材料性能力学性能
- 格式:ppt
- 大小:321.50 KB
- 文档页数:43
§2 材料力学性能材料的力学性能,又称机械性能,是材料抵抗外力作用引起变形和断裂的能力。
包括强度、韧性、硬度、塑性、耐磨性、高温力学性能等。
材料的力学性能不仅与材料的成分、显微结构有关,还和承受的载荷大小、种类、加载速度、环境温度、介质等有关。
2.1 强度2.1.1 拉伸试验材料的强度可以通过光滑圆柱试样静拉伸试验确定。
按照一定的标准加工的光滑圆柱试样,在拉伸载荷作用下发生变形,记录载荷大小和伸长量之间的关系,将其转变为应力应变曲线,即可获得材料的强度力学行为。
典型的应力应变曲线包括:弹性变形阶段(Oe段),屈服阶段(sd段),变形强化阶段(db段),缩颈阶段(bk段),每个阶段反映了材料在不同载荷水平下不同的力学行为。
图3.7 典型的静拉伸应力应变曲线2.1.2 弹性变形在弹性变形阶段,材料中的原子在平衡位置附近作微量位移,载荷消失后微量位移消失,材料宏观外形完全恢复,此时的应力应变曲线满足胡克定律:σ = Eε式中,σ为应力,ε为应变,E为弹性模量。
弹性极限σe:材料由弹性变形过渡到塑性变形时的应力,一般规定产生0.01%塑性变形时的应力为弹性极限值,记为σ0.01 。
弹性模量主要取决于材料的成分,受组织结构影响不大,是个组织不敏感参量。
另外,弹性模量反映了材料中原子间作用力的大小,而材料的熔点也反映了原子间作用力的大小,应此一般地,材料的熔点越高,弹性模量越大。
表3.3 一些材料的弹性模量E(GPa)2.1.3 塑性变形当材料承受的载荷超过弹性极限时,材料将发生不可逆转的永久性变形,称为塑性变形。
在塑性变形阶段,应力应变曲线变成非线性,材料的变形是通过原子价键的断开、重排来实现的。
在晶体材料中,塑性变形主要是通过位错在密排面上沿密排方向的滑移来实现的,因此,晶体结构中位错越容易滑移,则材料的塑性变形越容易。
屈服强度σs:材料出现一定塑性变形时的应力,S为屈服点,多数材料的S 点不明显。
材料的力学性能mechanical properties of materials主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。
它们是设计各种工程结构时选用材料的主要依据。
各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。
表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。
材料的各种力学性能分述如下:弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。
材料的这种性能称为弹性。
外力卸除后即可消失的变形,称为弹性变形。
表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。
拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。
长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截面试样,按照面积换算规定或者。
试样两端的粗大部分用以和材料试验机的夹头相连接。
试验结果通常绘制成拉伸图或应力-应变图。
图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力ζ=P/A)。
图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。
反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。
比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以ζp表示。
在应力低于ζp的情况下,应力和应变保持正比例关系的规律叫胡克定律。
载荷超过点p对应的值后,拉伸曲线开始偏离直线。
弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以ζe表示。
若在应力超出ζe后卸载,试样中将出现残余变形。
机械制造基础3_材料的力学性能指标材料的力学性能指标是指材料在力学加载下的表现和性能参数,用来评估材料的强度、刚度、韧性、耐磨性、抗疲劳性等。
以下将介绍常见的材料力学性能指标。
1.强度:材料的强度指的是其所能承受的最大应力。
常见的强度指标有屈服强度、抗拉强度、抗压强度等。
屈服强度是材料在弹性阶段的抗拉、抗压应力,即在材料开始发生塑性变形之前所能承受的应力。
抗拉强度是材料在拉伸过程中所能承受的最大应力,抗压强度是材料在受压过程中的最大应力。
2.刚度:材料的刚度指的是其抵抗变形的能力。
常见的刚度指标有弹性模量、切变模量等。
弹性模量是材料在弹性阶段的刚度大小,可以描述材料在拉伸或压缩时的回复能力。
切变模量是材料在剪切变形时的刚度大小,可以衡量材料的抗扭转能力。
3.韧性:材料的韧性指的是其在断裂前能够吸收的能量。
常见的韧性指标有延伸率、冲击韧性、断裂伸长率等。
延伸率表示材料在受拉时能够延长的程度,冲击韧性表示材料在受冲击载荷下的抵抗性能,断裂伸长率是材料在断裂前拉伸的长度与初始长度之比。
4.耐磨性:材料的耐磨性指的是其抗磨损能力。
常见的耐磨性指标有硬度、摩擦系数等。
硬度表示材料抵抗表面划伤、模具磨损等形变的能力,摩擦系数表示材料表面与其他物体接触时的磨擦阻力。
5.抗疲劳性:材料的抗疲劳性指的是其抵抗循环加载下疲劳破坏的能力。
常见的抗疲劳性指标有疲劳极限、疲劳寿命等。
疲劳极限是材料在疲劳加载下所能承受的最大应力,疲劳寿命表示材料在循环加载下能够承受的加载次数。
除了上述指标外,材料还有其他性能指标,如导热性能、热膨胀系数、电导率等,这些性能指标主要用于材料的特殊应用领域。
总而言之,材料的力学性能指标是评估材料力学特性的重要依据,不同的材料具有不同的力学性能指标,根据具体应用需求选择合适的材料和合适的力学性能指标是非常重要的。
材料的力学性能在一定的温度条件和外力作用下,材料的抗变形和抗断裂能力称为材料的力学性能。
锅炉和压力容器材料的常规力学性能主要包括强度、硬度、塑性和韧性。
(1)强度强度是指金属材料在外力作用下抵抗变形或断裂的能力。
强度指标是设计中确定许用应力的重要依据。
常用的强度指标为:屈服强度为s,或强度为0.2,抗拉强度为b。
高温工作时,应考虑蠕变极限为N,断裂强度为D。
(2)塑性是指金属材料在断裂前产生塑性变形的能力。
塑性指标包括:断裂伸长率,断裂后试样的相对伸长率;面积圆的减少,断裂点上横截面积的相对减少;和冷弯(角)α,即角测量标本时第一个裂纹在拉伸弯曲表面。
(3)韧性是指金属材料抵抗冲击载荷的能力。
韧性通常表达的冲击能量AK和冲击韧性值αk . k值或αk值不仅反映了材料的耐冲击,但也有些敏感材料的缺陷,可以敏感地反映材质的细微变化,宏观缺陷和微观结构。
而且AK对材料的脆性转变非常敏感,可以通过低温冲击试验来测试钢的冷脆性。
断裂韧度是衡量材料韧性的一个新的指标,它反映了材料的抗裂纹扩展能力。
(4)硬度,硬度是衡量材料硬度和柔软度的性能指标。
硬度测试的方法很多,原理不一样,硬度值和意义也不完全相同。
最常用的是静载荷压痕硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值代表材料表面抵抗坚硬物体冲击的能力。
肖氏硬度(HS)属于回弹硬度试验,其值代表金属的弹性变形功。
因此,硬度不是一个简单的物理量,而是反映材料的弹性、塑性、强度和韧性的综合性能指标。
力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。
(1)抗拉性能。
表示钢材抗拉性能的指标有屈服强度、抗拉强度、屈强比、伸长率、断面收缩率。
屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。
发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。
抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。
材料力学性能指标
材料力学性能指标是用于描述材料力学性能的数值指标,它们是评价材料在外力作用下变形和破坏行为的重要参数。
常见的材料力学性能指标包括强度、韧性、硬度、刚度等。
强度是材料抵抗本体破坏的能力,通常用屈服强度、抗拉强度、抗压强度等来衡量。
屈服强度是材料开始变形的强度,抗拉强度是在拉伸过程中材料破坏前所能承受的最大拉力,抗压强度是材料在受到压缩作用下承受的最大压力。
强度的高低决定了材料在受力环境下是否会发生破坏。
韧性是材料抵抗塑性变形能力的指标,一般用断裂延伸率和断裂韧性来描述。
断裂延伸率是材料在断裂前所能承受的最大拉伸变形与原始尺寸的比值,反映了材料在拉伸过程中的延展性;断裂韧性是材料在断裂前所能吸收的单位体积的能量,反映了材料的抗冲击能力。
硬度是材料抵抗划痕或穿刺的能力,常用硬度测试方法包括洛氏硬度、布氏硬度和维氏硬度等。
硬度的高低反映了材料的抗刮擦和抗磨损能力。
刚度是材料抵抗变形的能力,常用刚度系数衡量。
刚度系数是指材料在单位应力下的相对应变,刚度系数越大,材料的刚性越高,变形能力越小。
除了上述指标外,还有一些其他的材料力学性能指标,如耐疲劳性、蠕变性、弹性模量、破裂韧度等,这些指标可以根据具
体的材料性质和使用环境来选择。
综上所述,材料力学性能指标是评价材料性能的重要参数,不同的指标反映了材料在力学应力下的不同特性。
在工程设计和材料选择中,需要根据具体需求和使用环境来选择合适的材料力学性能指标,以保证材料在使用过程中具有良好的性能。
第一章材料的力学性能一、名词解释1、力学性能:材料抵抗各种外加载荷的能力,称为材料的力学性能。
2、弹性极限:试样产生弹性变形所承受的最大外力,与试样原始横截面积的比值,称为弹性极限,用符号σe表示。
3、弹性变形:材料受到外加载荷作用产生变形,当载荷去除,变形消失,试样恢复原状,这种变形称为弹性变形。
4、刚度:材料在弹性变形范围内,应力与应变的比值,称为刚度,用符号E表示。
5、塑性:材料在外加载荷作用下,产生永久变形而不破坏的性能,称为塑性。
6、塑性变形:材料受到外力作用产生变形,当外力去除,一部分变形消失,一部分变形没有消失,这部分没有消失的变形称为塑性变形。
7、强度:材料在外力作用下抵抗变形和断裂的能力,称为强度。
8、抗拉强度:材料在断裂前所承受的最大外加拉力与试样原始横截面积的比值,称为抗拉强度,用符号σb表示。
9、屈服:材料受到外加载荷作用产生变形,当外力不增加而试样继续发生变形的现象,称为屈服。
10、屈服强度:表示材料在外力作用下开始产生塑性变形的最低应力,即材料抵抗微量塑性变形的能力,用符号σs表示。
11、σ0.2:表示条件屈服强度,规定试样残留变形量为0.2%时所承受的应力值。
用于测定没有明显屈服现象的材料的屈服强度。
12、硬度:金属表面抵抗其它更硬物体压入的能力,即材料抵抗局部塑性变形的能力,称为硬度。
13、冲击韧度:材料抵抗冲击载荷而不破坏的能力,称为冲击韧度,用符号αk表示。
14、疲劳:在交变载荷作用下,材料所受的应力值虽然远远低于其屈服强度,但在较长时间的作用下,材料会产生裂纹或突然的断裂,这种现象称为疲劳。
15、疲劳强度:材料经无数次应力循环而不发生断裂,这一应力值称为疲劳强度或疲劳极限,用符号σ-1表示。
16、蠕变:材料在高温长时间应力作用下,即使所加应力值小于该温度下的屈服极限,也会逐渐产生明显的塑性变形直至断裂,这种现象称为蠕变。
17、磨损:由两种材料因摩擦而引起的表面材料的损伤现象称为磨损。
材料⼒学性能情况总结材料⼒学性能:材料在各种外⼒作⽤下抵抗变形和断裂的能⼒。
屈服现象:外⼒不增加,试样仍然继续伸长,或外⼒增加到⼀定数值时突然下降,随后在外⼒不增加或上下波动情况下,试样继续伸长变形。
屈服过程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。
屈服变形机制:位错运动与增殖的结果。
屈服强度:开始产⽣塑性变形的最⼩应⼒。
屈服判据:屈雷斯加最⼤切应⼒理论:在复杂应⼒状态下,当最⼤切应⼒达到或超过相同⾦属材料的拉伸屈服强度时产⽣屈服。
⽶赛斯畸变能判据:在复杂应⼒状态下,当⽐畸变能等于或超过相同⾦属材料在单向拉伸屈服时的⽐畸变能时,将产⽣屈服。
消除办法:加⼊少量能夺取固溶体合⾦中溶质原⼦的物质,使之形成稳定化合物的元素;通过预变形,使柯⽒⽓团被破坏。
影响因素:1.内因:a)⾦属本性及晶格类型:⾦属本性及晶格类型不同,位错运动所受的阻⼒不同。
b)晶粒⼤⼩和亚结构:减⼩晶粒尺⼨将使屈服强度提⾼。
c)溶质元素:固溶强化。
d)第⼆相2.外因:温度(-);应变速率(+);应⼒状态。
第⼆相强化(沉淀强化+弥散强化):通过第⼆相阻碍位错运动实现的强化。
强化效果:在第⼆相体积⽐相同的情况下,第⼆相质点尺⼨越⼩,强度越⾼,强化效果越好;在第⼆相体积⽐相同的情况下,长形质点的强化效果⽐球形质点的强化效果好;第⼆相数量越多,强化效果越好。
细晶强化:通过减⼩晶粒尺⼨增加位错运动障碍的数⽬(阻⼒⼤),减⼩晶粒内位错塞积群的长度(应⼒⼩),从⽽使屈服强度提⾼的⽅法。
同时提⾼塑性及韧性的机理:晶粒越细,变形分散在更多的晶粒内进⾏,变形较均匀,且每个晶粒中塞积的位错少,因应⼒集中引起的开裂机会较少,有可能在断裂之前承受较⼤的变形量,即表现出较⾼的塑性。
细晶粒⾦属中,裂纹不易萌⽣(应⼒集中少),也不易传播(晶界曲折多),因⽽在断裂过程中吸收了更多能量,表现出较⾼的韧性。
固溶强化:在纯⾦属中加⼊溶质原⼦形成固溶合⾦,将显著提⾼屈服强度。
材料力学性能重点总结1.强度:材料的强度是指材料在外力作用下抵抗破坏的能力。
常用于评估材料抗拉强度、抗压强度、抗弯强度等。
强度与材料内部结构关系紧密,常用措施是通过原子间结合力和晶粒结构的稳定性提高强度。
2.韧性:材料的韧性是指承受冲击负载时材料能够发生塑性变形而不发生断裂的能力。
韧性与材料断裂韧度有关,断裂韧度越高,材料的韧性越好。
韧性的提高可以通过增加材料的塑性变形能力来实现,例如降低材料的晶界和相界的应力集中。
3.硬度:材料的硬度是指材料抵抗外部划痕或压痕的能力。
硬度可以用于评价材料的耐磨性和抗划伤性能。
通常,硬度较高的材料具有较好的耐磨性和较高的抗划伤能力。
硬度可以通过提高材料的晶粒尺寸和强化材料的位错密度来改善。
4.塑性:材料的塑性是指材料在受力后能够发生可逆性的非弹性形变的能力。
塑性变形是材料在受力过程中重要的变形方式,可以提高材料的韧性和变形能力。
材料的塑性与材料的熔点、晶粒尺寸和晶粒形态等因素有关。
5.疲劳寿命:材料的疲劳寿命是指材料在循环加载下能够承受的应力循环次数。
疲劳寿命是材料设计和选择的重要指标,特别是在机械和航空领域中。
疲劳寿命与材料中的微观缺陷、动态应力等因素密切相关。
6.脆性:材料的脆性是指材料在受力时容易发生断裂的性质。
脆性材料在受力作用下会发生紧急的破坏,通常不会发生明显的可逆塑性变形。
与韧性材料相比,脆性材料更容易发生断裂。
材料的脆性取决于材料中的缺陷结构和应力分布。
总的来说,材料力学性能是评价材料质量的重要指标。
强度、韧性、硬度、塑性、疲劳寿命和脆性是材料力学性能的关键指标。
合理设计和选择材料可以改善材料力学性能,提高材料的耐久性和可靠性。