电真空产品的基础知识和基本术语
- 格式:doc
- 大小:88.00 KB
- 文档页数:4
真空行业的常见术语解释1、什么是真空?真空系统指低于该地区大气压的稀簿气体状态,并非绝对的真空。
2、何谓真空度?处于真空状态下的气体稀簿程度,通常用“真空度高”和“真空度低”来表示。
真空度高表示真空度“好”的意思,真空度低表示真空度“差”的意思。
3、真空度单位是什么?,近年国际上取用帕(Pa)作为单位。
之前通常用托(Torr)为单位。
1托=1/760大气压=1毫米汞柱。
托与帕的转换:1托=133.322帕,或1帕=7.5×10-3托4、压力或压强。
气体分子作用于容器壁的单位面积上的力,用“P”表示。
5、1标准大气压是多少?压强为每平方厘米101325达因的气压,符号:(Atm)。
6、什么是极限真空?真空容器经充分抽气后,稳定在某一真空度,此真空度称为极限真空。
通常真空容器须经12小时炼气,再经12小时抽真空,最后一个小时每隔10分钟测量一次,取其10次的平均值为极限真空值。
7、抽气速率。
在一定的压强和温度下,单位时间内由泵进气口处抽走的气体称为抽气速率,简称抽速。
即Sp=Q/(P-P0)8、什么平均自由程?作无规则热运动的气体粒子,相继两次碰撞所飞越的平均距离,用符号“λ”表示。
9、什么是真空泵的流量?真空泵的流量并不是用水量,而是单位时间流过任意截面的气体量,符号用“Q”表示,单位为帕·升/秒(Pa·L/s)或托·升/秒(Torr·L/s)。
10、什么是流导?流导表示真空管道通过气体的能力。
单位为升/秒(L/s),在稳定状态下,管道流导等于管道流量除以管道两端压强差。
符号记作“U”。
U=Q/(P2- P1)11、什么是冷阱(水冷挡板)?冷阱是置于真空容器和泵之间,用于吸附气体或捕集油蒸汽的装置。
12、气镇阀有什么作用?油封机械真空泵的压缩室上开一小孔,并装上调节阀,当打开阀并调节入气量,转子转到某一位置,空气就通过此孔掺入压缩室以降低压缩比,从而使大部分蒸汽不致凝结而和掺入的气体一起被排除泵外起此作用的阀门称为气镇阀。
真空技术名词术语一、一般术语1.标准环境条件:温度为20℃,相对湿度为65%,大气压力为101325Pa。
2.气体的标准状态:温度为0℃,压力为101325Pa。
3.压力(压强):气体分子从某一假想平面通过时,沿该平面的正法线方向的动量改变率,除以该平面面积或气体分子作用于其容器表面上的力的法向分量,除以该表面面积。
4.帕斯卡(符号:Pa):国际单位制压力单位,1 Pa=1N/m2。
5.分压力:混合气体中某一组分的压力。
6.全压力:混合气体中所有组分压力的总和。
7.真空:在指定空间内,低于一个大气压力的气体状态。
8.真空度:表示真空状态下气体的稀薄程度,通常用压力值来表示9.气体:不受分子间相互作用力的约束且能自由地占据任意空间的物质。
(注:在真空技术中,“气体”一词不严格地应用于非可凝性气体和蒸汽。
)10.非可凝性气体:在临界温度以上的气体,即单纯增加压力不能使其液化的气体。
11.蒸汽:在临界温度以下的气体,即单纯增加压力能使其液化的气体。
12.饱和蒸汽压:在给定温度下,某种物质的蒸汽与其凝聚相处于相平衡状态下的该种物质的蒸汽压力。
13.饱和度:蒸汽压对其饱和蒸汽压之比。
14.饱和蒸汽:在给定温度下,压力等于其饱和蒸汽压的蒸汽。
15.未饱和蒸汽:在给定温度下,压力小于其饱和蒸汽压的蒸汽。
16.分子数密度(单位:m-3):在某瞬时,气体中某点周围体积内的分子数,除以该本积。
17.平均自由程:一个分子与其它气体分子每连续二次碰撞走过的路程,叫自由程。
相当多的不同自由程的平均值,叫平均自由程。
18.碰撞率:在给定时间间隔内,一个分子(或其他规定粒子)相对于其它气体分子(或其它规定粒子)运动,受到的平均碰撞次数,除以该时间。
这个平均碰撞次数是应在足够多的分子数和足够长的时间间隔下取得。
19.体积碰撞率:在给定时间间隔内,在围绕规定一点的空间范围内,气体分子间的平均碰撞次数除以该时间和该空间范围体积。
所取时间间隔和体积不应太小。
真空名词及术语解释一:阀门类1.粗抽阀:连接罗茨泵与真空室间的阀门,打开粗抽阀,则机械泵与罗茨泵可对真空室进行抽空,该阀一般为气动阀。
2.高阀:位于百叶窗后,连通分子泵(扩散泵),打开高阀则进入精抽,通常为气动。
3.节流阀:离子清洗及成膜阶段,为避免抽气过快,浪费太多Ar,所以设置节流阀来调节抽速,既有气动也有电动。
4.充气阀:真空炉内为副压,开门进出炉必须与大气压一致,才能把门打开,充气阀起到给炉内充气的作用。
5.球阀:分水器控制冷却水进出的水阀门,人工手动6.维持阀:连通维持泵与分子泵(扩散泵)的阀门,只要分子泵在旋转,维持泵与维持阀就要一直打开。
7.前置阀:用机械泵,罗茨泵给分子泵作尾抽时,需开启的阀门。
二:炉内零部件:1.热电偶:即热力传感器,将温度信号转换成电信号,用于测量真空室和扩散泵油的温度。
2.热偶规:用于测量低真空度的规管通常为金属外壳。
3.电离规:用于测量高真空度的规管,通常为玻璃外壳,工作钨丝发射出电子,会发光。
4.转架:我司为下转架,工件挂在转架上转动才能镀膜,通常由变频器、电机、皮带、齿轮、大盘、立柱、平面滚珠轴承等组成,PVD行业转架一般有公转、自转、拨叉三种。
5.视窗:为方便看清炉内状况面设置视窗。
6.靶:由靶座、铜板、靶材、磁铁等组成,是磁控溅射的核心。
7.靶座:是安装靶材的载体,上端有接线端子,接380V动力线,背面有两根铜水管,接冷却水,靶座底板有A3铁板一块,用以屏敝磁场,防止靶座背板启辉被溅射。
我司靶座上布置的是平衡磁场,磁铁间隔通冷却水,靶面磁场强度不低于350GS,靶座上压有铜板,以保证靶材能良好散热,磁铁一般为粉未冶金压制,我司使用铁氧体型弱磁。
8.磁铁:Ar气电离后加速靠磁铁完成,一般用钕铁硼或铁氧体、钐钴。
但钐钴价格昂贵,很少使用,我司磁铁是用的铁氧体。
9.加热管:给炉子加热用的加热管,里面有电炉丝埋在石英砂里面。
10百叶窗:让炉内气体更加均匀,百叶窗起流导的作用。
电真空产品的基础知识和基本术语电真空产品的基础知识和基本术语◆电弧◆真空和真空度◆真空电弧◆交流真空电弧◆真空击穿◆灭弧原理◆真空灭弧室的寿命1、电弧电弧或弧光放电是气体放电的一种形式。
气体放电在性质上和外观上是各种各样的。
在正常状态下,气体有良好的电气绝缘性能。
但当在气体间隙的两端加上足够大的电场时,就可以引起电流通过气体。
这种现象称为放电。
放电现象与气体的种类和压力、电极的材料和几何形状、两极间的距离以及加在间隙两端的电压等因素有关。
例如在正常状态下,给气体间隙两端的电极加压到一定程度时,普通空气中电子在电场作用下高速运动,与气体分子碰撞后产生较多的电子和离子,新生的电子和离子又同中性原子碰撞,产生更多的电子和离子,这时,气体开始发光,两电极变为炽热,电流迅速增大。
这种性质上的转变称为气体间隙的击穿,其所需的电压称为击穿电压。
这时,由于电场的支持,放电并不停止,故称为自持放电。
电弧则是气体自持放电的一种形式。
电弧具有电流密度大和阴极电位降低的特点。
2、真空和真空度低于1个大气压的气体状态,都称为真空。
描述真空程度的量叫真空度,用该气体的压力大小来表示。
l大气压= 760×133.332Pa=1.013×105Pa(帕斯卡)或0.1013MPa真空技术中将广阔的真空度范围划分为粗、低、高、超高、极高等区域。
其中高真空区域的气体压力为 10-1~10-6Pa,这一区域的后半段,即1.33 ×10-3~1.33 ×10-6就是真空灭弧室通常采用的真空度范围。
在高真空区域中,单位体积内的气体分子数目大大减少了,气体分子之间碰撞的几率大大减少,气体分子之间的平均距离大大增加。
真空度的高低对灭孤能力有影响。
实验表明:灭孤室真空度在10-3Pa数量级时就能够可靠地灭弧。
真空灭弧定制造厂在产品出厂时,提高了灭孤室的真空度,达到 10-5~ 10-6 Pa,待经过20年的使用或贮存期,或多或少产生外部渗气等现象使其真空度下降到10-3Pa范围,仍能保证它的灭孤能力。
真空技术基础知识1前言1. 真空“真空”来源于拉丁语“Vacuum”,原意为“虚无”,但绝对真空不可达到,也不存在。
只能无限的逼近。
即使达到10-14—10-16 托的极高真空,单位体积内还有330—33 个分子。
在真空技术中,“真空”泛指低于该地区大气压的状态,也就是同正常的大气比,是较为稀薄的气体状态。
真空是相对概念,在“真空”下,由于气体稀薄,即单位体积内的分子数目较少,故分子之间或分子与其它质点(如电子、离子)之间的碰撞就不那么频繁,分子在一定时间内碰撞表面(例如器壁)的次数亦相对减少。
这就是“真空”最主要的特点。
利用这种特点可以研究常压不能研究的物质性质。
如热电子发射、基本粒子作用等。
2. 真空的测量单位一、用压强做测量单位真空度是对气体稀薄程度的一种客观量度,作为这种量度,最直接的物理量应该是单位体积中的分子数。
但是由于分子数很难直接测量,因而历来真空度的高低通常都用气体的压强来表示。
气体的压强越低,就表示真空度越高,反之亦然。
根据气体对表面的碰撞而定义的气体的压强是表面单位面积上碰撞气体分子动量的垂直分量的时间变化率。
因此,气体作用在真空容器表面上的压强定义为单位面积上的作用力。
压强的单位有相关单位制和非相关单位制。
相关单位制的各种压强单位均根据压强的定义确定。
非相关单位制的压强单位是用液注的高度来量度。
下面介绍几种常用的压强单位。
【标准大气压】(atm)1 标准大气压=101325 帕【托】(Torr)1 托=1/760 标准大气压【微巴】(μba)21μba=1 达因/厘米【帕斯卡】(Pa)国际单位制1 帕斯卡=1 牛顿/m2【工程大气压】(at)21 工程大气压=1 公斤力/厘米二、用真空度百分数来测量% 760760P100%式中P 的单位为托,为真空度百分数。
此式适用于压强高于一托时。
3. 真空区域划分有了度量真空的单位,就可以对真空度的高低程度作出定量表述。
此外,为实用上便利起见,人们还根据气体空间的物理特性、常用真空泵和真空规的有效使用范围以及真空技术应用特点这三方面的差异,定性地粗划为几个区段。
真空技术基础知识⼀真空的概念物理学上将真空定义为:⼀个空间不含有任何物质的状态(或称之为绝对真空);然⽽事实上这种状态⽆法⼆真空范围从技术⾓度讲已经可以达到10-14的数量级,但实际应⽤中使⽤范围较⼩.三真空的表⽰⽅法1)绝对值表⽰法真空度以相对于绝对0度的数值表⽰.绝对0度(即0 bar)是最低真空度,相当于100%真空.在这⼀真空范围特点:真空值采⽤正值真空范围1-0bar2)相对值表⽰法真空值以相对于环境压⼒的⽐例值表⽰,前⾯标以负号,因此此真空值环境压⼒(即⼤⽓压⼒)北视为特点:真空值采⽤负号真空范围0-1;3)百分⽐表⽰法⽤绝对⼤⽓压压⼒值与海平⾯⼤⽓压压⼒值的⽐值表⽰;百分⽐相对值绝对值0%1,013mbar(海平⾯⼤⽓压)压⼒表压⼒表恒温下,所含分⼦微粒少,压⼒⼩,真空度越⾼恒温下,所含分⼦微粒多,压⼒⾼,真空度越低105102GV(低真空)FV(中等真空)10-1HV(⾼真空)10-5UHV(超⾼真空)10-14应⽤于抓取技术的真空范围;真空技术基础知识50%507mbar80%202mbar 100%0 mbar 四真空度测量单位官⽅单位:帕斯卡(Pa)其他单位:bar、mbar、%等单位换算:1bar=1000mbar100Pa=1hPa1hPa=1mbar1托(Torr)=1毫⽶汞柱(mmHg)=133.329帕(Pa) 1mbar=0.001bar1Pa =1N/m21物理⼤⽓压=1标准⼤⽓压(atm)普适定理海平⾯的⼤⽓压⼒约为1,013mbar海拔⾼度达到2,000m时,⼤⽓压⼒降低为763mbar,⼤约每100m降低1%到达海拔5,500m时,压⼒仅为海平⾯的50%;在珠穆朗玛峰(海拔8,848m),⼤⽓压仅为330mbar当海拔达到16,000m时,⼤⽓压⼒约为90mbar,⽽在30,000与50,000的海拔⾼度,⼤⽓压⼒分真空发⽣器产⽣真空原理⽂丘⾥原理进⽓⼝/⽂丘⾥喷嘴真空/吸盘连接⼝排⽓⼝/接收器喷嘴真空技术常⽤图⽰符号1⼯程⼤⽓压=1千克⼒/厘⽶2(kgf/cm2)1MPa=1x106Pa 1mbar=1000µbar=1000dyn/cm2( 达因/厘⽶2)-811 mbarPU R 321123-1,013mbar1、真空发⽣器2、真空压⼒表3、过滤器4、单向阀5、储⽓罐7、节流阀8、消声器基本真空回路图真空安全阀(ISV)⼀、应⽤范围⽤于多个吸盘并⾏安装的情况,如果⼀个或⼏个吸盘没有与物体完全接触,则整个真空不会消失⼆、功能图1、真空发⽣器2、分配器3、真空安全阀4、吸盘1121223三、⼯作原理4这种状态⽆法实现.因此通常当某⼀空间内的空⽓压⼒低于其外部⼤⽓压⼒或是空间内空⽓分⼦颗粒这⼀真空范围内1 bar为最⼤值,代表⼤⽓压⼒.压⼒)北视为0值参考点。
真空泵基础知识及选型指导一、基础知识1、真空的概念“真空”一词来自拉丁语“vacuum”,原意为“虚无”、“空的"。
真空是指在给定空间内低于环境大气压力的气体状态,即该空间内的气体分子密度低于该地区大气压力的气体分子密度,并不是没有物质的空间.水环真空泵应用于低真空(105—103 Pa)领域2、真空的测量单位在真空技术中,表示处于真空状态下气体稀薄程度的量称为真空度,可用压力、分子数密度、平均自由程和形成一个单分子层的时间常数等来表征,但通常用气体的压力(剩余压力)值来表示。
气体压力越低,表示真空度越高;反之,压力越高,真空度越低。
法定的压力计量单位为帕[帕斯卡],符号为Pa1Pa=1N.m-2 此外,还可用真空度的百分数作测量单位。
δ-—真空度百分数(%) P——绝对压力(Pa)Pb-P 表示真空压力表读数,表压力(用Pe表示)真空度百分数δ(%)与压力P对照表3、单位换算1atm(标准大气压)=1013。
25hPa(百帕)=101。
325kPa=1。
01325MPa 1mmHg(毫米汞柱)=1Torr(托)=1.333 hPa(百帕)1bar(巴)=1000 hPa(百帕)1mbar(毫巴)=1 hPa(百帕)1inHg(英寸汞柱)=25。
4mmHg(毫米汞柱)=33。
8 hPa(百帕)4、相关术语◇气量——水环真空泵的气量是指入口在给定真空度下,出口为大气压1013。
25hPa时,单位时间通过泵人口的吸入状态下的气体容积,m3/min或m3/h 。
◇最大气量——水环真空泵的最大气量是指气量曲线上的气量最大值,m3/min或m3/h。
◇真空度(或称作压力)-—水环真空泵的真空泵是指入口处在真空状态下气体的稀薄程度,以绝对压力表示,Pa、hPa、kPa.◇极限真空度(或称作极限压力)——水环真空泵的极限真空度是指入口处气量为零时的真空度,Pa、hPa、kPa。
◇压缩比-—吸入压力下气体容积与压缩后气体容积之比◇饱和蒸汽压——在给定温度下,某种物质的蒸汽与其凝聚相处于相平衡状态下的该种物质的蒸汽压力。
真空断路器基本知识真空断路器主要包含三大部分:真空灭弧室、电磁或弹簧操动机构、支架及其他部件。
以下是对基本术语和各部分的具体介绍:1.真空断路器技术标准真空断路器在我国近十年来得到了蓬勃的发展,至今方兴未艾。
产品从过去的ZN1~ZN5几个品种发展到现在数十多个型号、品种,额定电流达到3150A,开断电流达到50kA的较好水平,并已发展到电压达35kV等级。
80年代以前,真空断路器处于发展的起步阶段,技术上在不断摸索,还不能制定技术标准,直到1985年后才制定相关的产品标准。
目前国内主要依据标准为:JP3855-96《3.6~40.5kV交流高压真空断路器通用技术条件》DL403-91《10~35kV户内高压断路器订货技术条件》这里需要说明:IEC标准中并无与我国JB3855相对应的专用标准,只是套用《IEC56交流高压断路器》。
因此,我国真空断路器的标准至少在下列几个方面高于或严于IEC标准:(1) 绝缘水平:(2)电寿命试验结束后真空灭弧室断口的耐压水平:IEC56中无规定。
我国JB3855一96规定为:完成电寿命次数试验后的真空断路器,其断口间绝缘能力应不低于初始绝缘水平的80%,即工频1min33.6kV和冲击60kV。
(3)触头合闸弹跳时间:IEC无规定,而我国规定要求不大于2ms。
(4)温升试验的试验电流:IEC标准中,试验电流就等于产品的额定电流。
我国DL403-91中规定试验电流为产品额定电流的110%。
2.真空断路器的主要技术参数真空断路器的参数,大致可划分为选用参数和运行参数两个方面。
前者供用户设计选型时使用;后者则是断路器本身的机械特性或运动特性,为运行、调整的技术指标。
下表是选用参数的列项说明,并以三种真空断路器数据为例。
表中所列各项参数,均须按JB3855和DL403标准的要求,在产品的型式试验中逐项加以验证,最终数据以型式试验报告为准。
2.真空断路器的主要技术参数:3.真空断路器的机械特性(运行参数)为满足真空灭弧室对机械参量的要求,保证真空断路器电气机械性能,确保运行可靠性,真空断路器须具有稳定、良好的机械特性。
真空断路器基本知识真空断路器基本知识真空断路器主要包含三⼤部分:真空灭弧室、电磁或弹簧操动机构、⽀架及其他部件。
以下是对基本术语和各部分的具体介绍:1.真空断路器技术标准真空断路器在我国近⼗年来得到了蓬勃的发展,⾄今⽅兴未艾。
产品从过去的ZN1~ZN5⼏个品种发展到现在数⼗多个型号、品种,额定电流达到3150A,开断电流达到50kA的较好⽔平,并已发展到电压达35kV等级。
80年代以前,真空断路器处于发展的起步阶段,技术上在不断摸索,还不能制定技术标准,直到1985年后才制定相关的产品标准。
⽬前国内主要依据标准为:JP3855-96《3.6~40.5kV交流⾼压真空断路器通⽤技术条件》DL403-91《10~35kV户内⾼压断路器订货技术条件》这⾥需要说明:IEC标准中并⽆与我国JB3855相对应的专⽤标准,只是套⽤《IEC56交流⾼压断路器》。
因此,我国真空断路器的标准⾄少在下列⼏个⽅⾯⾼于或严于IEC标准:(1) 绝缘⽔平:(2)电寿命试验结束后真空灭弧室断⼝的耐压⽔平:IEC56中⽆规定。
我国JB3855⼀96规定为:完成电寿命次数试验后的真空断路器,其断⼝间绝缘能⼒应不低于初始绝缘⽔平的80%,即⼯频1min33.6kV和冲击60kV。
(3)触头合闸弹跳时间:IEC⽆规定,⽽我国规定要求不⼤于2ms。
(4)温升试验的试验电流:IEC标准中,试验电流就等于产品的额定电流。
我国DL403-91中规定试验电流为产品额定电流的110%。
2.真空断路器的主要技术参数真空断路器的参数,⼤致可划分为选⽤参数和运⾏参数两个⽅⾯。
前者供⽤户设计选型时使⽤;后者则是断路器本⾝的机械特性或运动特性,为运⾏、调整的技术指标。
下表是选⽤参数的列项说明,并以三种真空断路器数据为例。
表中所列各项参数,均须按JB3855和DL403标准的要求,在产品的型式试验中逐项加以验证,最终数据以型式试验报告为准。
2.真空断路器的主要技术参数:3.真空断路器的机械特性(运⾏参数)为满⾜真空灭弧室对机械参量的要求,保证真空断路器电⽓机械性能,确保运⾏可靠性,真空断路器须具有稳定、良好的机械特性。
真空绝缘知识一、真空的基本概念真空技术中,“真空”泛指在给定的空间内,气体压强低于一个大气压的气体状态,也就是说,同正常的大气压相比,是较为稀薄的一种气体状态。
真空度是对气体稀薄程度的一种客观量度。
根据真空技术的理论,真空度的高低通常都用气体的压强来表示。
在国际单位制中,压强是以帕(Pa)为单位1Pa=1N/m2。
另外常用的单位还有托(Torr)、毫米汞柱(mmHg)、毫巴(mbar)、工程大气压(公斤/厘米2)等。
真空区域的划分没有统一规定,我国通常是这样划分的:粗真空:(760~10)托低真空:(10~10-3)托高真空:(10-3~10-8)托超高真空:(10-8~10-12)托极高真空:10-12托托和帕的关系:1托=1毫米汞柱(mmHg)=133.322Pa,1帕=7.5×10-3托。
真空区域的特点不同其应用也不同,例如吸尘器工作于粗真空区域,暖瓶、灯泡等工作于低真空区域,而真空开关管和其它一些电真空器件则是工作在高真空区域。
二、真空间隙的绝缘特性真空中放置一对电极,加上高压时,在一定的电压下也会产生电极之间的电击穿。
它的击穿与空气中的电击穿有很大不同。
空气中的击穿是由于气体中的少量自由电子在电场作用下高速度运动,与气体分子碰撞产生较多的电子和离子,新生的电子和离子又同中性原子碰撞,产生更多的电子和离子。
这种雪崩式的电离过程,在电极间形成了放电通道,产生了电弧。
而真空中,由于压强较低,气体分子极少,在这样的环境中,即使电极间隙中存在着电子,它们从一个电极飞向另一个电极时,也很少有机会与气体分子碰撞。
因而不可能有电子和气体分子碰撞造成雪崩式的电击穿。
正是因为气体分子十分稀少,真空间隙电击穿需要在非常高的电压下出现场致发射等其它现象时才有可能形成。
从理论上推测,电场强度需达到108V/cm以上时才会造成电击穿,实际上真空间隙的绝缘强度由于一系列不利因素例如电极表面粗糙度、洁净度等的影响,将低于理论计算值几个数量级。
电真空产品的基础知识和基本术语◆电弧◆真空和真空度◆真空电弧◆交流真空电弧◆真空击穿◆灭弧原理◆真空灭弧室的寿命1、电弧电弧或弧光放电是气体放电的一种形式。
气体放电在性质上和外观上是各种各样的。
在正常状态下,气体有良好的电气绝缘性能。
但当在气体间隙的两端加上足够大的电场时,就可以引起电流通过气体。
这种现象称为放电。
放电现象与气体的种类和压力、电极的材料和几何形状、两极间的距离以及加在间隙两端的电压等因素有关。
例如在正常状态下,给气体间隙两端的电极加压到一定程度时,普通空气中电子在电场作用下高速运动,与气体分子碰撞后产生较多的电子和离子,新生的电子和离子又同中性原子碰撞,产生更多的电子和离子,这时,气体开始发光,两电极变为炽热,电流迅速增大。
这种性质上的转变称为气体间隙的击穿,其所需的电压称为击穿电压。
这时,由于电场的支持,放电并不停止,故称为自持放电。
电弧则是气体自持放电的一种形式。
电弧具有电流密度大和阴极电位降低的特点。
2、真空和真空度低于1个大气压的气体状态,都称为真空。
描述真空程度的量叫真空度,用该气体的压力大小来表示。
l大气压= 760×133.332Pa=1.013×105Pa(帕斯卡)或0.1013MPa真空技术中将广阔的真空度范围划分为粗、低、高、超高、极高等区域。
其中高真空区域的气体压力为 10-1~10-6Pa,这一区域的后半段,即 1.33 ×10-3~1.33 ×10-6就是真空灭弧室通常采用的真空度范围。
在高真空区域中,单位体积内的气体分子数目大大减少了,气体分子之间碰撞的几率大大减少,气体分子之间的平均距离大大增加。
真空度的高低对灭孤能力有影响。
实验表明:灭孤室真空度在10-3Pa数量级时就能够可靠地灭弧。
真空灭弧定制造厂在产品出厂时,提高了灭孤室的真空度,达到 10-5~ 10-6 Pa,待经过20年的使用或贮存期,或多或少产生外部渗气等现象使其真空度下降到10-3Pa范围,仍能保证它的灭孤能力。
3、真空电弧在真空环境中,气体非常稀薄,残存气体的电离可忽略不记。
一对带电触头在这种高真空环境中的分离,便会产生真空电弧。
真空电弧是这样产生的:当触头行将分离前,触头上原先施加的接触压力开始减弱,动静触头间的接触电阻开始增大,由于负荷电流的作用,发热量增加。
在触头刚要分离瞬间,动静触头之间仅靠几个尖峰联系着,此时负荷电流将密集收缩到这几个尖峰桥上,接触电阻急剧增大,同时电流密度又剧增,导致发热温度迅速提高,致令触头表面金属产生蒸发,同时微小的触头距离下也会形成极高的电场强度,造成强烈的场致发射,间隙击穿,继而形成真空电弧。
真空电弧一旦形成,就会出现电流密度在104A/cm2 以上的阴极斑点,使阴极表面局部区域的金属不断熔化和蒸发,以维持真空电弧。
在电弧熄灭后,电极之间与电极周围的金属蒸气密度不断下降直到零,仍然恢复高真空状态。
3.1真空中电弧的形式:真空中的电弧有两种形式,扩散形电弧和收缩形电弧。
3.1.1扩散型真空电弧:当真空电弧电流不大时,阴极斑点将不停地运动,通常是由电极中心向边缘运动。
当阴极斑点到达边缘,等离子锥便弯曲,接着阴极斑点就突然熄灭,在电极中心又会继续不断地产生新的阴极斑点。
如果电流保持不变,阴极表面存在的阴极斑点数基本上维持不变。
当电弧电流增大或减小时,阴极斑点也随之增加或减少。
这种存在许多阴极斑点的真空电弧,随着阴极斑点的运动不断地向四周扩散,所以叫扩散型真空电弧。
3.1.2收缩型真空电弧若用铜作电极,当电弧电流增加超过10000A时,电弧的外形将突然发生变化,阴极斑点不再向四周作扩散运动,而是相互吸引,结果所有的阴极斑点都聚集成一个斑点团,阴极斑点团的直径可达1~2CM。
此时阳极上出现了阳极斑点,阴极表面和阳极表面均有强烈的光柱,阴极光柱与阳极光柱自由地向电极的四周扩散成为数条连续的闪光,有时偶尔也与电极平行。
真空电弧一旦聚集,阴极斑点与阳极斑点便不在移动或以很缓慢的速度运动,阳极和阴极表面被局部强烈加热,导致严重熔化,这种真空电弧叫做收缩型真空电弧。
任何一种真空电弧对真空灭弧室的灭弧及其电气寿命均有重大不良影响。
4、交流真空电弧上面介绍的扩散型电弧、收缩型电弧等,都是在直流情况下讨论的。
但在交流电路中,上述的概念仍然适用。
交流电流方向虽在交变,但每一个瞬时,或在很小一段时间内,电流仍是单向的,仍是直流,只不过其瞬时值不断在改变罢了。
当运用于交流时,请记住下列动态变化:5、真空击穿真空击穿是一个综合的复杂的物理过程,主要因素有:真空度,电极材料,电极距离,压力的影响,老练作用,开断电流的大小,操作条件的影响等。
真空间隙的电击穿有两方面因素:一是场发射,一是微粒撞击。
对于小间隙场致发射作用较大,大间隙中微粒撞击可能性较多。
1).场致发射--经过机械磨光和洗净的电极两面,微观上仍然存在凹凸不平,存在许多微米级的尖峰突出物,尖峰处的局部电场可能增加上百倍,会发射电子流。
如果电极表面有杂质或氧化物存在,电极表面的逸出功会降低,场致发射更易产生。
尖峰发射的电子流虽不大,但因其面积小,电流密度却很大,会使局部发热,不仅电子发射增强,还可能产生蒸发、熔化,释放出金属蒸气,金属原子又与发射电子碰撞造成游离,出现击穿。
2). 微粒撞击--电极表面总是存在一些金属微粒,微粒在电场作用下携带电荷离开电极,加速撞击对方电极,由动能转为热能,引起局部加热、汽化,释放大量金属蒸气,形成金属云,导致间隙击穿。
6、灭弧原理:真空电弧是依靠电极不断地产生金属蒸汽来维持的,因此,要熄灭真空电弧的唯一方只有将电弧电流减小到一定程度,不足以维持电弧的时候才有可能将其熄灭。
在交流情况下,真空电弧电流有一个过零的时刻,这就给出了熄弧的条件;在直流情况下,必须设置一个电力转向装置,使直流真空电弧有一个过零的机会,以创造一个同样的熄弧条件。
6.1灭弧方法和电极触头的选择真空灭弧室切断交流真空电弧成功与否,与触头之间弧区过零前的金属蒸汽浓度密切有关,金属蒸汽来自电极触头的热斑点,热斑点和金属蒸汽都随着电弧电流瞬时值的增减而变化。
电弧电流过零点前一小段时间里,触头间金属蒸汽降低的速度取决于斑点的冷却时间常数。
对于扩散型电弧,它只有阴极斑点而无阳极斑点,各支弧均布于触头表面上且处于移动状态,所以热斑点熔区的面积小,深度浅,热惯性小,其冷却时间常数仅有数微秒,有足够的时间让阴极斑点冷却,使金属蒸汽浓度足够的低,同时金属蒸汽因温差、浓度差和压力差的作用迅速向孤区外扩散,电弧不能维持而熄灭。
对于收缩型电弧,则这些熄弧条件比扩散型电弧差劣许多。
在开断10KA及以上的短路电流时,先后开发了横向磁场触头和纵向磁场触头。
6.1.1横向磁场灭弧原理横向磁场触头的工作原理是利用触头本身在开断电流时产生的横向磁场驱使真空电弧不断在触头表面运动,以防止触头表面严重熔化。
螺旋槽触头在分断很大电流时,具有相当高的介质恢复速度。
采用螺旋槽型触头就有横向磁场灭弧的特性。
6.1.2纵向磁场熄弧原理采用纵向磁场提高真空开关的分断能力与采用横向磁场的情况截然不同,纵向磁场的加入可以提高由扩散性电弧转变到收缩型电弧的转换电流值。
实验表明,在足够的纵向磁场下,大电流真空电弧仍具有扩散性真空电弧的基本特征,电弧斑点在电极触头表面均匀分布,触头表面不会产生局部严重熔化,并具有电弧电压低,电弧能量小的优良特征,这对于弧后强度恢复,提高分断能力是十分有益的。
目前,大容量的真空灭弧室多采用纵磁场触头,这是因为纵磁场触头具有电磨损小,使用寿命长和分断能力大等优点。
带斜槽的杯状触头兼有横向磁场和和纵向磁场的特性,可以较好地灭弧。
同时为了保证杯状触头具有抗熔焊能力,在触头端部焊有一定抗熔焊能力的铜铬合金材料,也可装置不熔融或截流水平低的电极触头。
以达到更好的灭弧效果。
7、真空灭弧室的寿命真空灭弧室是一种电真空器件,其寿命包括四个方面,如有一项达到寿命终结,则该灭弧室即报废而需更换。
1)触头导电系统机械强度寿命。
2)波纹管疲劳寿命:波纹管的作用是维持内腔的真空度,在多次操作过程中材料疲劳破裂导致漏气是波纹管失效的主要原因。
3)内腔的真空度寿命:真空度寿命是指灭弧室自制成之日起,经运输、存放、安装、使用等时间,其内腔真空度逐渐低到最低允许真空度的时间间隔。
4)电寿命:衡量触头材料的耐腐蚀能力,即额定短路电流开断次数之能力,就称为电寿命,以开断次数表示。
8、真空灭弧室过电压保护真空间隙具有较高的介质恢复速度,有良好的媳弧能力等特点同时也可能带来对电力系统绝缘造成危害的各种过电压。
为抑制过电压的产生,避免造成危害,我们可以一方面从真空灭弧室使用材料选择和技术设计着手,另一方面通过加装限压保护装置来达到目的。
具体办法有:1)研究和制造低截流水平的触头材料。
2)研制低重燃率的真空开关管,如提高内腔洁净度,适当地进行电压老练和电流老练。
3)断路器合闸尽量做到无弹跳。
如有弹跳,时间不应长于2ms。
4)在感性负载端上并联电容器,这样可以降低波阻抗从而降低截流过电压,不仅降低过电压峰值,还能减缓过电压的前沿陡度。
5)负载端上并联RC吸收回路,其中C的作用如上述的并联电容,R则用于高频振荡中的能量消耗。
安装无间隙氧化锌避雷器,用以限制过电压的幅值。