-2*dy,当 d old>=0d new=d old-2(dy-dx),当d old<0Bresenham画线算法算法原理:与DDA算法相似,Bresenham画线算法也要在每列象素中找到与理想直线最逼近的象素点。
根据直线的斜率来确定变量在x或y方向递增一个单位。
另一个方向y或x实验内容#include"stdafx.h"#include<glut.h>#include<iostream>#include<cmath>#include<stdio.h>using namespace std;void init(){glClearColor(1.0, 1.0, 1.0, 1.0);glMatrixMode(GL_PROJECTION);glLoadIdentity();gluOrtho2D(0.0, 200.0, 0.0, 150.0);}void IntegerBresenhamline(){int x1 = 10, y1 = 10, x2 = 150, y2 = 100;int dx = abs(x2 - x1);int dy = abs(y2 - y1);int x, y;int e = -dx;if (x1 > x2){x = x2;y = y2;x2 = x1;}else{x = x1;y = y1;}glClear(GL_COLOR_BUFFER_BIT);glColor3f(1.0, 0.0, 0.0);glBegin(GL_LINES);glVertex2i(x, y);while (x < x2){if (e >= 0){y++;e = e - 2 * dx;}glVertex2i(x, y);x++; e += 2 * dy;}glEnd();glFlush();}void MidPointLine(){int x, y, x1 = 10, y1 = 10, x2 = 150, y2 = 100;int dy = y1 - y2;int dx = x2 - x1;int d = 2 * dy + dx;int dx1 = 2 * dy;int dx2 = 2 * (dx + dy);if (x1 > x2){x = x2;y = y2;x2 = x1;}else{x = x1;y = y1;}glClear(GL_COLOR_BUFFER_BIT);glColor3f(1.0, 0.0, 0.0);glBegin(GL_LINES);glVertex2i(x, y);while (x < x2){if (d<0){y++; x++;d += dx2;}else{x++, d += dx1;}glVertex2i(x, y);}glEnd();glFlush();}int main(int argc, char** argv){glutInit(&argc, argv);glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);glutInitWindowPosition(50, 100);glutInitWindowSize(400, 300);int choice;printf("输入你想画的直线 0代表Bresenham 1代表中点画线\n");while (1){scanf("%d", &choice);switch (choice){case 0:glutCreateWindow("Bresenham Draw Line");init();glutDisplayFunc(IntegerBresenhamline);glutMainLoop();break;case 1:glutCreateWindow("middle Point Line");init();glutDisplayFunc(MidPointLine);glFlush();glutMainLoop();break;default:printf("输入有误,请重新输入\n");break;}}return 0;}实验结果实验总结通过这次试验我对于中点生成算法和Bresenham生成算法有了进一步的了解,在平时上课的基础上对计算机图形学有了更深的认识,同时对课程内容也更加了解。
实验报告模板《计算机图形学》实验报告一、实验目的及要求1.实习三维图形的坐标系之间的变换;2.三维图形几何变换;3.掌握三维图形的坐标系之间的变换算法及三维图形几何变换的原理和实现;4.实现二维图形的基本变换(平移、旋转、缩放、错切、对称、复合等);5.实现三维图形的基本变换(平移、旋转、缩放、复合等);二、理论基础在齐次坐标理论下,二维图形几何变换矩阵可用下式表示:⎪⎪⎪⎭⎫⎝⎛===ifchebgdaTnkxx kk2,1,0,)(ϕ平移变换:[x* y* 1] =[x y 1] *0000001ts⎛⎫⎪⎪⎪⎝⎭=[t*x s*y 1]比例变换:[x* y* 1]=[x y 1] *1000101m n⎛⎫⎪⎪⎪⎝⎭=[m+x n+y 1]旋转变换:在平面上的二维图形饶原点逆时针旋转Ө角,变换矩阵为[x* y* 1]=[x y 1] *cos sin0sin cos0001θθθθ⎛⎫⎪- ⎪⎪⎝⎭= [x*cosө-y*sinө]复合变换:以上各种变换矩阵都是以原点为参照点,当以任意参照点进行变换的时候,我们就要用到复合变换矩阵。
三维变换类似于二维,在画图时,把三维坐标转换为二维即可。
三、算法设计与分析二维变换:#define dx 50#define dy 100void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+dx;a[1]=m[i][1]+dy;b[0]=m[i+1][0]+dx;b[1]=m[i+1][1]+dy;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define h 0.1745#include<math.h>void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*cos(h)-m[i][1]*sin(h);a[1]=m[i][1]*cos(h)+m[i][0]*sin(h);b[0]=m[i+1][0]*cos(h)-m[i+1][1]*sin(h);b[1]=m[i+1][1]*cos(h)+m[i+1][0]*sin(h);DDALine(a,b, RGB(0, 200, 255), pDC);}}#define k 2;#define f 2.5void CCGWithVCView::OnTransMove() //缩放{// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Scale Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]*k;a[1]=m[i][1]*f;b[0]=m[i+1][0]*k;b[1]=m[i+1][1]*f;DDALine(a,b, RGB(0, 200, 255), pDC);}}#define n 2#define d 0void CCGWithVCView::OnTransOther(){// TODO: Add your command handler code here//AfxMessageBox(_T("Please Insert The Other Change Code!")) ;int m[4][2]={{100,50},{50,100},{150,100},{100,50}};int i;int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<3;i++){a[0]=m[i][0];a[1]=m[i][1];b[0]=m[i+1][0];b[1]=m[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for(i=0;i<3;i++){a[0]=m[i][0]+n*m[i][1];a[1]=m[i][1]+d*m[i][0];b[0]=m[i+1][0]+n*m[i+1][1];b[1]=m[i+1][1]+d*m[i+1][0];DDALine(a,b, RGB(0, 200, 255), pDC);}}三维变换:#include<math.h>#define dx 100#define dy 100#define dz 0void CCGWithVCView::OnTransScale() //平移(50,100){// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Move Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]+dy-p3d[i][0]+dx/sqrt(2);p2d[i][1]=p3d[i][2]+dz+p3d[i][0]+dx/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}#define k 0.1745void CCGWithVCView::OnTransRotate() //旋转{// TODO: Add your command handler code here// AfxMessageBox(_T("Please Insert The Rotate Change Code!")) ;int i;int p2d[6][2];int p3d[6][3]={{400,300,0},{300,400,0},{300,300,10},{275,300,0},{400,300,0},{300,300,10}};for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]+p3d[i][0]/sqrt(2);}int a[2],b[2];CDC * pDC = GetDC();for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 200, 255), pDC);}for( i=0;i<6;i++){p2d[i][0]=p3d[i][1]*cos(k)-p3d[i][2]*sin(k)-p3d[i][0]/sqrt(2);p2d[i][1]=p3d[i][2]*cos(k)+p3d[i][1]*sin(k)+p3d[i][0]/sqrt(2);}for(i=0;i<5;i++){a[0]=p2d[i][0];a[1]=p2d[i][1];b[0]=p2d[i+1][0];b[1]=p2d[i+1][1];DDALine(a,b, RGB(0, 0, 255), pDC);}}四、程序调试及结果的分析二维:三维:五、实验心得及建议在实验过程中,尽管过程中任由许多不会的地方,而且有待于今后的提高和改进,但我加深了对书本上知识的理解与掌握,同时也学到了很多书本上没有东西,并积累了一些宝贵的经验,这对我以后的学习与工作是不无裨益的。
华北水利水电学院计算机图形学实验报告题目:直线的生成算法姓名:***学号:*********专业:计算机科学与技术院系:信息工程学院一、实验目的学会用DDA 法,中点法,Bresenham 法这三种思想画直线,同时,对画直线的操作有一定的了解。
二、实验原理及内容1. DDA 法的基本思想如下:已知过端点P0(x0,y0) , P1(x1,y1)的直线段L :y=kx+b ,直线斜率为k=(y1-y0)/x1-x0 ,从x 的左端点x0开始,向x 右端点步进。
步长=1(个象素),计算相应的y 坐标y=kx+b ; 取象素点(x, round(y))作为当前点的坐标。
3. Bresenham 法的基本思想如下:过各行各列象素中心构造一组虚拟网格线。
按直线从起点到终点的顺序计算直线与 各垂直网格线的交点,然后根据误差项的符号确定该列象素中与此交点最近的象素。
设直线方程为:其中k=dy/dx 。
因为直线的起始点在象素中心,所以误差项d 的初值d0=0。
X 下标每增加1,d 的值相应递增直线的斜率值k ,即d =d +k 。
一旦d ≥1,就把它减去1,这样保证d 在0、1之间。
当d ≥0.5时,最接近于当前象素的右上方象素( )而当d<0.5时,更接近于右方象素( )。
为方便计算,令e =d-0.5,e 的初值为-0.5,增量为k 。
当e ≥0时,取当前象素(xi ,yi )的右上方象素( );而当e<0时,更接近于右方象素( )。
可以改用整数以避免除法。
4.两方法的程序编写及运行结果截图如下:void CHTView::OnDda()d dd d k y x x k y y i i i i i +=-+=++)(1111,++i i y x i i y x ,1+11,++i i y x i i y x ,1+CClientDC dc(this);int x0,y0,x1,y1;float x,y;double k;x0=10;y0=5;x1=100;y1=200;k=(y1-y0)*1.0/(x1-x0);y=y0;for(x=x0;x<x1;x++){dc.SetPixel(int(x),int(y+0.5),RGB(255,0,0));y+=k;}}void CHTView::OnBhl(){CClientDC dc(this);int x0=10,y0=5,x1=300,y1=200,x=x0,y=y0;double e=-0.5;int dx=x1-x0;int dy=y1-y0;double k=dy*1.0/dx;for(int i=0;i<=dx;i++){dc.SetPixel(int(x),int(y),RGB(0,0,255));x=x+1;e=e+k;if(e>=0){y++;e=e-1;}}}}void CMyView::OnAddline(){CDC* pDC=GetDC();//获得设备指针int x0=100,y0=100,x1=300,y1=300;int c=RGB(255,0,0);DDA_line(x0,y0,x1,y1,c);int xa=200,ya=100,xb=350,yb=250;Bresenham_line(xa,ya,xb,yb,c);int xc=100,yc=200,xd=300,yd=400;pDC->MoveTo(xc,yc);pDC->LineTo(xd,yd);ReleaseDC(pDC);}实验总结1.工程文件的建立过程具体为:新建-MFC AppWizard[exe]-输入工程名-确定工程所放位置-确定-选择单文档(也可选用其它文档)-完成-确定即可,接下来对工程文件相关属性进行设置,点击ResourceView-.resource-Menu-双击其下选项打开程序编辑页面-对属性进行设置(主要是标明,ID等选项)-建立类向导-AddFunction,这样过程大致完成。
《计算机图形学》实验报告一、实验目的计算机图形学是一门研究如何利用计算机生成、处理和显示图形的学科。
通过本次实验,旨在深入理解计算机图形学的基本原理和算法,掌握图形的生成、变换、渲染等技术,并能够运用所学知识解决实际问题,提高对图形学的应用能力和编程实践能力。
二、实验环境本次实验使用的编程语言为 Python,使用的图形库为 Pygame。
开发环境为 PyCharm。
三、实验内容1、直线的生成算法DDA 算法(Digital Differential Analyzer)Bresenham 算法DDA 算法是通过计算直线的斜率来确定每个像素点的位置。
它的基本思想是根据直线的斜率和起始点的坐标,逐步计算出直线上的每个像素点的坐标。
Bresenham 算法则是一种基于误差的直线生成算法。
它通过比较误差值来决定下一个像素点的位置,从而减少了计算量,提高了效率。
在实验中,我们分别实现了这两种算法,并比较了它们的性能和效果。
2、圆的生成算法中点画圆算法中点画圆算法的核心思想是通过判断中点的位置来确定圆上的像素点。
通过不断迭代计算中点的位置,逐步生成整个圆。
在实现过程中,需要注意边界条件的处理和误差的计算。
3、图形的变换平移变换旋转变换缩放变换平移变换是将图形在平面上沿着指定的方向移动一定的距离。
旋转变换是围绕一个中心点将图形旋转一定的角度。
缩放变换则是改变图形的大小。
通过矩阵运算来实现这些变换,可以方便地对图形进行各种操作。
4、图形的填充种子填充算法扫描线填充算法种子填充算法是从指定的种子点开始,将相邻的具有相同颜色或属性的像素点填充为指定的颜色。
扫描线填充算法则是通过扫描图形的每一行,确定需要填充的区间,然后进行填充。
在实验中,我们对不同形状的图形进行了填充,并比较了两种算法的适用情况。
四、实验步骤1、直线生成算法的实现定义直线的起点和终点坐标。
根据所选的算法(DDA 或Bresenham)计算直线上的像素点坐标。
实验一直线生成算法一、实验目的及要求:1.学习C语言的基本绘图方法;2. 实习直线基本生成算法;3.了解光栅图形显示器的工作原理和特点;4.掌握课本所介绍的图形算法的原理和实现。
5. 基于光栅图形显示器,在c环境中使用基本图形生成算法画根粗细不同的直线。
1.)写出完整的DDA画线算法程序,使其可以画任意直线;2.)写出完整的中点画线算法程序,使其可以画任意直线;3.)写出完整的Breaenham画线程序,使其可以画任意直线;二、理论基础:1、DDA算法:实现的关键是如何步进和步进的方向:步进的正或负,决定能否正确的到达终点。
步进的大小:它控制了变化最大的步进,令其为单位步进,而另一个方向的步进必小于1 ,这样不论斜率|m|≤1否,都会使直线的亮度均匀。
依公式:则下一点坐标为:2、中点画法:假设x坐标为xp的各像素点中,与直线最近者已确定,为(xp,yp)。
那么,下一个与直线最近的像素只能是正右方的P1(xp+1,yp)或右上方的P2(xp+1,yp+1)两者之一。
再以M表示P1与P2的中点,即M=(xp+1,yp+0.5)。
又设Q是理想直线与垂直线x=xp+1的交点。
若M在Q的下方,则P2离直线近,应取为下一个像素;否则应取P1。
3、Bresenham算法:假设我们需要由 (x0, y0) 这一点,绘画一直线至右下角的另一点(x1, y1),x,y分别代表其水平及垂直座标。
在此我们使用电脑系统常用的座标系,即x座标值沿x轴向右增长,y座标值沿y轴向下增长。
因此x及y之值分别向右及向下增加,而两点之水平距离为x1 − x0且垂直距离为y1-y0。
由此得之,该线的斜率必定介乎于1至0之间。
而此算法之目的,就是找出在x0与x1之间,第x行相对应的第y列,从而得出一像素点,使得该像素点的位置最接近原本的线。
三、算法设计与分析:1、DDA算法:(1)已知过端点P0 (x0, y0), P1(x1, y1)的直线段L :y=kx+b(2)直线斜率为 :k=(y1-y0)/(x1-x0)(3)Xi+1=Xi+ε*ΔXYi+1=Yi+ε*ΔY 其中,ε=1/max(|ΔX|,|ΔY|)max(|ΔX|,|ΔY|)= |ΔX| (|k|<=1)|ΔY| (|k|>1)(4)|k|<=1时:Xi+1=Xi+(或-)1Yi+1=Yi+(或-)k|k|>1时:Xi+1=Xi+(或-)1/kYi+1=Yi+(或-)1这种方法直观,但效率太低,因为每一步需要一次浮点乘法和一次舍入运算。
计算机图形学实验报告计算机图形学实验报告引言计算机图形学是研究计算机生成和处理图像的学科,它在现代科技和娱乐产业中扮演着重要的角色。
本实验报告旨在总结和分享我在计算机图形学实验中的经验和收获。
一、实验背景计算机图形学实验是计算机科学与技术专业的一门重要课程,通过实践操作和编程,学生可以深入了解图形学的基本原理和算法。
本次实验主要涉及三维图形的建模、渲染和动画。
二、实验内容1. 三维图形建模在实验中,我们学习了三维图形的表示和建模方法。
通过使用OpenGL或其他图形库,我们可以创建基本的几何体,如立方体、球体和圆柱体,并进行变换操作,如平移、旋转和缩放。
这些基本操作为后续的图形处理和渲染打下了基础。
2. 光照和着色光照和着色是图形学中重要的概念。
我们学习了不同的光照模型,如环境光、漫反射和镜面反射,并了解了如何在三维场景中模拟光照效果。
通过设置材质属性和光源参数,我们可以实现逼真的光照效果,使物体看起来更加真实。
3. 纹理映射纹理映射是一种将二维图像映射到三维物体表面的技术。
通过将纹理图像与物体的顶点坐标相对应,我们可以实现更加细致的渲染效果。
在实验中,我们学习了纹理坐标的计算和纹理映射的应用,使物体表面呈现出具有纹理和细节的效果。
4. 动画和交互动画和交互是计算机图形学的重要应用领域。
在实验中,我们学习了基本的动画原理和算法,如关键帧动画和插值技术。
通过设置动画参数和交互控制,我们可以实现物体的平滑移动和变形效果,提升用户体验。
三、实验过程在实验过程中,我们首先熟悉了图形库的使用和基本的编程技巧。
然后,我们按照实验指导书的要求,逐步完成了三维图形建模、光照和着色、纹理映射以及动画和交互等任务。
在实验过程中,我们遇到了许多挑战和问题,但通过不断的尝试和调试,最终成功实现了预期的效果。
四、实验结果通过实验,我们成功实现了三维图形的建模、渲染和动画效果。
我们可以通过键盘和鼠标控制物体的移动和变形,同时观察到真实的光照效果和纹理映射效果。
贵州大学实验报告学院:计算机科学与技术专业:计算机科学与技术班级:计科131如果 d<0,则M在理想直线下方,选右上方P1点;如果 d=0,则M在理想直线上,选P1/ P2点。
由于d是xi和yi的线性函数,可采用增量计算提高运算效率。
1.如由pi点确定在是正右方P2点(d>0).,则新的中点M仅在x方向加1,新的d值为:d new=F(xi+2,yi+0.5)=a(xi+2)+b(yi+0.5)+c而 d old=F(xi+1,yi+0.5)=a(xi+1)+b(yi+0.5)+cd new=d old+a= d old-dy2.如由pi点确定是右上方P1点(d<0),则新的中点M在x和y方向都增加1,新的d值为d new=F(xi+2,yi+1.5)=a(xi+2)+b(yi+1.5)+c而 d old=F(xi+1,yi+0.5)=a(xi+1)+b(yi+0.5)+cd new=d old+a+b= d old-dy+dx在每一步中,根据前一次第二迭中计算出的d值的符号,在正右方和右上方的两个点中进行选择。
d的初始值: d0=F(x0+1,y0+0.5)=F(x0,y0)+a+b/2=a+b/2=-dy+dx/2 F(x0,y0)=0,(x0,y0)在直线上。
为了消除d的分数,重新定义 F(x,y)=2(ax+by+c)则每一步需要计算的d new 是简单的整数加法dy=y1-y0,dx=x1-x0d0=-2dy+dxd new=d old-2*dy,当 d old>=0d new=d old-2(dy-dx),当d old<0Bresenham画线算法算法原理:与DDA算法相似,Bresenham画线算法也要在每列象素中找到与理想直线最逼近的象素点。
根据直线的斜率来确定变量在x或y方向递增一个单实验内容#include"stdafx.h"#include<glut.h>#include<iostream>#include<cmath>#include<stdio.h>using namespace std;void init(){glClearColor(1.0, 1.0, 1.0, 1.0);glMatrixMode(GL_PROJECTION);glLoadIdentity();gluOrtho2D(0.0, 200.0, 0.0, 150.0);}void IntegerBresenhamline(){int x1 = 10, y1 = 10, x2 = 150, y2 = 100;int dx = abs(x2 - x1);int dy = abs(y2 - y1);int x, y;int e = -dx;if (x1 > x2){x = x2;y = y2;x2 = x1;}else{x = x1;y = y1;}glClear(GL_COLOR_BUFFER_BIT);glColor3f(1.0, 0.0, 0.0);glBegin(GL_LINES);glVertex2i(x, y);while (x < x2){if (e >= 0){y++;e = e - 2 * dx;}glVertex2i(x, y);x++; e += 2 * dy;}glEnd();glFlush();}void MidPointLine(){int x, y, x1 = 10, y1 = 10, x2 = 150, y2 = 100;int dy = y1 - y2;int dx = x2 - x1;int d = 2 * dy + dx;int dx1 = 2 * dy;int dx2 = 2 * (dx + dy);if (x1 > x2){x = x2;y = y2;x2 = x1;}else{x = x1;y = y1;}glClear(GL_COLOR_BUFFER_BIT);glColor3f(1.0, 0.0, 0.0);glBegin(GL_LINES);glVertex2i(x, y);while (x < x2){if (d<0){y++; x++;d += dx2;}else{x++, d += dx1;}glVertex2i(x, y);}glEnd();glFlush();}int main(int argc, char** argv){glutInit(&argc, argv);glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);glutInitWindowPosition(50, 100);glutInitWindowSize(400, 300);int choice;printf("输入你想画的直线 0代表Bresenham 1代表中点画线\n");while (1){scanf("%d", &choice);switch (choice){case 0:glutCreateWindow("Bresenham Draw Line");init();glutDisplayFunc(IntegerBresenhamline);glutMainLoop();break;case 1:glutCreateWindow("middle Point Line");init();glutDisplayFunc(MidPointLine);glFlush();glutMainLoop();break;default:printf("输入有误,请重新输入\n");break;}}return 0;}实验总结通过这次试验我对于中点生成算法和Bresenham生成算法有了进一步的了解,在平时上课的基础上对计算机图形学有了更深的认识,同时对课程内容也更加了解。
计算机图形学划线实验报告《计算机图形学》实验报告实验⼀直线、圆(弧)⽣成算法⼀、实验⽬的及要求1. 了解光栅图形显⽰器的⼯作原理和特点;2. 学习C/VC环境下的基本绘图⽅法;3. 实践与巩固直线的基本⽣成算法。
4. 掌握直线扫描转换算法的原理及实现;5. 学习圆(弧)的基本⽣成算法;6. 实践圆(弧)的基本⽣成算法;7. 掌握圆弧扫描转换算法的原理及实现;⼆、理论基础1、有关直线⽣成算法有DDA(数值微分)、中点画线线算法、Bresenham⽣成算法数值微分法先算出直线的斜率,然后从起点开始,确定最佳逼近于直线的y坐标。
假设起点的坐标为整数。
让x递增1,y相应递增k。
中点划线算法中若直线在x⽅向增加⼀个单位,y的增量只能在0、1之间。
假设当前像素点已经确定,下⼀像素点就只可能有两种情况,将这两点的中点带⼊直线⽅程中,通过中点在直线的上、下⽅来判断下⼀点的坐标。
Bresenham算法是通过各⾏、各列像素中⼼构造⼀组虚拟⽹络格线,按直线从起点到中点的顺序计算直线与各垂直⽹格线的交点,然后确定该列像素中与此交点最近的像素。
2、有关画圆的算法圆的扫描转换(中点画圆法)、Bresenham画圆算法圆的扫描转换算法同中点画线类似,将圆分为8份,先讨论圆的第⼀象限上半部分,从(0,R)点顺时针确定最佳逼近于该圆弧的像素序列。
之后通过对称画出全部圆。
Bresenham画圆算法考虑圆在第⼀象限上的点,每确定⼀像素,则下⼀像素有三种可能,通过判断右下⽅的像素与圆的位置关系再分为三种情况,之后通过这三个点与圆的距离远近确定最佳逼近像素。
三、算法设计与分析1、数值微分法int x0=0,y0=0,x1=800,y1=400; //数值微分法,|k|<=1float dx,dy,k,x,y;dx=x1-x0;dy=y1-y0;k=dy/dx;y=y0;for(x=x0;x<=x1;x++){pDC->SetPixel(x,int(y+0.5),color);y=y+k;}该程序中每⼀步的x、y值是⽤前⼀步的值加上⼀个增量来获得的。
《计算机图形学》实验报告//圆pDC->SelectObject(&pen2);pDC->Ellipse(50,120,150,220);pDC->SelectObject(&pOldBrush);//椭圆pDC->SelectObject(&pen2);pDC->Ellipse(600, 100, 1025, 325);pDC->SelectObject(&pOldBrush);//多边形pDC->SelectObject(&pen2);pDC->SelectObject(&pen2);CPoint lpPoint[5];lpPoint[0] = CPoint(200,200);lpPoint[1] = CPoint(100, 300);lpPoint[2] = CPoint(150, 400);lpPoint[3] = CPoint(250, 400);lpPoint[4] = CPoint(300, 300);pDC->Polygon(lpPoint,5);//圆弧pDC->SelectObject(&pen2);pDC->SelectObject(&pen2);pDC->Arc(450,200,650,550,50,50,600,900);2、练习使用GDI函数显示图像glutInit(&argc, argv);glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);glutInitWindowSize(1000, 1000);glutInitWindowPosition(0, 0);glutCreateWindow("实验一");glutDisplayFunc(&display);glutMainLoop();}茶壶void display(void){glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);glColor3f(0.0, 1.0, 0.0);//绿色绘制glEnable(GL_DEPTH_TEST);//深度缓冲区glutWireTeapot(2);//绘制茶壶glFlush();glutSwapBuffers();}void reshape(int w, int h){glViewport(0, 0, w, h); //设置视口glMatrixMode(GL_PROJECTION); //将当前矩阵指定为投影模式glLoadIdentity();gluPerspective(60, (GLfloat)w / (GLfloat)h, 1.0, 20); //创建透视投影矩阵glMatrixMode(GL_MODELVIEW);glLoadIdentity();gluLookAt(0, 5, 5, 0, 0, 0, 0, 1, 0);//观测点}球void display(void){glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);glColor3f(0.0, 1.0, 0.0);//绿色绘制glEnable(GL_DEPTH_TEST);//深度缓冲区glutWireSphere(1, 20, 16);//绘制球体glFlush();glutSwapBuffers();}void reshape(int w, int h){glViewport(0, 0, w, h); //设置视口glMatrixMode(GL_PROJECTION); //将当前矩阵指定为投影模式glLoadIdentity();gluPerspective(60, (GLfloat)w / (GLfloat)h, 1.0, 20); //创建透视投影矩阵glMatrixMode(GL_MODELVIEW);glLoadIdentity();gluLookAt(0, 3, 3, 0, 0, 0, 1, 1, 0);//观测点}六面体void display(void)。
计算机图形学实验报告一、实验目的本次计算机图形学实验旨在深入了解和掌握计算机图形学的基本原理、算法和技术,通过实际操作和编程实现,提高对图形生成、处理和显示的能力,培养解决实际图形问题的思维和实践能力。
二、实验环境本次实验使用的编程语言为 Python,借助了相关的图形库如Pygame 或 matplotlib 等。
开发环境为 PyCharm 或 Jupyter Notebook。
三、实验内容(一)二维图形的绘制1、直线的绘制使用 DDA(Digital Differential Analyzer)算法或 Bresenham 算法实现直线的绘制。
通过给定直线的起点和终点坐标,在屏幕或图像上绘制出直线。
比较两种算法的效率和准确性,分析其优缺点。
2、圆的绘制采用中点画圆算法或 Bresenham 画圆算法绘制圆。
给定圆心坐标和半径,生成圆的图形。
研究不同半径大小对绘制效果和计算复杂度的影响。
(二)图形的填充1、多边形填充实现扫描线填充算法,对任意多边形进行填充。
处理多边形的顶点排序、交点计算和填充颜色的设置。
测试不同形状和复杂度的多边形填充效果。
2、图案填充设计自定义的填充图案,如纹理、条纹等,并将其应用于图形填充。
探索如何通过改变填充图案的参数来实现不同的视觉效果。
(三)图形的变换1、平移、旋转和缩放对已绘制的图形(如矩形、三角形等)进行平移、旋转和缩放操作。
通过矩阵运算实现这些变换。
观察变换前后图形的位置、形状和方向的变化。
2、组合变换将多个变换组合应用于图形,如先旋转再平移,或先缩放再旋转等。
分析组合变换的顺序对最终图形效果的影响。
(四)三维图形的表示与绘制1、三维坐标变换学习三维空间中的平移、旋转和缩放变换矩阵,并将其应用于三维点的坐标变换。
理解如何将三维坐标映射到二维屏幕上显示。
2、简单三维图形绘制尝试绘制简单的三维图形,如立方体、球体等,使用线框模型或表面模型。
探讨不同的绘制方法和视角对三维图形显示的影响。