JMC 2009 6---NaH
- 格式:pdf
- 大小:173.20 KB
- 文档页数:9
2009款别克昂科雷原厂车身系统喇叭部分维修手册(可编辑)2009款别克昂科雷原厂车身系统喇叭部分维修手册Horns 4-1Body SystemsHornsSpecicationsSIE-ID 1889233 Owner kyoukh01 LMD 15-mar-2007 LMB amille01Fastener Tightening SpecicationsSpecicationApplicationMetric EnglishCruise Control Switch Bolt 25 N?m 22 lb inHorn Bracket Bolt 9 N?m 80 lb inRadio Control Switch Bolt 25 N?m 22 lb in2009 - Acadia Enclave OUTLOOK Traverse VIN RV Service Manual June 24 20084-2 HornsSchematic and Routing DiagramsSIE-ID 2087799 Owner pluber01 LMD 28-mar-2008 LMB dtrocz012009 - Acadia Enclave OUTLOOK Traverse VIN RV Service Manual June 24 2008Horns 4-3961872scitamehcSnroH2009 - Acadia Enclave OUTLOOK Traverse VIN RV Service Manual June 24 20084-4 HornsDiagnostic Information and ProceduresDiagnostic Starting Point - HornsSIE-ID 1556704 Owner mgastm01 LMD 25-jul-2006 LMB tdedvu01Begin the system diagnosis with the Diagnostic SystemCheck - Vehicle on page 6-60 The Diagnostic SystemCheck will provide the following informationThe identication of the control modules whichcommand the systemThe ability of the control modules to communicatethrough the serial data circuitThe identication of any stored diagnostic troublecodes DTCs and their statusThe use of the Diagnostic System Check will identifythe correct procedure for diagnosing the systemand where the procedure is located2009 - Acadia Enclave OUTLOOK Traverse VIN RV Service Manual June 24 2008Horns 4-5DTC B2750SIE-ID 1873855 Owner tspaul01 LMD 12-jun-2007 LMB tspaul01Diagnostic Instructions DTC DescriptorPerform the Diagnostic System Check - Vehicle DTC B2750 00 Horn Relay Coil Circuiton page 6-60 prior to using this diagnosticprocedureReview Strategy Based Diagnosis on page 6-57 for Diagnostic Fault Informationan overview of the diagnostic approachDiagnostic Procedure Instructions on page 6-58provides an overview of each diagnostic categoryShort to OpenHigh Short to SignalCircuit Ground Resistance Voltage PerformanceHorn Relay B 2 2Horn Relay Control B2750 00 B2750 00 B2750 00Horn Control 2 2 1Horn Switch Ground 2 2Horn Ground 2 21 Horn Always On2 Horn InoperativeCircuitSystem Description Reference InformationThe body control module BCM controls the horn Schematic Reference relay by grounding the control circuit of the horn relaycoil energizing the relay When the horn relay is Horn Schematics on page 4-2energized the horn relay contacts close applyingConnector End View Referencevoltage through the horn fuse and the horn controlcircuit to the horns Component Connector End Views on page 11-211Description and OperationConditions for Running the DTC Horns System Description and Operation on page 4-12When the horn output is actively being requested by Electrical Information Referencethe BCMCircuit Testing on page 11-456Conditions for Setting the DTCConnector Repairs on page 11-478The BCM detects a short to ground open or short to Testing for Intermittent Conditions and Poorvoltage in the horn relay control circuit for Connections on page 11-460approximately 125 milliseconds Wiring Repairs on page 11-465Scan Tool ReferenceAction Taken When the DTC SetsControl Module References on page 6-1 for scan toolThe BCM disables the output to the horn relay until information the next ignition cycleCircuitSystem VericationConditions for Clearing the DTC Command the horns ON and OFF with the scan toolThe DTC clears when the fault is no longer The horns should turn ON and OFF when changingdetected between the commanded statesThe current DTC will become history when therequest for the output is removedThe history DTC will clear after 50 consecutivefault-free ignition cycles have occurred2009 - Acadia Enclave OUTLOOK Traverse VIN RV Service Manual June 24 20084-6 HornsCircuitSystem Testing Symptoms - Horns1 Ignition OFF disconnect the HORN relay SIE-ID 1875165 Ownertspaul01 LMD 01-dec-2006 LMB tdedvu012 Ignition ON verify a test lamp illuminates between Important The following steps must be completedthe B circuit terminal 85 and ground before using the symptom tables If the test lamp does not illuminate test the B 1 Perform Diagnostic System Check - Vehicle oncircuit for a short to ground or an openhigh page 6-60 before using the symptom tables inresistance If the circuit fuse is open test order to verify that all of the following are truethe control circuit terminal 87 for a short toThere are no DTCs setground If all circuits test normal test orreplace the HORN relay The control modules can communicate via theserial data link3 Connect a test lamp between the control circuitterminal 86 and the B circuit terminal 85 2 Review the system operation in order to familiarizeyourself with the system functions Refer to Horns4 Command the horns ON and OFF with a scanSystem Description and Operation on page 4-12tool The test lamp should turn ON and OFFwhen changing between the commanded statesVisualPhysical InspectionIf the test lamp is always OFF test thecontrol circuit for a short to voltage or anInspect for aftermarket devices which could affectopenhigh resistance If the circuit tests normal the operation of the horn system Refer toreplace the BCM Checking Aftermarket Accessories on page 11-455 If the test lamp is always ON test the control Inspect the easily accessible or visible systemcircuit for a short to ground If the circuit tests components for obvious damage or conditionsnormal replace the BCM which could cause the symptom5 If all circuits test normal test or replace the Perform the following if a horn buzzes or has aHORN relay harsh toneInspect for debris in the joint where the hornComponent Testing fastens to the vehicle1 Ignition OFF disconnect the horn relay Test the torque of the horn mountinghardware The horn mounting hardware2 Test for 60–180 ohms between terminals 85should be tightened to a torque ofand 8610 N?m 7 lb ftIf not within the specied range replacethe relayIntermittent3 Test for innite resistance between the followingterminals Faulty electrical connections or wiring may be thecause of intermittent conditions Refer to Testing for30 and 86 Intermittent Conditions and Poor Connections on30 and 87 page 11-46030 and 8585 and 87 Symptom ListIf not the specied value replace the relayRefer to a symptom diagnostic procedure HornsMalfunction on page 4-6 in order to diagnose the4 Install a 30-amp fused jumper wire between relaysymptomterminal 85 and 12 volts Install a jumper wirebetween relay terminal 86 and ground Testfor less than 2 ohms between terminals 30 and 87 Horns Malfunction If greater than the specied range replace SIE-ID 1873856 Owner tspaul01 LMD 28-feb-2008 LMB tspaul01the relayDiagnostic InstructionsRepair Instructions Perform the Diagnostic System Check - Vehicle Perform the Diagnostic Repair Verication on page 6-86 on page 6-60 prior to using this diagnosticafter completing the diagnostic procedure procedureRelay Replacement Attached to Wire Harness Review Strategy Based Diagnosis on page 6-57 foron page 11-521 or Relay Replacement Within an an overview of the diagnostic approachElectrical Center on page 11-522 Diagnostic Procedure Instructions on page 6-58Control Module References on page 6-1 for BCMprovides an overview of each diagnostic categoryreplacement setup and programming2009 - Acadia Enclave OUTLOOK Traverse VIN RV Service Manual June 24 2008Horns 4-7Diagnostic Fault InformationShort to OpenHigh Short to SignalCircuit Ground Resistance Voltage PerformanceHorn Relay B 2 2Horn Relay Control B2750 00 B2750 00 B2750 00Horn Control 2 2 1Horn Switch Ground 2 2Horn Ground 2 21 Horn Always On2 Horn InoperativeCircuitSystem Description CircuitSystem VericationBattery positive voltage is applied at all times to the 1 Ignition ON press and release the steering wheelhorn relay coil and the horn relay switch Pressing the horn pad The horns should sound and emit ahorn switch applies ground through the switch clear and even tone only when the horn padcontacts and the horn relay control circuit to the coil is pressed side of the relay energizing the relay Battery If the horns do not sound when the horn padvoltage is then applied through the switch side of the is pressed or continues sounding after therelay the horn fuse and the horn control circuit to horn pad is released refer to Horn Switchthe horns The body control module BCM may also Circuit Testapply ground to the horn relay control circuit asIf the sound emitted from the horns are notdescribed above The horns sound as long as groundclear and even refer to Horn – Poor Toneis applied to the horn relay control circuit2 Command the Horn ON and OFF with the scanDiagnostic Aids tool The horns should turn ON and OFF whenchanging between the commanded statesIf diagnosing a Horn- Poor Tone condition inspect the If the horns do not turn ON and OFF whenfollowingchanging between the commanded statesDebris or water in the horn assembly refer to Horn Circuit Test Proper horn mounting hardware torque Refer toFastener Tightening Specications on page 4-1 CircuitSystem Testing Debris in the joint where the horns attach to the Horn Switch Circuit Testvehicle1 Ignition OFF disconnect the X2 harness connectorReference Information at the horn switch2 Ignition ON test for less than 1 ohm between theSchematic Reference ground circuit terminal 1 and groundHorn Schematics on page 4-2 If greater than the specied range test theConnector End View Reference ground circuit for an openhigh resistance3 Ignition OFF connect the harness connector atComponent Connector End Views on page 11-211the horn switch and disconnect the HORN relayDescription and Operation 4 Ignition ON verify that a test lamp does Horns System Description and Operation on page 4-12 not illuminate between the control circuitterminal 87 and groundElectrical Information ReferenceIf the test lamp illuminates test the controlCircuit Testing on page 11-456 circuit for a short to voltageConnector Repairs on page 11-478 5 Verify that a test lampilluminates between the BTesting for Intermittent Conditions and Poorcircuit terminal 85 and groundConnections on page 11-460 If the test lamp does not illuminate test the BWiring Repairs on page 11-465 circuit for a short to ground or an openhighresistance If the circuit tests normal andScan Tool Reference the B circuit fuse is open test the controlControl Module References on page 6-1 for scan tool circuit terminal 87 for a short to ground If theinformation circuit tests normal test or replace theHORN relay6 Verify that a test lamp illuminates between the Bcircuit terminal 30 and groundIf the test lamp does not illuminate test the Bcircuit for an openhigh resistance2009 - Acadia Enclave OUTLOOK Traverse VIN RV Service Manual June 24 20084-8 Horns7 Ignition OFF disconnect the harness connector at replace the BCMthe appropriate horn8 Test for less than 5 ohms between the ground Component Testingcircuit terminal A and groundHorn TestIf greater than the specied range test theground circuit for an openhigh resistance 1 Ignition OFF disconnect the harness connector atthe appropriate horn9 Connect the harness connector at theappropriate horn 2 Install a 15A fused jumper wire between thecontrol terminal B and 12 volts Install a jumper10 Ignition ON connect a 15A fused jumper wirewire between the ground terminal A and groundbetween the B circuit terminal 30 and theVerify the horn emits a clear and even tonecontrol circuit terminal 87 Verify the horns areactivatedIf the sound emitted is not clear and evenreplace the hornIf the horns do not activate test the controlcircuit for an openhigh resistance If the Relay Testcircuit tests normal test or replace the horns 1 Ignition OFF disconnect the HORN relay11 Connect a test lamp between the B circuit 2 Test for 60–180 ohms between terminals 85terminal 85 and the control circuit terminal 86and 8612 Press and release the steering wheel horn pad If not within the specied range replaceThe test lamp should turn ON and OFF when the relaychanging between the commanded states3 Test for innite resistance between the followingIf the test lamp is always ON test the control terminalscircuit for a short to ground If the circuit tests30 and 86normal inspect for a sticking horn switch30 and 87If the test lamp is always OFF test the controlcircuit for a short to voltage or an openhigh 30 and 85resistance If the circuit tests normal inspect 85 and 87for an open horn switchIf not the specied value replace the relay13 If all circuits test normal test or replace the4 Install a 30-amp fused jumper wire between relayHORN relayterminal 85 and 12 volts Install a jumper wireHorn – Poor Tone between relay terminal 86 and ground Testfor less than 2 ohms between terminals 30 and 871 Ignition OFF disconnect the harness connector atthe appropriate horn If greater than the specied range replace2 Test for less than 5 ohms between the horn the relayground circuit terminal A and groundIf greater than the specied range test the Repair Instructionsground circuit for a high resistance Perform the Diagnostic Repair Verication on page 6-863 Disconnect the HORN relay after completing the diagnostic procedure4 Test for less than 1 ohm between the controlRelay Replacement Attached to Wire Harnesscircuit terminal 87 and the control circuit on page 11-521 or Relay Replacement Within anterminal B at the horn Electrical Center on page 11-522If greater than the specied range test the Horn Replacement on page 4-9control circuit for an openhigh resistance Steering Wheel Horn Switch Replacement on5 If all circuits test normal test or replace the horn page 4-10Control Module References on page 6-1 for BCMHorn Circuit Testreplacement setup and programming1 Ignition OFF disconnect the HORN relay2 Connect a test lamp between the B circuitterminal 85 and the control circuit terminal 863 Ignition ON command the Horn ON and OFF witha scan tool The test lamp should turn ON andOFF when changing between the commandedstatesIf the test lamp is always ON test the controlcircuit for a short to ground If the circuit testsnormal replace the BCMIf the test lamp is always OFF test circuit thecontrol circuit for a short to voltage or anopenhigh resistance If the circuit tests normal2009 - Acadia Enclave OUTLOOK Traverse VIN RV Service Manual June 24 2008Horns 4-9Repair InstructionsHorn ReplacementSIE-ID 2089581 Owner jbedna01 LMD 01-apr-2008 LMB amille011845510Horn ReplacementCallout Component NamePreliminary ProcedureRemove the front wheelhouse liner front Refer to Front Wheelhouse Front Liner Replacement Traverse on page 3-30 orFront Wheelhouse Front Liner Replacement Outlook on page 3-32Horn BoltCaution Refer to Fastener Caution on page 0-61Tighten9 N?m 80 lb inHornProcedure2Disconnect the electrical connector2009 - Acadia Enclave OUTLOOK Traverse VIN RV Service Manual June 24 20084-10 HornsSteering Wheel Horn Switch ReplacementSIE-ID 2151689 Owner blitch01 LMD 11-jun-2008 LMB dkonop021915485Steering Wheel Horn Switch ReplacementCallout Component NamePreliminary ProcedureRemove the inatable restraint steering wheel module Refer to Inatable Restraint Steering Wheel Module Replacement onpage 13-43Steering Wheel Spoke Cover Qty 21Tip Use gentle pressure to disengage the steering wheel spoke covers from the steering wheelRadio Control Switch Bolt Qty 2Caution Refer to Fastener Caution on page 0-62Tighten25 N?m 22 lb inRadio Control Switch3 ProcedureDisconnect any electrical connectors as neededCruise Control Switch Bolt Qty 24 Tighten25 N?m 22 lb inCruise Control Switch5 ProcedureDisconnect any electrical connectors as needed2009 - Acadia Enclave OUTLOOK Traverse VIN RV Service Manual June 24 2008Horns 4-11Steering Wheel Horn Switch Replacement contdCallout Component NameHorn SwitchProcedure6Disconnect any electrical connectors as neededTip Use gentle pressure to disengage the horn switch from the steering wheel2009 - Acadia Enclave OUTLOOK Traverse VIN RV Service Manual June 24 20084-12 HornsDescription and OperationHorns System Description and Circuit OperationOperation Battery positive voltage is applied at all times to the horn relay coil and the horn relay switch Pressing theSIE-ID 1874499 Owner tspaul01 LMD 20-sep-2007 LMB hbah01 horn switch applies ground to the horn relay controlcircuit When the horn relay control circuit is groundedSystem Description the horn relay is energized and battery positiveThe horn system consists of the following components voltage is applied to the horns through the horn controlHORN fuse circuit The horns sound as long as ground is applied to the horn relay control circuitHorn relayHorn switchHornsBody control module BCMSystem OperationThe vehicle horns are activated whenever thehorn switch is depressedThe BCM commands the horns ON under any ofthe following conditionsWhen the panic button is depressed on theremote control door lock transmitter Forfurther information refer to Keyless EntrySystem Description and Operation WithoutAccessory 2 Way Remote on page 13-17or Keyless Entry System Descriptionand Operation With Accessory 2 WayRemote on page 13-19When the content theft deterrent systemdetects a vehicle intrusion For furtherinformation refer to Content TheftDeterrent CTD Description and Operationon page 13-6When the keyless entry system is used tolock the vehicle a horn chirp may soundto notify the driver that the vehicle has beenlocked The notication feature may beenabled or disabled through personalizationFor further information refer to KeylessEntry System Description and OperationWithout Accessory 2 Way Remote onpage 13-17 or Keyless Entry SystemDescription and Operation With Accessory 2Way Remote on page 13-19When the OnStar system is used to soundthe horns if equipped For further informationrefer to OnStar Description and Operationon page 8-992009 - Acadia Enclave OUTLOOK Traverse VIN RV Service Manual June 24 2008。
《大学生信息检索概论》模拟试题一、填空题1、文献的级次分为零次文献、一次文献、二次文献、三次文献2、《中图法》有五个基本部类,分别是马克思主义、列宁主义、毛泽东思想_、哲学;社会科学;自然科学和综合性图书,在此基础上又划分为_22_个大类。
3、按内容可将计算机检索系统的数据库类型分为:文献书目型数据库、事实型数据库、数值型数据库和全文型数据库。
4、我国标准可分为国家标准、部标准和企业标准三大类。
5、在实际检索中,文献的检索方法主要有:直查法、追溯法、工具法和综合法。
6、国际标准化组织简称:ISO 、本标准每5 年修订一次二、选择题1、如果需要检索某位作者的文献被引用的情况,应该使用( C )检索。
A.分类索引B.作者索引C.引文索引 D.主题索引2、利用图书馆的据库检索期刊论文时,可供选择的中文数据库是( D )。
A.超星数字图书馆 B.万方学位论文 C.国研网 D.维普科技期刊 E.高校财经库3、如果检索有关多媒体网络传播方面的文献,检索式为(A D)。
A.多媒体and 网络传播 B.多媒体+网络传播 C.多媒体or 网络传播D.多媒体*网络传播4、如果对某个课题进行主题检索时,可选择的检索字段有( A D E )。
A.关键词 B.作者 C.刊名 D.题名 E.文摘5、二次文献又称检索工具,包括:( A C D )。
A.书目B.百科C.索引D.文摘E.统计数据三、名词解释题1、文献用文字、图形、符号、声频、视频等技术手段记录人类知识的一种载体,或理解为固化在一定物质载体上的知识。
也可以理解为古今一切社会史料的总称。
2、体系分类语言体系语言是以科学分类为基础,运用概念的划分与概括的逻辑方法,形成一个概念等级体系,按知识门类的逻辑次序,按照从总到分,从一般到具体,从低级到高级,从简单到复杂的原则进行概念的综分,层层划分,累累隶属,逐步展开而形成的一个等级体系。
3、引文语言引文语言是根据文献所附参考或引用文献的特征进行检索的语言。
附件3:2009年度第二批达国Ⅲ排放标准的重型柴油车(下文出现的“*”代表随机变动实号,“(*)”代表随机变动实号或虚号)1、安徽江淮汽车股份有限公司HFC1165KR1T 载货汽车HFC1166KR1T 载货汽车发动机:CA6DF3-18E3(一汽解放汽车有限公司无锡柴油机厂)喷油泵型号:1111010-470(BOSCH)喷油器型号:1112010-470(BOSCH)增压器型号:GT35(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:1111010-470(BOSCH)喷油器型号:1112010-470(BOSCH)增压器型号:HP76-3(湖南天雁机械有限责任公司)或发动机:CA6DF3-20E3(一汽解放汽车有限公司无锡柴油机厂)喷油泵型号:1111010-470(BOSCH)喷油器型号:1112010-470(BOSCH)增压器型号:GT35(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:1111010-470(BOSCH)喷油器型号:1112010-470(BOSCH)增压器型号:HP76-3(湖南天雁机械有限责任公司)或发动机:YC6J180-30(广西玉柴机器股份有限公司)喷油泵型号:CRCP3(BOSCH)喷油器型号:CRIN-A38(BOSCH)增压器型号:HX40W(无锡霍尔塞特工程有限公司)或发动机:YC6J200-30(广西玉柴机器股份有限公司)喷油泵型号:CRCP3(BOSCH)喷油器型号:CRIN-A38(BOSCH)增压器型号:HX40W(无锡霍尔塞特工程有限公司)2、安徽省池州市大田专用汽车有限公司ACQ5081TPB 平板运输车发动机:CA4DF3-13E3(一汽解放汽车有限公司无锡柴油机厂)喷油泵型号:CP3.3-4DF3(BOSCH)喷油器型号:1112010-470(BOSCH)增压器型号:HP60-3(湖南天雁机械有限责任公司)3、安徽星马汽车股份有限公司AH3251-D 自卸汽车发动机:WD615.93E(中国重型汽车集团有限公司)喷油泵型号:CB-BHM6EH120YAY920(中国重汽集团重庆燃油喷射系统有限公司)喷油器型号:CB-PB132P72(中国重汽集团重庆燃油喷射系统有限公司)增压器型号:HX55W(HOLSET)EGR:AZ1557110010(中国重型汽车集团有限公司)AH5382THB 混凝土泵车发动机:ISME385 30(西安康明斯发动机有限公司)喷油泵型号:3090042(康明斯公司)喷油器型号:4061851(康明斯公司)增压器型号:HX55W(无锡康明斯涡轮增压技术有限公司)或发动机:ISME420 30(西安康明斯发动机有限公司)喷油泵型号:3090042(康明斯公司)喷油器型号:4061851(康明斯公司)增压器型号:HX55W(无锡康明斯涡轮增压技术有限公司)AH5250JSQ 随车起重运输车发动机:ISDe230 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)或发动机:ISDe245 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)或发动机:ISDe270 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)AH5241JSQ 随车起重运输车发动机:CA6DF3-24E3(一汽解放汽车有限公司无锡柴油机分公司)喷油泵型号:1111010-470(BOSCH)喷油器型号:1112010-470(BOSCH)增压器型号:GT35(霍尼韦尔涡轮增压系统(上海)有限公司)或发动机:ISDe245 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)或发动机:WD615.329(杭州汽车发动机厂)喷油泵型号:HPO(DENSO)喷油器型号:670*(DENSO)增压器型号:HX55W(HOLSET)或发动机:WP10.290(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司))或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:HX50(无锡霍尔塞特工程有限公司)或发动机:YC6L260-30(广西玉柴机器股份有限公司)喷油泵型号:G6000-1111100(DELPHI)喷油器型号:LRBB04201B(DELPHI)增压器型号:HX40W(无锡霍尔塞特工程有限公司)4、包头北奔重型汽车有限公司ND1250B59J 载货汽车发动机:WP10.270N(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或发动机:WP10.300N(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080618(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080618(BOSCH公司)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)ND3312D50J 自卸车发动机:WP10.270N(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或发动机:WP10.300N(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080618(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080618(BOSCH公司)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)ND5240GJYZ 加油车发动机:WP6.240(潍坊潍柴道依茨柴油机有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:13024966(BOSCH公司)增压器型号:HP80(大同北方天力增压技术有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:13024966(BOSCH公司)增压器型号:HX40W(无锡霍尔塞特工程有限公司)ND52500GJYZ 加油车发动机:WP6.240(潍坊潍柴道依茨柴油机有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:13024966(BOSCH公司)增压器型号:HP80(大同北方天力增压技术有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:13024966(BOSCH公司)增压器型号:HX40W(无锡霍尔塞特工程有限公司)ND52501GJYZ 加油车发动机:WP10.240N(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或HX50(无锡康明斯涡轮增压技术有限公司)ND5251XXYZ 厢式运输车发动机:WP10.270(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:HX50(无锡霍尔塞特工程有限公司)或发动机:WP10.290(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:HX50(无锡霍尔塞特工程有限公司)ND5252GGSZ 供水车发动机:WP10.270(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:HX50(无锡霍尔塞特工程有限公司)ND5258GJYZ 加油车发动机:WP10.270N(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或发动机:WP10.300N(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080618(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080618(BOSCH公司)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)ND5259GJYZ 加油车发动机:WP10.270N(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)ND5314CXYZ 仓栅式运输车发动机:WP10.270N(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或发动机:WP10.300N(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080618(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080618(BOSCH公司)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)ND5319GJYZ 加油车发动机:WP10.270N(潍柴动力股份有限公司)喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:GT42(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:13024963(BOSCH公司)喷油器型号:612600080611(BOSCH公司)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)5、北京北方华德尼奥普兰客车股份有限公司BFC6140WB 豪华卧铺客车发动机:WP12.400N(潍柴动力股份有限公司)喷油泵型号:612630030024(BOSCH)喷油器型号:612630090012(BOSCH)增压器型号:GTA42(霍尼韦尔涡轮增压系统(上海)有限公司)6、北京华林特装车有限公司HLT5160ZXX 车厢可卸式垃圾车发动机:ISDe185 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH公司)喷油器型号:0 445 (BOSCH公司)增压器型号:HE351W(HOLSET公司)HLT5162ZYS 压缩式垃圾车发动机:ISDe185 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH公司)喷油器型号:0 445 (BOSCH公司)增压器型号:HE351W(HOLSET公司)7、北京三兴汽车厂BSX5163GYYB 运油车发动机:CA4DF3-17E3(一汽解放汽车有限公司无锡柴油机分公司)喷油泵型号:CP3.3-4DF3(BOSCH)喷油器型号:1112010-470(BOSCH)增压器型号:GT25(霍尼韦尔涡轮增压系统(上海)有限公司)8、北起多田野(北京)起重机有限公司BTC5410JQZGT-550E 汽车起重机发动机:OM457LA.Ⅲ/7(戴姆勒股份公司)喷油泵型号:SE 5000(DTC)喷油器型号:DLLA 150(BOSCH)增压器型号:S400(Schwitzer)9、北汽福田汽车股份有限公司BJ1041V8JD6-S1 载货汽车BJ1041V8AD6-S1 载货汽车BJ1041V8PD6-S1 载货汽车BJ5041V8CD6-S1 厢式运输车BJ5041V8BD6-S1 厢式运输车BJ5041V7DD6-S1 厢式运输车发动机:BJ493ZLQ3(北京福田环保动力股份有限公司)喷油泵型号:CP1H(BOSCH)喷油器型号:CRI2.0(BOSCH)增压器型号:GT22(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:CP1H(BOSCH)喷油器型号:CRI2.0(BOSCH)增压器型号:JP60S(寿光市康跃增压器有限公司)或喷油泵型号:CP1H(BOSCH)喷油器型号:CRI2.0(BOSCH)增压器型号:WIP055(无锡英特迈信息机械开发有限公司)BJ1041V8JEA-S2 载货汽车BJ1041V8PEA-S2 载货汽车BJ1041V8AEA-S2 载货汽车BJ5041V8BEA-S3 厢式运输车BJ5041V8CEA-S3 厢式运输车BJ5041V7DEA-S3 厢式运输车发动机:CA4DC2-10E3(一汽解放汽车有限公司大连柴油机分公司)喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:GT22(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:JP60F(湖南天雁机械有限责任公司)或喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:JP60S(寿光市康跃增压器有限公司)或喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:RHF4(长春富奥石川岛增压器有限公司)或喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:S100(博格华纳汽车零部件(宁波)有限公司)BJ5051XBW-S1 保温车发动机:BJ493ZLQ3(北京福田环保动力股份有限公司)喷油泵型号:CP1H(BOSCH)喷油器型号:CRI2.0(BOSCH)增压器型号:GT22(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:CP1H(BOSCH)喷油器型号:CRI2.0(BOSCH)增压器型号:JP60S(寿光市康跃增压器有限公司)或喷油泵型号:CP1H(BOSCH)喷油器型号:CRI2.0(BOSCH)增压器型号:WIP055(无锡英特迈信息机械开发有限公司)BJ1083VDJEG-S 载货汽车BJ1083VDPEG-S 载货汽车发动机:CY4102-C3C(东风朝阳柴油机有限责任公司)喷油泵型号:CP1H(BOSCH)喷油器型号:CRI2.0(BOSCH)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)或喷油泵型号:CP1H(BOSCH)喷油器型号:CRI2.0(BOSCH)增压器型号:TD04HL(上海菱重增压器有限公司)BJ5041V8BFA-S 厢式运输车BJ5041V8CFA-S 厢式运输车发动机:CA4DC2-12E3(一汽解放汽车有限公司大连柴油机分公司)喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:GT22(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:JP60F(湖南天雁机械有限责任公司)或喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:JP60S(寿光市康跃增压器有限公司)或喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:RHF4(长春富奥石川岛增压器有限公司)或喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:S100(博格华纳汽车零部件(宁波)有限公司)或发动机:YZ4DB1-30(扬州柴油机有限责任公司)喷油泵型号:WP2110135S461(成都威特电喷有限责任公司)喷油器型号:CKBAL85P939(北京亚新科天纬油泵油嘴股份有限公司)增压器型号:TD04(上海菱重增压器有限公司)BJ3103DDPFD-1 自卸汽车发动机:YC4E140-30(广西玉柴机器股份有限公司)喷油泵型号:CRCP3(BOSCH)喷油器型号:CRIN-A38(BOSCH)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)或喷油泵型号:WP2000(成都威特电喷有限责任公司)喷油器型号:KBEL-P051(博世汽车柴油系统股份有限公司)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)或发动机:YC4E160-30(广西玉柴机器股份有限公司)喷油泵型号:CRCP3(BOSCH)喷油器型号:CRIN-A38(BOSCH)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)或喷油泵型号:WP2000(成都威特电喷有限责任公司)喷油器型号:KBEL-P051(博世汽车柴油系统股份有限公司)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)BJ5043GJY02-S 加油车发动机:CA4DC2-10E3(一汽解放汽车有限公司大连柴油机分公司)喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:GT22(霍尼韦尔涡轮增压系统(上海)有限公司)或喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:JP60F(湖南天雁机械有限责任公司)或喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:JP60S(寿光市康跃增压器有限公司)或喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:RHF4(长春富奥石川岛增压器有限公司)或喷油泵型号:CP1H-4DC(BOSCH)喷油器型号:CRI2.0-4DC(BOSCH)增压器型号:S100(博格华纳汽车零部件(宁波)有限公司)BJ1163VKPFK-S 载货汽车BJ5163VKCFK-S 仓栅式运输车发动机:CA4DF3-14E3(一汽解放汽车有限公司无锡柴油机分公司)喷油泵型号:CP3.3-4DF3(BOSCH)喷油器型号:1112010-470(BOSCH)增压器型号:GT25(无锡霍尔塞特工程有限公司)或喷油泵型号:CP3.3-4DF3(BOSCH)喷油器型号:1112010-470(BOSCH)增压器型号:HP60-3(湖南天雁机械有限责任公司)或喷油泵型号:EP2(无锡油泵油嘴研究所)喷油器型号:EI2(无锡油泵油嘴研究所)增压器型号:JP60A3(湖南天雁机械有限责任公司)10、查特中汽深冷特种车(常州)有限公司CTZ5252GDY 低温液体运输车发动机:D9(沃尔沃动力系统公司)喷油泵型号:20747797(DELPHI)喷油器型号:20747797(DELPHI)增压器型号:HX40W(HOLSET)CTZ5240GDY 低温液体运输车发动机:D9(沃尔沃动力系统公司)喷油泵型号:20747797(DELPHI)喷油器型号:20747797(DELPHI)增压器型号:HX40W(HOLSET)CTZ5241GDY 低温液体运输车发动机:D9(沃尔沃动力系统公司)喷油泵型号:20747797(DELPHI)喷油器型号:20747797(DELPHI)增压器型号:HX40W(HOLSET)11、东风柳州汽车有限公司LZ1160LAP 载货汽车LZ5160CSLAP 仓栅式运输车LZ5090XXYLAP 厢式运输车发动机:ISDe140 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(Bosch)喷油器型号:0 445(Bosch)增压器型号:HE221W(HOLSET)或发动机:YC4E140-31(广西玉柴机器股份有限公司)喷油泵型号:WP2000(成都威特电喷有限责任公司)喷油器型号:KBEL-P051(博世)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)LZ3162LCB 自卸汽车LZ3240LCB 自卸汽车发动机:YC6J220-31(广西玉柴机器股份有限公司)喷油泵型号:B6HD(亚新科南岳(衡阳)有限公司)喷油器型号:KBEL-P023(博世汽车柴油系统股份有限公司)增压器型号:TBP4(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)LZ1161LAP 载货汽车LZ5161CSLAP 仓栅式运输车发动机:ISDe160 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(Bosch)喷油器型号:0 445(Bosch)增压器型号:HE221W(HOLSET)或发动机:YC4E160-31(广西玉柴机器股份有限公司)喷油泵型号:WP2000(成都威特电喷有限责任公司)喷油器型号:KBEL-P051(博世)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)LZ1160LCM 载货汽车LZ5160CSLCM 仓栅式运输车LZ5162XXYLCM 厢式运输车LZ3071LAK 自卸汽车发动机:YC6J200-31(广西玉柴机器股份有限公司)喷油泵型号:B6HD(亚新科南岳(衡阳)有限公司)喷油器型号:KBEL-P023(博世)增压器型号:TBP4(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)12、东风汽车股份有限公司EQ5090XXYG12D7AC 厢式运输车发动机:ISDe140 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE221W(HOLSET)EQ1120GZ9AD7 载货汽车EQ5090XXYG9AD7AC 厢式运输车EQ5120CCQG9AD7AC 仓栅式运输车发动机:ISDe160 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(Bosch)喷油器型号:0 445(BOSCH)增压器型号:HE221W(HOLSET)EQ1140GZ12D7 载货汽车EQ5140CCQG12D7AC 仓栅式运输车发动机:YC4E140-30 (广西玉柴机器股份有限公司)喷油泵型号:CRCP3(BOSCH)喷油器型号:CRIN-A38(BOSCH)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)EQ5100XXY12D6AC 厢式运输车EQ5100XXYG12D6AC 厢式运输车发动机:CY4102-C3B(东风朝阳柴油机有限责任公司)喷油泵型号:CP1H(BOSCH)喷油器型号:CRIN2(BOSCH)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)或TD04HL(上海菱重增压器有限公司)或发动机:ISDe140 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE221W(HOLSET)或发动机:YC4E140-30 (广西玉柴机器股份有限公司)喷油泵型号:CRCP3(BOSCH)喷油器型号:CRIN-A38(BOSCH)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)EQ5060XXY22D3AC 厢式运输车EQ5060CCQ22D3AC 仓栅式运输车EQ5060XXYG22D3AC 厢式运输车EQ5060CCQG22D3AC 仓栅式运输车发动机:CY4102-D3A(东风朝阳柴油机有限责任公司)喷油泵型号:WP2110135S482(成都威特电喷有限责任公司)喷油器型号:CKBAL90P942(北京亚新科天纬油泵油嘴股份有限公司)增压器型号:HP60(宁波天力增压器有限公司)或HP60S(寿光市康跃增压器有限公司)EQ1080TZ12D5 载货汽车EQ1080GZ12D5 载货汽车EQ5080XXY12D5AC 厢式运输车EQ5080XXYG12D5AC 厢式运输车发动机:CY4102-C3B(东风朝阳柴油机有限责任公司)喷油泵型号:CP1H(BOSCH)喷油器型号:CRIN2(BOSCH)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)或TD04HL(上海菱重增压器有限公司)或发动机:CY4102-C3C(东风朝阳柴油机有限责任公司)喷油泵型号:CP1H(BOSCH)喷油器型号:CRI2.0(BOSCH)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)或喷油泵型号:CP1H(BOSCH)喷油器型号:CRI2.0(BOSCH)增压器型号:TD04HL(上海菱重增压器有限公司)或发动机:ISDe140 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE221W(HOLSET)EQ1160GZ12D7 载货汽车EQ5160XXYG12D7AC 厢式运输车EQ5160CCQG12D7AC 仓栅式运输车发动机:CY4D115-C3(东风朝阳柴油机有限责任公司)喷油泵型号:CP1H(BOSCH)喷油器型号:CRI2.0(BOSCH)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)或HP60(宁波天力增压器有限公司)或发动机:ISDe140 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE221W(HOLSET)或发动机:YC4E140-30(广西玉柴发动机有限公司)喷油泵型号:CRCP3(BOSCH)喷油器型号:CRIN-A38(BOSCH)增压器型号:GT25(HONEYWELL TURBOCHARGING SYSTEMS SHANGHAI)13、东风汽车有限公司DFL3311AX1 自卸汽车发动机:ISDe245 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)DFL1311A6 载货汽车发动机:ISDe245 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)或发动机:ISDe270 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)DFL5240CCQAX14 仓栅式运输车DFL3260AX14 自卸汽车发动机:ISLe375 30(东风康明斯发动机有限公司)喷油泵型号:CCR1600(CUMMINS)喷油器型号:0 445(BOSCH)增压器型号:HX40W(HOLSET)或发动机:dCi375-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222526(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油器型号:D5010477874(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)DFL5250GJYAX7 加油车DFL5250GFLAX7 粉粒物料运输车发动机:ISLe290 30(东风康明斯发动机有限公司)喷油泵型号:CCR1600(CUMMINS)喷油器型号:0 445(BOSCH)增压器型号:HX40W(HOLSET)或发动机:ISLe315 30(东风康明斯发动机有限公司)喷油泵型号:CCR1600(CUMMINS)喷油器型号:0 445(BOSCH)增压器型号:HX40W(HOLSET)或发动机:ISLe325 30(东风康明斯发动机有限公司)喷油泵型号:3957413(CUMMINS)喷油器型号:CRIN1.6(BOSCH)增压器型号:HX40W(HOLSET)或发动机:ISLe340 30(东风康明斯发动机有限公司)喷油泵型号:CCR1600(CUMMINS)喷油器型号:0 445(BOSCH)增压器型号:HX40W(HOLSET)DFL5250XXYAX9 厢式运输车DFL1200AX10 仓栅式运输车DFL5200XYKBX8 翼开启厢式运输车DFL5200CCQAX10 仓栅式运输车发动机:ISDe230 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)或发动机:ISDe245 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)或发动机:ISDe270 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)DFL3161AX1 自卸汽车发动机:ISLe340 30(东风康明斯发动机有限公司)喷油器型号:0 445(BOSCH)增压器型号:HX40W(HOLSET)或发动机:dCi340-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222526(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油泵型号:D5010553948(Bosch)喷油器型号:D5010477874(Bosch)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)DFL3161AX6 自卸汽车发动机:dCi290-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222559(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油泵型号:D5010553948(Bosch)喷油器型号:D5010477874(Bosch)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或发动机:dCi340-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222526(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油泵型号:D5010553948(Bosch)喷油器型号:D5010477874(Bosch)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)DFL3161AX7 自卸汽车发动机:ISLe340 30(东风康明斯发动机有限公司)喷油泵型号:CCR1600(CUMMINS)喷油器型号:0 445(BOSCH)增压器型号:HX40W(HOLSET)或发动机:dCi290-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222559(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油泵型号:D5010553948(Bosch)喷油器型号:D5010477874(Bosch)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或发动机:dCi340-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222526(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油泵型号:D5010553948(BOSCH公司)喷油器型号:D5010477874(BOSCH公司)增压器型号:HX50(无锡康明斯涡轮增加技术有限公司)DFL3241A6 自卸汽车DFL3241A9 自卸汽车发动机:ISLe290 30(东风康明斯发动机有限公司)喷油泵型号:CCR1600(CUMMINS)喷油器型号:0 445(BOSCH)增压器型号:HX40W(HOLSET)或发动机:ISLe340 30(东风康明斯发动机有限公司)喷油泵型号:CCR1600(CUMMINS)喷油器型号:0 445(BOSCH)增压器型号:HX40W(HOLSET)或发动机:dCi290-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222559(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油泵型号:D5010553948(Bosch)喷油器型号:D5010477874(Bosch)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或发动机:dCi340-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222526(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油泵型号:D5010553948(BOSCH公司)喷油器型号:D5010477874(BOSCH公司)增压器型号:HX50(无锡康明斯涡轮增加技术有限公司)DFL3241A7 自卸汽车发动机:ISLe340 30(东风康明斯发动机有限公司)喷油泵型号:CCR1600(CUMMINS)喷油器型号:0 445(BOSCH)增压器型号:HX40W(HOLSET)或发动机:dCi290-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222559(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油泵型号:D5010553948(Bosch)喷油器型号:D5010477874(Bosch)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或发动机:dCi340-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222526(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油泵型号:D5010553948(BOSCH公司)喷油器型号:D5010477874(BOSCH公司)增压器型号:HX50(无锡康明斯涡轮增加技术有限公司)EQ4163W3G 半挂牵引汽车发动机:ISDe270 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)DFL1250A10 载货汽车DFL5250GFLAX10 粉粒物料运输车DFL5250GJYAX10 加油车发动机:ISDe245 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)或发动机:ISDe270 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)DFL5311GJYA3 加油车DFL5311GFLA3 粉装物料运输车发动机:ISDe245 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)或发动机:ISDe270 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE351W(HOLSET)或发动机:ISLe290 30(东风康明斯发动机有限公司)喷油泵型号:CCR1600(CUMMINS)喷油器型号:0 445(BOSCH)增压器型号:HX40W(HOLSET)DFL3310A9 自卸汽车DFL3260AX11 自卸汽车DFL3240AX11 自卸汽车发动机:dCi290-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222559(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油泵型号:D5010553948(BOSCH)喷油器型号:D5010477874(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或发动机:dCi340-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222526(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油泵型号:D5010553948(BOSCH)喷油器型号:D5010477874(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)DFL5311CCQA5 仓栅式运输车DFL5311XXBA5 篷式运输车DFL5311XXYA5 厢式运输车发动机:ISLe315 30(东风康明斯发动机有限公司)喷油泵型号:CCR1600(CUMMINS)喷油器型号:0 445(BOSCH)增压器型号:HX40W(HOLSET)EQ5126CCQKB1 仓栅式运输车发动机:ISDe160 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE221W(HOLSET)或发动机:ISDe180 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH)喷油器型号:0 445(BOSCH)增压器型号:HE221W(HOLSE)或发动机:ISDe185 30(东风康明斯发动机有限公司)喷油泵型号:CR/CP3S3/L110/30-789S(BOSCH公司)喷油器型号:0 445(BOSCH公司)增压器型号:HE351W(HOLSET公司)DFL3310A14 自卸汽车发动机:ISLe375 30(东风康明斯发动机有限公司)喷油泵型号:CCR1600(CUMMINS)喷油器型号:0 445(BOSCH)增压器型号:HX40W(HOLSET)或发动机:dCi375-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222526(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油泵型号:D5010553948(Bosch公司)喷油器型号:D5010477874(Bosch公司)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或发动机:dCi420-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222526(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)或喷油泵型号:D5010553948(Bosch公司)喷油器型号:D5010477874(Bosch公司)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)DFL3240AX14 自卸汽车发动机:ISLe375 30(东风康明斯发动机有限公司)喷油泵型号:CCR1600(CUMMINS)喷油器型号:0 445(BOSCH)增压器型号:HX40W(HOLSET)或发动机:dCi375-30(东风汽车有限公司)喷油泵型号:D5010222523(BOSCH)喷油器型号:D5010222526(BOSCH)增压器型号:HX50(无锡康明斯涡轮增压技术有限公司)。
二、深化点——水溶液中的陌生图像(对数图像)化学图像题是一种利用数学中的二维图像来描述化学问题的常见题型,体现了数学方法在解决化学问题中的应用,但如果溶液中某微粒或某些微粒浓度的比值很小,在图像中无法表示出来,则可用常用对数来作图,将双曲线转化成直线,这样更直观、简捷、实用。
三类对数—图像1.负对数图像(1)图像类型pH图像将溶液中c(H+)取负对数,即pH=—lg c(H+),反映到图像中是c(H+)越大,则pH越小pOH 图像将溶液中c(OH-)取负对数,即pOH=—lg c(OH-),反映到图像中是c(OH-)越大,则pOH越小pC图像将溶液中某一微粒浓度[如C(A)]或某些微粒浓度的比值取负对数,即pC=—lg c(A),反映到图像中是c(A-)越大,则pC越小(2)解题要领解题时要理解pH、pOH、pC的含义,以及图像横坐标、纵坐标代表的含义,通过曲线的变化趋势,找到图像与已学化学知识间的联系。
[示例1]25°C时,Fe(OH)2和Cu(OH)2的饱和溶液中,金属阳离子的物质的量浓度的负对数[—lg C(M2+)]与溶液pH的变化关系如图所示,已知该温度下K sp[Cu(OH)2]<K sp[Fe(OH)2]。
下列说法正确的是()A.曲线a表示Fe(OH)2饱和溶液中的变化关系B.除去CuSO4溶液中含有的少量Fe2+,可加入适量CuOC.当Fe(OH)2和Cu(OH)2沉淀共存时,溶液中c(Fe2+):c(Cu2+)=104.6:1D.向X点对应的饱和溶液中加入少量NaOH固体,可转化为Y点对应的溶液[分析]根据图示,p H相同时,曲线a对应的C(M2+)小,因Fe(OH)2与C U(OH)2属于同类型沉淀,一定温度下,K越大,C(M2+)越大,故曲线a表示Cu(OHk饱和溶液中的变Sp2化关系,A项错误;K sp[Cu(OH)2]<K sp[Fe(OH)2],则调节pH过程中,Cu2+先沉淀,除去CuSO4溶液中含有的少量Fe2+,应先加入H2O2将Fe2+氧化为Fe3+,再调节pH,B项错误;根据图知pH=10时,一Ig c(Cu2+)=11.7,—lg c(Fe2+)=7.1,可以计算出该温度下将溶液中某一微粒的浓度[如C (A)]或某些微粒浓度的比[喘]取常用对数,即lg ①若c (A)=1或歸=1时,②若c (A)>1或殳畫>1时, lg c (A)|或lg0取正值且c (A)或?A ]越大,lg③若c (A)<1[或殳A<1时, lgc (A)i 或lg[騎j越大,C .为除去MnCl 2溶液中混有的少量CuCl 2,可加入适量 N a 2S 固体,充分搅拌后过滤 K sp [CU(OH)2]—10-11.7X (10-4)2=10-19.7,K sp [Fe(OH)2]—10-7.1X (10-4)2=10-15.1,当Fe(OH)2和Cu(OH)2沉淀共存时,溶液中c (Fe 2+):。
1、检索课题名称:电解法生产金属钠2、课检索课题名称题分析:“金属纳”属于本课题的主体,其应用目标是“电解法和“生产”,由此得出如下检索词(按其对课题影响程度排序):中文关键词:1金属纳2电解法3生产3、选择检索工具:本课题检索目标为中文各类相关文献。
根据本图书馆的资源情况选择如下数据库:(1)CNKI 数字图书馆:中国期刊全文数据库(2)万方数据库(会议论文)(3)超星数字图书馆(图书检索)、书生之家数字图书馆等。
4、构建检索策略:因“金属纳”为课题的主体,应优先检索,“电解”和“生产应在检索结果中同时存在。
故制定如下检索策略。
“()”表示优先、“*”表示并且。
检索算法:(金属纳)*电解*生产时间范围:1950--2011文献范围:期刊论文、会议论文、专著为了保证查全率可考虑使用全文检索途径和高级检索方式。
5、简述检索策略调整的过程:1)在CNKI 中国期刊全文数据库中(CNKI 数据库镜像):a、为保证查全率,使用“(金属钠)*电解*生产”检索运算式,检索范围选择:所有专辑、全文中检索,检索出记录0 条。
C、上述检索策略没有得到检索结果,考虑扩大检索范围。
改检索“生产金属钠”检索出记录15 条,数量适中1、利用金属钠制备甲醇钠的生产工艺孙向东孙旭东张慧波王庆薛永江3、金属钠的应用及生产工艺张莉王树轩青海大学学报(自然科学版) 2006年第04期2)万方数据库:检索“生产*金属钠”,检索出记录38条。
如下图:1 无机盐改性钠水玻璃富锌涂料的制备和流变学性能[学位论文] 杨巧,2008 - 武汉工业学院武汉工业学院:应用化学2粗锂脱钠的真空蒸馏研究[学位论文] 魏剑,2003 - 昆明理工大学昆明理工大学:有色金属冶3)维普资讯网(《中文科技期刊数据库》(全文版)):检索“生产金属钠“得到零条结果;用“金属钠”单一算式检索,检索出记录169 条。
6、标示原文线索:1、《高纯度固体叔丁醇钠安全生产技术》技术与市场-2011年4期2、《金属钠生产过程中危险有害因素分析》吴朝香广州化工-2010年8期1、检索课题名称:电解法生产金属钠2、课题分析:中文关键词:1 电解法 2 金属钠 3 生产英文关键词:(1)Electrolytic method(2 )Sodium metal(3 )produce3、选择收索引擎:1谷歌(google)2百度(baidu)3元收索(InfoSpace、Dogpile、Vivisimo、圣博牛收)4、构建检索策略:检索算法:(生产)*电解法*金属钠文献范围:期刊论文、学位论文、会议论文、专著使用学术文献检索、选择。
氨氮的测定纳氏试剂分光光度法目次前言...................................................................... ........................................................................ (III)1适用范围...................................................................... .. (1)2方法原理...................................................................... .. (1)3干扰及消除...................................................................... . (1)4试剂和材料...................................................................... . (1)5仪器和设备...................................................................... . (3)6样品.............................................................................................................................................. .37分析步骤...................................................................... .. (4)8结果计算...................................................................... .. (4)9准确度和精密度...................................................................... .. (5)10质量保证和质量控制...................................................................... . (5)前言为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水中氨氮的监测方法,制定本标准。
引领绿色未来的环保守护者绿威利引擎活化剂绿威利引擎活化剂,生物能离子元素,是一款能针对老旧、新车引擎进行维护稳固的生物制剂。
当绿威利引擎活化剂进入发动机内部后,通过其特有的离子元素,透过引擎运转在热能和压力的作用下促使绿威利引擎活化剂每秒产生数量众多的离子化波动力量,在机器内部形成纳米层保护膜,为受损的机器得到最大的保护,高效降低机件运转时的温度、振动、噪音等,使我们的发动机爆发力增强、气门静、油门轻,从而达到省油的目的。
绿威利引擎活化剂富含高负电位的离子液体,从而产生离子电场,把缸筒内的油泥和积碳分解成纳米碳,瞬间恢复缸内清洁、极大减少活塞和缸体磨擦,并改变燃油分子结构,逐步分解有毒物质,打散颗粒分子之间的内聚力及吸引力,使其迅速完全燃烧,减少有害气体的排放,环保且节能。
绿威利引擎活化剂不仅满足了人类对地球环境的环保需求,实现汽车尾气淡化,达到空气逐步净化的目的,同时提升引擎马力、消除杂音、运转顺畅,使引擎发挥出极致性能。
完美守护地球环境的同时,也满足了车主对爱车的养护与驾驶乐趣。
主要的功能作用有:1、分解引擎沉渍:分解引擎油泥,高效率活化机油分子,不会沉淀残留碳溃物。
2、无副作用后顾:主成分为强生物碱,PH值为12-14,拥有清洁功能,却不伤引擎油封垫片,也无腐蚀伤害。
3、减少废气排放:能将90%的废气转变成无伤害的可燃混合气,使之充分燃烧,迅速达到好的作用效果。
4、降低引擎磨损:形成分子保护层,增加润滑、降低磨损,具有保护引擎效果。
5、减少引擎故障:能确保引擎运转顺畅、减少阻力、减少引擎磨损内耗、延长引擎寿命。
6、净化顽固油泥:能净化与消溶活塞顶、排气门附着顽固难化的油泥沉溃,充分清洁,迅速发挥到节能减碳最佳效果。
7、增强爆发能力:推动活塞的爆发能力,气门静、油门轻,却能提高输出功率,保持发动机澎湃动力。
8、省油利器:瞬间化解机油阻力,有效提升混合气体燃烧质量和运转机能,达到节能省油的最佳效果。
中华人民共和国国家环境保护标准HJ 486—2009代替GB 7473—87水质 铜的测定2,9-二甲基-1,10-菲啰啉分光光度法Water quality―Determination of copper-2,9-Dimethy-1,10-phenanthrolinespectrophotometric method(发布稿)本电子版为发布稿。
请以中国环境科学出版社出版的正式标准文本为准。
环 境 保 护 部 发布目 次前 言 (Ⅱ)1适用范围 (1)2术语和定义 (1)3方法原理 (1)4 试剂和材料 (1)5 仪器和设备 (2)6样品 (2)7干扰及消除 (2)8分析步骤 (3)9结果计算 (4)10精密度和准确度 (5)11注意事项 (5)附录A(资料性附录) (6)前 言为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水中铜的测定方法制定本标准。
本标准规定了测定水中可溶性铜和总铜的2,9-二甲基-1,10-菲啰啉分光光度法。
本标准是对《水质 铜的测定 2,9-二甲基-1,10-菲啰啉分光光度法》(GB 7473-87)的修订。
本标准首次发布于1987年。
原标准起草单位:安徽省环境保护科学研究院。
本标准为第一次修订。
修订的主要内容如下:——修改了标准的适用范围;——明确规定了水中可溶性铜和总铜的试样制备方法;——增加了直接光度法;——规定了沸石的净化处理方法;——完善了结果的计算公式。
自本标准实施之日起,原国家环境保护局1987年3月14日批准、发布的国家环境保护标准《水质 铜的测定 2,9-二甲基-1,10-菲啰啉分光光度法》(GB7473-87)废止。
本标准由环境保护部科技标准司组织制订。
本标准起草单位:沈阳市环境监测中心站。
本标准环境保护部2009年9月27日批准。
本标准自2009年11月1日起实施。
本标准由环境保护部解释。
水质 铜的测定 2,9-二甲基-1,10-菲啰啉分光光度法1 适用范围本标准规定了测定水中可溶性铜和总铜的2,9-二甲基-1,10-菲啰啉直接光度法和萃取光度法。
Synthesis,Reduction Potentials,and Antitubercular Activity of Ring A/BAnalogues of the Bioreductive Drug(6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine(PA-824)Andrew M.Thompson,†Adrian Blaser,†Robert F.Anderson,†,‡Sujata S.Shinde,†,‡Scott G.Franzblau,§Zhenkun Ma,| William A.Denny,†and Brian D.Palmer*,†Auckland Cancer Society Research Centre,School of Medical Sciences and Department of Chemistry,The Uni V ersity of Auckland, Pri V ate Bag92019,Auckland1142,New Zealand,Institute for Tuberculosis Research,College of Pharmacy,Uni V ersity ofIllinois at Chicago,833South Wood Street,Chicago,Illinois60612,and Global Alliance for TB Drug De V elopment,40Wall Street, New York,New York10005Recei V ed September1,2008The nitroimidazooxazine S-1(PA-824)is a new class of bioreductive drug for tuberculosis.A series ofrelated bicyclic nitroheterocycles was synthesized,designed to have a wide range of one-electronreduction potentials E(1)(from-570to-338mV,compared with-534mV for S-1).The observedE(1)values closely correlated with theσm values of the heteroatom at the4/8-position of the adjacentsix-membered ring.Although the compounds spanned a range of E(1)values around that of S-1,onlythe nitroimidazothiazines showed significant antitubercular activity(at a similar level of potency),suggesting that E(1)is not the main driver of efficacy.Furthermore,there was a correlation betweenactivity and the formation of imidazole ring-reduced products at the two-electron level,pointing to thepotential importance of this reduction pathway,which is determined by the nature of the substituent atthe2-position of the4-nitroimidazole ring.IntroductionTuberculosis(TB a)remains a leading infectious cause ofdeath worldwide,but very few new drugs have been approvedfor TB treatment in the past35years,despite recent efforts.1-3The current drug therapy for TB is long and complex,involvingmultidrug combinations(usually isoniazid,rifampin,ethambutol,and pyrazinamide for the initial2months and rifampin andisoniazid for an additional4months).4The need for such lengthytreatment is largely because the drugs are relatively ineffectiveagainst the persistent form of the disease.5The recent introduc-tion of the nitroimidazooxazine S-1(PA-824)4(Figure1)toclinical trial by the Global Alliance for TB Drug Developmentis thus of potential significance,since this compound shows good in vitro and in vivo activity against Mycobacterium tuberculosis (M.tb)in both its active and persistent forms.4-8The mechanism of action of S-1is thought9to involve reduction of the nitro group,in a process dependent on the bacterial glucose-6-phosphate dehydrogenase(FGD1)and its cofactor F420.More recent studies10on mutant strains showed that a151-amino acid(17.37kDa)protein of unknown function, Rv3547,also appears to be critical for this activation.Equivalent genes are present in M.bo V is and M.a V ium.Initial cyclic voltammetry studies11on S-1in aqueous solution suggested that it had a one-electron reduction potential[E(1)] broadly similar to that of metronidazole(2),which has an E(1) of-486mV12and undergoes a similar four-electron reduction. However,later voltammetry work in aprotic media indicated that the reduction peak potential of S-1was about200mV more negative than that of2,with the nitro radical anion being correspondingly50-to100-fold less stable.13Many side chain analogues of S-1have been synthesized, although scarcely any biological assay data were reported on these(particularly against M.tb).9,14,15Very recently,the synthesis and antitubercular activity of7-methyl derivatives of S-1were also described,16but there has been very little study of fundamental chromophore variations that preserve the respec-tive ring sizes of the nitroheterocyclic core.15However,related 6-nitroimidazo[2,1-b]oxazoles have been known for almost2*To whom correspondence should be addressed.Phone:+64-9-373-7599,extension86150.Fax:+64-9-373-7502.E-mail: b.palmer@ .†School of Medical Sciences,The University of Auckland.‡Department of Chemistry,The University of Auckland.§University of Illinois at Chicago.|Global Alliance for TB Drug Development.a Abbreviations:TB,tuberculosis;M.tb,Mycobacterium tuberculosis; FGD1,F420dependent glucose-6-phosphate dehydrogenase;E(1),one-electron reduction potential;TBDMS,tert-butyldimethylsilyl;THP,tet-rahydropyranyl;TBAF,tetra-n-butylammoniumfluoride;STIPS,triisopro-pylsilanethiol;m-CPBA,3-chloroperbenzoic acid;NOESY,nuclear Overhauser enhancement spectroscopy;BOC,tert-butyl carbamate;NHE,normal hydrogen electrode;MIC,minimum inhibitory concentration;COSY, correlation spectroscopy;HSQC,heteronuclear single quantum coherence; HMBC,heteronuclear multiple bond correlation;HREIMS,high resolution electron impact mass spectrometry;HRFABMS,high resolution fast atom bombardment mass spectrometry;HRESMS,high resolution atmospheric pressure electrospray mass spectrometry;HRCIMS,high resolution chemical ionization mass spectrometry;DMF,N,N-dimethylformamide;THF,tet-rahydrofuran;MsOH,methanesulfonic acid;ND,not determined;NP,no discernible peak;DIPEA,N,N-diisopropylethylamine;PPTS,pyridinium p-toluenesulfonate.Figure1.Structures of nitroheterocyclic tuberculosis drugs.J.Med.Chem.2009,52,637–64563710.1021/jm801087e CCC:$40.75 2009American Chemical SocietyPublished on Web12/17/2008decades to possess potent antitubercular activity17and include a recent clinical candidate,3(OPC-67683).18Considering the apparent importance of nitro reduction in the activation of S-1 and the variation in nitro reduction potentials and electron affinity that can be effected by changing the electronics of the nitroheterocycle,we report here the synthesis,E(1)values,and preliminary biological evaluation of ring A/B analogues of S-1, together with a brief investigation of the radical reduction chemistry of selected compounds.Results and DiscussionCompound Synthesis.Both the original synthesis15of S-1 and some recently reported synthetic improvements19employed the explosive intermediate2,4-dinitroimidazole for the initial ring-opening reaction of a glycidyl silyl ether.In the interests of improving safety,an alternative synthesis of racemic1was developed from2-bromo-4-nitroimidazole,based partly on work reported by Goto20(Scheme1).2-Bromo-4(5)-nitroimidazole (26)was prepared as reported20from2,5-dibromo-4-nitroimi-dazole21(23)except that ethoxymethyl was used as the N-protecting group(intermediate24).Reduction of24with sodium sulfite to25followed by cleavage of the protecting group with5N HCl gave26in very good overall yield from 23(increased from48%20to76%).Reaction of26with the TBDMS ether of racemic glycidol gave predominantly the 4-nitroimidazole27,together with a trace of its5-nitro isomer. THP protection of the secondary hydroxyl group in27gave the known20ether28,which was treated with excess TBAF at room temperature to give the primary alcohol2029.The latter was partly converted into the oxazine30during the desilylation reaction,and treatment of the crude product with sodium hydride at room temperature20completed the cyclization,giving30in 55%overall yield from28.Deprotection of the THP ether followed by reaction of the resulting alcohol31with sodium hydride and the appropriate benzyl bromide gave racemic1.Similar reaction of31with4-benzyloxybenzyl chloride gave the racemic ether4.The sulfur-linked analogues5-10were also prepared from 2-bromo-4-nitroimidazole(26)(Scheme1).Reaction of26with excess THP-protected1,3-dibromo-2-propanol22at80°C gave the dibromide32in moderate yield,with little formation of dimeric material or the5-nitro isomer.Reaction of32with the lithium salt of triisopropylsilanethiol(STIPS)gave a product with a mass consistent with substitution of bromide by STIPS, which1H NMR spectroscopy indicated was a mixture resulting from displacement of the2-bromo group or the side chain bromine.Treatment of this crude product with TBAF gave the sulfide33in good yield,which was deprotected to the alcohol 34and then converted into the benzyl ethers5and6as above. Oxidation of5and6with Davis’oxaziridine reagent was slow but eventually afforded the sulfoxides7and8.Alternatively, oxidation of5and6with m-CPBA gave the corresponding sulfones9and10.The carbon-linked compounds were prepared as shown in Scheme2.The2-aminopyridine37reacted with chloroacetal-dehyde to give imidazopyridine38in good yield.Several conditions were studied for hydrogenation of the pyridine ring of38to give39.Reduction in acetic acid using PtO2as catalyst led to concomitant hydrogenolysis of the methyl ether group, giving a product that was contaminated with the alcohol analogue.However,changing the catalyst to Pd-C suppressed this,giving the desired product in quantitative yield.Nitration of39could be achieved using fuming HNO3and concentrated H2SO4at room temperature to give a29%yield of a1:1mixture of the2-and3-nitro derivatives(40and41,respectively),which could be separated by preparative reversed phase HPLC.A variety of reagents were investigated for demethylation of the mixture,largely without success.However,the precursor imidazole39without a nitro group was demethylated rapidly and cleanly with BBr3,giving alcohol42in good yield,together with a small amount of the corresponding secondary bromide.Scheme1aaReagents and conditions:(i)ClCH2OEt,NaH,DMF,0-20°C,(ii)aqueous Na2SO3,DMF,20°C,29h;(iii)5N HCl,MeOH,69°C,3h; (iv)TBDMS glycidyl ether,DIPEA,toluene,70°C,18h;(v)dihydropyran, PPTS,CH2Cl2,20°C,16h;(vi)1M TBAF,THF,20°C,1h;(vii)NaH, DMF,20°C,3h;(viii)cat.MsOH,MeOH,20°C,3h;(ix)4-F3COBnBr, NaH,DMF,20°C,24h;(x)4-BnOBnCl,NaH,DMF,20°C,16-24h; (xi)BrCH2CH(OTHP)CH2Br,K2CO3,DMF,80°C,18h;(xii)LiSTIPS, THF,-78to20°C,18h,then1M TBAF,THF,20°C,1h;(xiii)2N HCl,MeOH,20°C,3h;(xiv)Davis reagent,CH2Cl2,20°C,4days;(xv) m-CPBA,CH2Cl2,20°C,72h.Scheme2aa Reagents and conditions:(i)fuming HNO3-conc H2SO4,2-55°C, 1h;(ii)H2,5%Pd-C,KOAc,EtOAc-MeOH,20°C,5h;(iii)ClCH2CHO, NaHCO3,aq MeOH,reflux,2h;(iv)H2,10%Pd-C,AcOH,20°C,6h; (v)fuming HNO3-conc H2SO4,5-20°C,2h;(vi)BBr3,CH2Cl2,20°C, 3h;(vii)Ac2O,20°C,15min;(viii)fuming HNO3-conc H2SO4,Ac2O, -10to10°C,2h,then3N KOH,MeOH,20°C,15min;(ix)4-F3COBnBr or4-BnOBnCl,NaH,DMF,20°C,2.5-6h.638Journal of Medicinal Chemistry,2009,Vol.52,No.3Thompson et al.In situ acetylation of 42followed by nitration using acetic anhydride as the solvent and then base hydrolysis of the acetate group gave a ∼1:1mixture of the 2-and 3-nitro isomers 44and 45in 29%yield.The isomers could be separated with difficulty by chromatography on silica,and assignment of the regiochemistry of the nitro groups was confirmed by 2D NMR experiments,which established a correlation between the imidazole ring proton and the NCH 2methylene group of 44in a NOESY spectrum.Reaction of a mixture of 44and 45with 4-(trifluoromethoxy)benzyl bromide and sodium hydride,fol-lowed by purification of the product using preparative reversed phase HPLC,gave the desired 2-nitro isomer 11in poor yield,together with a trace of the corresponding 3-nitro isomer.Similar reaction of the alcohol mixture with 4-benzyloxybenzyl chloride and NaH gave the analogous benzyloxybenzyl ether derivative 12.The (NH)alcohol precursor to imidazopyrimidine 13has been described previously,15but in that report the NH was then methylated prior to coupling of the benzyloxybenzyl side chain.To prepare 13,we elected to form the THP ether 47from known 15BOC-protected aminoalcohol 46and to cyclize this to give the fully protected precursor 48(Scheme 3).Selective removal of the THP group with methanesulfonic acid and alkylation of the resulting alcohol 49with 4-(trifluoromethoxy-)benzyl bromide and sodium hydride yielded the BOC-protected imidazopyrimidine 50,which could be deprotected using lithium methoxide.The last two steps (alkylation and BOC deprotection)gave disappointingly low yields but provided 13in sufficient quantity for characterization and biological testing.Synthesis of the novel 2-nitropyrazolo[5,1-b ][1,3]oxazine scaffold is described in Scheme 4.The preparation of the known 233,5-dinitropyrazole (53)by thermal rearrangement of1,3-dinitropyrazole (51)was conveniently achieved in anisole at 160°C (rather than the higher boiling benzonitrile as described 23)to give 53without changing the proportion of 3-nitropyrazole (52)obtained as an impurity in the crude product material (10-12%).The latter was removed from 53by pH-dependent extraction,based on the large difference in their p K a values 24(9.8for 52and 3.1for 53).The next step of the synthesis required an unprecedented intramolecular nitro dis-placement reaction on an N-alkylated derivative of 53(by analogy with the synthesis of 2-nitroimidazo[2,1-b ][1,3]-oxazines 15and 6-nitroimidazo[2,1-b ]oxazoles 17,25from 2,4-dinitroimidazole).Thus,base catalyzed condensation of 53with TBDMS-glycidyl ether gave the alcohol 54and treatment of the corresponding THP derivative 55with TBAF at room temperature resulted in spontaneous formation of the desired oxazine scaffold 56in very high yield (92%).This was then deprotected to give alcohol 57,which was elaborated to the required products (14,15)by alkylation reactions,as above.The novel 2-nitropyrazolo[1,5-a ][1,3]pyrimidine scaffold was prepared in a similar manner (again,by analogy with the synthesis of 2-nitroimidazo[1,2-a ]pyrimidines 15from 2,4-dini-troimidazole).Thus,condensation of 3,5-dinitropyrazole 53with the epoxide derived from N -BOC allylamine,followed by protection of the resultant alcohol 58as the TBDMS ether,gave 59(Scheme 5).Despite extensive attempts at optimization,the best yield of the product 60from the following base catalyzed ring closure step was only 15%(substantial decomposition occurred).Alternative protection of the alcohol as the THP ether (62)resulted in an improved yield for this ring closure step (a 43%yield of the corresponding THP-protected product 63),and the THP protecting group was then selectively removed in the presence of the N -BOC group using pyridinium p -toluene-sulfonate in ethanol to give alcohol 61.To minimize further compound losses due to the potential base lability of the BOC group of 61(as suggested by low yields in the preceding ring closure reactions),the more reactive 4-benzyloxybenzyl iodide 26Scheme 3a aReagents and conditions:(i)dihydropyran,PPTS,CH 2Cl 2,20°C,18h;(ii)NaH,DMF,20°C,3h;(iii)cat.MsOH,MeOH,20°C,3h;(iv)4-F 3COBnBr,NaH,DMF,20°C,1h;(v)1M LiOMe,MeOH,20°C,20min.Scheme 4aaReagents and conditions:(i)anisole,160°C,60h;(ii)TBDMS glycidyl ether,DIPEA,toluene,68°C,28h;(iii)dihydropyran,PPTS,CH 2Cl 2,20°C,1day;(iv)1M TBAF,THF,20°C,13h;(v)10%HCl,MeOH,20°C,3h;(vi)4-F 3COBnBr or 4-BnOBnCl,NaH,DMF,0-20°C,16-24h.Scheme 5aaReagents and conditions:(i)glycidyl-NHBOC,2,6-lutidine,toluene,65°C,14h;(ii)TBDMSCl,imidazole,DMF,20°C,46h;(iii)NaH,DMF,0-20°C,40min;(iv)1M TBAF,THF,20°C,3.5h;(v)dihydropyran,PPTS,CH 2Cl 2,20°C,6h;(vi)NaH,DMF,0-20°C,20min;(vii)PPTS,EtOH,55°C,20h;(viii)4-F 3COBnBr or 4-BnOBnI,NaH,DMF,0-20°C,40-60min;(ix)1M LiOMe,MeOH,54°C,15-23h;(x)1.25M HCl,MeOH,20-42°C,1-4days.Analogues of Anti-TB 2-Nitroimidazooxazines Journal of Medicinal Chemistry,2009,Vol.52,No.3639was employed in the synthesis of 65.Selective cleavage of the N -BOC group was then investigated.However,treatment of 65with HCl in methanol (at 20or 42°C)resulted in the slow loss of both the 4-benzyloxybenzyl ether side chain and the N -BOC group to give alcohol 66.Therefore,a rare base catalyzed cleavage of the N -BOC group was employed for both 65and analogue 64(lithium methoxide in methanol at 54°C)to give the required products (16,17)in very good yield (73-76%).An expeditious alternative route to the related N -methyl derivatives (18,19)was discovered during attempts to synthesize the novel 2-nitropyrazolo[5,1-b ][1,3]thiazine scaffold (Scheme 6).Alkylation of 53with 2-[2-bromo-1-(bromomethyl)ethox-y]tetrahydropyran gave 67in modest yield,likely due to the reported propensity of this reagent to undergo base-catalyzed elimination.22Treatment of 67with the lithium salt of triiso-propylsilanethiol,followed by desilylation in situ,gave the 2-nitropyrazolo[1,5-a ]pyrimidine 68as the only isolable product.Formation of 68requires a selective sulfide reduction of the nitro group adjacent to the side chain,followed by intramo-lecular alkylation,prior to sulfide displacement (the selective reduction of 1-methyl-3,5-dinitropyrazole with sodium hydro-sulfide has been reported 27).Surprisingly,methylation of 68using iodomethane with potassium carbonate as the base in dimethylformamide gave methyl carbamate 71as the sole product (67%yield).This was avoided by the use of sodium hydride,which gave the desired 69quantitatively.This was then elaborated (via the alcohol 70)to the required products (18,19)using standard methods.The three compounds in the triazole series were prepared using the chemistry outlined in Scheme 7.Bromonitrotriazole 72reacted with racemic TBDMS-protected glycidol under basic conditions to give approximately 1:1mixture of regioisomers 73and 74,which were readily separated by chromatography.Their structures were assigned following detailed NMR studies,which established a three-bond correlation between the carbon atom bearing the nitro group in 73and the side chain methylene proton atoms.The desired isomer (74)was elaborated to racemic alcohol 77by successive THP protection and desilylation (with ring closure)reactions,and from this the benzyl ethers 20-22were prepared by standard chemistry.Optical resolution of the racemic (trifluoromethoxy)benzyl ether to give 20and 21was achieved by preparative chiral HPLC using a Chiralcel OD column.The absolute configuration of these enantiomers was assigned by comparison of the sign of their optical rotations with those of the enantiomers of 1.One-Electron Reduction Potentials.Nitroheterocycles have been studied as potential antituberculosis agents for many years,but the nitroimidazooxazine S-1has stood out in recent times for its high in vivo activity and its ability to target both the active and persistent forms of the disease.4,6-8While selective bioreduction is likely to be the main mechanism for this,and much work is being invested in identification of the enzyme(s)responsible,9,10less work has been reported on the radical chemistry of S-1.Table 1reports thermodynamic reversible one-electron reduc-tion potentials [E (1)vs NHE,in 5mM phosphate buffer,pH 7.0]for racemic 1and a series of related novel bicyclic nitroheterocycles.The compound set was designed to span a range of reduction potentials in order to evaluate the effects of this parameter on biological activity.Most of the compounds in Table 1are racemic,for ease of synthesis,and are compared biologically with racemic 1.While the S -enantiomers of nitroimidazooxazines such as 1are reportedly at least 10-fold more potent than the R -enantiomers,9the racemates are only 2-fold less active.Since the 4-benzyloxybenzyl ether analogue S-4is known to be up to 9-fold more potent in vitro than S-1itself,15the benzyl ether side chains of both 1and 4were added to most of the new heterocycles.As shown in Table 1,we have recently reported 28that the one-electron reduction potential [E (1)]of racemic 1is -534(7mV,a value typical of that found for 4-nitroimidazoles 29and distinctly lower than the value (-486mV)12for the 5-nitroimi-dazole metronidazole (2)to which it is often compared.As expected,variation in the 6-substituent had little effect;the E (1)of the 6-OH analogue 31was -532(6mV,and that of the corresponding 6-OMe analogue 28was -527(6mV.This allowed the use with confidence of related more soluble analogues in place of other members of the series (11,13)which were too insoluble for E (1)values to be determined (see Table 1).Within the imidazo series,the measured E (1)values of compounds with heteroatoms of varying electronegativity in the 8-position of the adjacent six-membered fused ring (compounds 1,5,7,9,11,13)varied by nearly 100mV.The measured potentials correlated very well with the σm values of the heteroatom (eq 1),whereas the use of σp values gave a much poorer correlation (r )0.761).E (1)(mV))(110(16)σm -(547(10)(1)n )6r )0.958s )12.5F )45.1Scheme 6a aReagents and conditions:(i)BrCH 2CH(OTHP)CH 2Br,K 2CO 3,DMF,85°C,22h;(ii)LiSTIPS,THF,-78to 20°C,19h,then 1M TBAF,THF,20°C,4h;(iii)MeI,NaH,DMF,0-20°C,10min;(iv)MeI,K 2CO 3,DMF,20°C,49h;(v)10%HCl,MeOH,20°C,3h;(vi)4-F 3COBnBr or 4-BnOBnCl,NaH,DMF,0-20°C,5-6h.Scheme 7aaReagents and conditions:(i)TBDMS glycidyl ether,DIPEA,toluene,70°C,24h;(ii)dihydropyran,PPTS,CH 2Cl 2,20°C,24h;(iii)1M TBAF,THF,20°C,3h;(iv)2N HCl,MeOH,20°C,2h;(v)4-F 3COBnBr or 4-BnOBnCl,NaH,DMF,20°C,16-18h.640Journal of Medicinal Chemistry,2009,Vol.52,No.3Thompson et al.This suggests that good control over the reduction potential of the imidazo compounds can be achieved by the selection of this heteroatom.The pyrazole derivatives (compounds 14-19)showed the same trend but with a lesser degree of dependence of E (1)values on the adjacent heteroatom,with a range of only 22mV (there were insufficient examples for statistical analysis).Finally,the triazole compounds (20-22)had much higher E (1)values,as expected 30for this chromophore.Radical Reduction Chemistry.The stepwise reduction of 1,by its reaction with radiolytically produced CO 2•-radicals,has revealed that the imidazole ring is reduced before the nitro group.28This order is atypical for nitroimidazoles,where reduction of the nitro group commonly precedes ring reduction.The initial product formed upon reduction of 1under mildly acidic conditions (pH 4)has been shown by MS and NMR analyses to be consistent with the formation of a dihydroimi-dazole,leading to a -NCH 2CHNO 2-system,which would result from the two-electron reduction of the C2-C3bond of the imidazole ring.28Products obtained radiolytically under mildly acidic conditions at the two-electron reduced level may well represent the products formed upon a hydride ion transfer from the essential deazaflavin cofactor of F 420-dependent glucose-6-phosphate dehydrogenase present in the bacterium.The same methodology was used here to test for formation of the [M +2]increased mass (dihydro)product in a subgroup of compounds,spanning a range of E (1)values,in the imidazole class (5,9,40),as well as examples of both a pyrazole (14)and a triazole (21)(see Table 2).Only the thiazine derivative,5,formed such a product similar to that observed for 1(although a very minor amount of a [M +2]increased mass product was also seen for the alkyl derivative 40,a more soluble analogue of 11).Table 1.Reduction Potentials,in Vitro Inhibitory Activity,and Selectivity of Various Chromophore Analogues of S -1(All Compounds except 20and 21AreRacemic)MIC b (µM)compd X Y Z R E (1)a (mV)MABA aerobic LORA anaerobic IC 50c (µM),VEROImidazole 1O CH N OCF 3-534(7d 1.1 4.4>1284O CH N OCH 2Ph 0.11 2.7>1285S CH N OCF 3-534(5 1.113>1286S CH N OCH 2Ph 1.111>1287SO CH N OCF 3-476(7>128(87)92>1288SO CH N OCH 2Ph >128(23)>128(20)639SO 2CH N OCF 3-488(7>128(89)89>12810SO 2CH N OCH 2Ph >128(61)>128(79)>12811CH 2CH N OCF 3(-570(9)e 126>128(75)ND 12CH 2CH N OCH 2Ph >128(5)>128(49)ND 13NH CH N OCF 3(-568(6)f>128(63)>128(64)ND Pyrazole 14O N CH OCF 3-500(9>128(89)>128(86)8815O N CH OCH 2Ph >128(38)>128(19)8216NH N CH OCF 3-517(9>128(61)111ND 17NH N CH OCH 2Ph >128(55)>128(41)ND 18NMe N CH OCF 3-522(10>128(61)>128(37)>12819NMe N CH OCH 2Ph >128(58)>128(3)>128Triazole 20O N N OCF 3g >128(81)112>12821O N N OCF 3h -338(10>128(84)120>12822ONNOCH 2Ph(26)>128(18)>128aE (1):one-electron reduction potentials,determined by pulse radiolysis (see text).b MIC:minimum inhibitory concentration,determined under aerobic (MABA)33or anaerobic (LORA)32conditions.Numbers in parentheses are the %inhibition at 128µM.c Cytotoxicity assay against VERO cells.ND means not determined.d Reference 28.e E (1)data for 6-OMe analogue (40,Scheme 2).f E (1)data for 6-OH analogue (example 11of ref 15).g S enantiomer.h R enantiomer.Table 2.Formation of Products after Reduction of Compounds to the Two-Electron Reduced Level by the CO 2•-Radical at pH 4.0in AqueousSolutioncompdX λmax of parent (nm)ion mass of parent (g mol -1)λmax ofproduct(s)(nm)ion mass of product(s)a (g mol -1)1(A ,Y )CH,Z )N)O 355360.6262362.6b 5(A ,Y )CH,Z )N)S 349376.6275378.7(362.6)(360.6)9(A ,Y )CH,Z )N)SO 2284408.8250408.8394.740(B )313198.4320c 198.5(200.5)14(A ,Y )N,Z )CH)O 267360.7NP d (360.7)346.7344.621(A ,Y )N,Z )N)O283361.6NP d361.6347.6aData in parentheses are for minor products.b Data from ref 28.c Product absorbs less than parent compound at this wavelength.d NP:no discernible peak in the UV -visible region.Analogues of Anti-TB 2-Nitroimidazooxazines Journal of Medicinal Chemistry,2009,Vol.52,No.3641Biological Activity.The compounds1and4-22were evaluated for their ability to inhibit M.tb in two assays(Table 1).The compounds were evaluated for activity(minimum inhibitory concentrations,MICs)against replicating M.tb in an8day microplate-based assay using Alamar blue reagent (added on day7)for determination of growth(MABA).31The lowest drug concentration effecting an inhibition of>90%was considered the MIC.Screening for the activity of the compounds against bacteria in the nonreplicating state that models clinical persistence used an11day high-throughput,luminescence-based low-oxygen-recovery assay(LORA),where M.tb containing a plasmid with an acetamidase promoter driving a bacterial luciferase gene wasfirst adapted to low oxygen conditions by extended culture.32Mammalian cytotoxicity was also assessed33 against VERO cells(CCL-81,American Type Culture Collec-tion)in a72h exposure,using a tetrazolium dye assay. Compared to the racemic imidazooxazine1,the corresponding imidazothiazine analogue5showed the same or slightly (3-fold)reduced potencies in the MABA and LORA assays, respectively.However,unlike the imidazooxazine series (4versus1),the switch to a benzyloxybenzyl ether side chain did not significantly enhance the potencies of imidazothiazine 6over those of analogue5.Oxidation of the sulfur atom in5 and6(compounds7-10)markedly reduced activity,with the best analogues(7and9)showing a>100-fold potency loss in the MABA assay and a7-fold potency loss in the LORA assay, compared to5.The imidazopyridine11displayed similarly weak activity(MABA MIC of126µM,115-fold less than1),but again,the benzyloxybenzyl ether analogue(12)was even less active,as was the imidazopyrimidine13.Replacement of the imidazole ring of1by pyrazole(compound14)or triazole (compound20)also led to compounds with marginal activity (MICs close to128µM),although14was weakly cytotoxic. None of the pyrazolopyrimidine analogues16-19were sig-nificantly better than pyrazolooxazine14,despite having reduction potentials closer to that of S-1.Finally,two simple nitroimidazooxazine derivatives(compound31and its methyl ether derivative28)which lacked the lipophilic benzyl ether side chains of1and4were also tested in both MIC assays and found to be at least90-fold less active than racemic1 (MICs greater than100µM;data not shown in Table1). This demonstrates the importance of both the nitrohetero-cyclic core and the lipophilic side chain in the activities of compounds1,4,5,and6.ConclusionsThis work provides new synthetic routes to a series of chromophore analogues(imidazoles,pyrazoles,and triazoles with varying heteroatoms in the4/8-position of the adjacent fused ring)of the nitroimidazooxazine tuberculosis drug S-1. These compounds span a wide range of one-electron reduction potentials E(1),from-570to-338mV,compared with-534 mV for S-1,which are closely correlated with theσm values of the adjacent heteroatom.Although many of the different nitroheterocyclic compounds have E(1)values close to that of S-1,only the nitroimidazothiazines showed significant in vitro antitubercular activity(at a similar level of potency to the nitroimidazooxazines).This suggests that their absolute E(1) values are not the major determinant of their activity,which may instead depend on theirfit to the reducing enzyme and/or the nature of the reactive species formed and its subsequent reactions.The results are consistent with the nitroimidazooxazine chromophore having particular utility in tuberculosis chemo-therapy,with specific substitution at the2-position of the 4-nitroimidazole ring being a major determinant of activity. Furthermore,the present study points to a possible correlation between the formation of a dihydroimidazole ring-reduced product at the two-electron level and activity.This scenario is in line with the known involvement of a deazaflavin cofactor, a two-electron biological reductant,in the activation of S-1. While the lipophilic side chains of S-1and its analogues may well be a determinant for thefit of these compounds to the reducing enzyme,the anomalous reduction of the imidazo ring may also be an important factor in their activity against the M. tb bacterium.Experimental SectionAnalyses were carried out in the Microchemical Laboratory,University of Otago,Dunedin,New Zealand.Melting points weredetermined on an Electrothermal2300melting point apparatus.NMR spectra were obtained on a Bruker Avance400spectrometerat400MHz for1H and100MHz for13C spectra and are referencedto Me4Si.Chemical shifts and coupling constants are recorded inunits of ppm and Hz,respectively.Assignments were verified usingCOSY,HSQC,HMBC,and NOESY two-dimensional experiments,as required.High resolution electron impact(HREIMS)and fastatom bombardment(HRFABMS)mass spectra were determinedon a VG-70SE mass spectrometer using an ionizing potential of70eV,at nominal resolutions of3000,5000,or10000asappropriate.High resolution atmospheric pressure electrospray(HRESMS)and chemical ionization(HRCIMS)mass spectra weremeasured for methanol solutions on a ThermoFinnigan QuantumTSQ triple quadrupole mass spectrometer,operating in enhancedresolution mode;values are the average offive independentdeterminations.Thin-layer chromatography was carried out onaluminum-backed silica gel plates(Merck60F254)with visualizationof components by UV light(254nm)or exposure to I2.Columnchromatography was carried out on silica gel(Merck230-400mesh).Preparative reversed phase HPLC and preparative chiralHPLC were carried out using a Gilson Unipoint system(322-Hpump,156UV/visible detector)and a250mm×21mm Synergi-Max4µm C12column or a250mm×20mm Chiralcel OD10µm column,respectively.2,5-Dibromo-1-(ethoxymethyl)-4-nitro-1H-imidazole(24)(Scheme 1).A solution of2,5-dibromo-4-nitro-1H-imidazole21(23)(26.49g,97.8mmol)in dry DMF(130mL)under N2at0°C was treatedwith60%NaH(4.83g,121mmol),then quickly degassed andresealed under N2.After the mixture was stirred for10min at0°C,chloromethyl ethyl ether(10.0mL,117mmol)was added dropwise,and the mixture was stirred at room temperature for4h.The resulting solution was poured into aqueous NaHCO3(1L)andextracted with EtOAc(3×500mL).The extracts were washedwith brine(400mL)and evaporated to dryness.The residue wastriturated in CH2Cl2(100mL)and slowly diluted with petroleumether(400mL)to precipitate crude24(26.77g,83%)as a creamsolid,which was used directly.Evaporation of the mother liquorsto dryness and chromatography of the residue on silica gel,elutingwith CH2Cl2/petroleum ether(1:2and2:3),followed by crystal-lization gave additional pure24(2.63g,8%)as a creamy whitesolid:mp(CH2Cl2/light petroleum)98-100°C;1H NMR(CDCl3)δ5.48(s,2H),3.64(q,J)7.0Hz,2H),1.25(t,J)7.0Hz,3 H).Anal.(C6H7Br2N3O3)C,H,N.2-Bromo-1-(ethoxymethyl)-4-nitro-1H-imidazole(25).A solu-tion of24(28.27g,85.9mmol)in DMF(166mL)was treated with a solution of Na2SO3(22.8g,181mmol)in water(83and then the mixture was stirred at room temperature for18 Further Na2SO3(6.36g,50.5mmol)was added,and then mixture was stirred at room temperature for11h.The resulting mixture was poured into ice/aqueous NaHCO3(800mL)and extracted with EtOAc(4×600mL).The extracts were washed with brine(600mL)and evaporated to dryness to give25(18.94 g,88%)as a pale-yellow solid:mp(CH2Cl2/pentane)62-63°C; 1H NMR(CDCl3)δ7.91(s,1H),5.37(s,2H),3.59(q,J)7.0 Hz,2H),1.25(t,J)7.0Hz,3H).Anal.(C6H8BrN3O3)C,H,N.642Journal of Medicinal Chemistry,2009,Vol.52,No.3Thompson et al.。