浙江省温州市永嘉县2017年中考数学三模试卷(带答案)
- 格式:doc
- 大小:393.50 KB
- 文档页数:18
2017年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1 C.0 D.﹣62.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.(4分)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.4.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.65.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y17.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3 9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m=.12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD 对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A 至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO 交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN 上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C (点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.(4分)(2017•温州)﹣6的相反数是()A.6 B.1 C.0 D.﹣6【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选D.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)(2017•温州)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017•温州)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【分析】依据被开放数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)(2017•温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt △ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a ﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)(2017•温州)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)(2017•温州)分解因式:m2+4m=m(m+4).【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)(2017•温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2.【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.13.(5分)(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为3.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD 关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)(2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36, ∴Rt △APM 中,MP=8,故DQ=8=OG , ∴BQ=12﹣8=4,由BQ ∥CG 可得,△ABQ ∽△ACG ,∴=,即=,∴CG=12,OC=12+8=20, ∴C (20,0),又∵水流所在抛物线经过点D (0,24)和B (12,24), ∴可设抛物线为y=ax 2+bx +24,把C (20,0),B (12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x 2+x +24,又∵点E 的纵坐标为10.2, ∴令y=10.2,则10.2=﹣x 2+x +24,解得x 1=6+8,x 2=6﹣8(舍去), ∴点E 的横坐标为6+8,又∵ON=30, ∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(2017•温州)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)(2017•温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B (4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)等,△PAB如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)(2017•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【分析】(1)首先确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.【点评】本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,又∵300﹣3x>0,综上所述,50<x<100,150<3x<300,∴丙瓷砖单价3x的范围为150<3x<300元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP 的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的而得出S△ACG面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG 和△DEG 的面积之比为.理由:如图6,∵DM ∥AF ,∴DF=AM=DE=1,又由对称性可得GE=GD ,∴△DEG 是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE ,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD ﹣∠GDM=15°,∴GMD=∠GDM ,∴GM=GD=1,过C 作CH ⊥AB 于H ,由∠BAC=30°可得CH=AC=AB=1=MG ,AH=,∴CG=MH=﹣1,∴S △ACG =CG ×CH=, ∵S △DEG =,∴S △ACG :S △DEG =.【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。
2017年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1 C.0 D.﹣62.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.(4分)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.4.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.65.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y17.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3 9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m=.12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD 对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A 至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO 交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN 上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C (点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.(4分)(2017•温州)﹣6的相反数是()A.6 B.1 C.0 D.﹣6【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选D.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)(2017•温州)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017•温州)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【分析】依据被开放数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)(2017•温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt △ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a ﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)(2017•温州)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)(2017•温州)分解因式:m2+4m=m(m+4).【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)(2017•温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2.【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.13.(5分)(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为3.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD 关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)(2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(2017•温州)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)(2017•温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B (4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)等,△PAB如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)(2017•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【分析】(1)首先确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.【点评】本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,又∵300﹣3x>0,综上所述,50<x<100,150<3x<300,∴丙瓷砖单价3x的范围为150<3x<300元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP 的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的而得出S△ACG面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG 和△DEG 的面积之比为.理由:如图6,∵DM ∥AF ,∴DF=AM=DE=1,又由对称性可得GE=GD ,∴△DEG 是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE ,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD ﹣∠GDM=15°,∴GMD=∠GDM ,∴GM=GD=1,过C 作CH ⊥AB 于H ,由∠BAC=30°可得CH=AC=AB=1=MG ,AH=,∴CG=MH=﹣1,∴S △ACG =CG ×CH=, ∵S △DEG =,∴S △ACG :S △DEG =.【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。
2017年浙江省温州市中考数学试卷(含答案解析版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年浙江省温州市中考数学试卷(含答案解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年浙江省温州市中考数学试卷(含答案解析版)(word版可编辑修改)的全部内容。
则乘公共汽车表中表示零件个数的数据中,众数是(个A.ABCD是这组数据的中位数,120°,则它的半径为第16题图.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把(2)化简:EDC=90在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整请在所给网格区域两点交,区域Ⅱ的瓷砖均价为②若甲、丙两瓷砖单价之和为种瓷砖总价为AM=BM(点与圆的另一个交点为F将点,直接写出△的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是( )A.6B.1C.0D.﹣6【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有( )A.75人B.100人C.125人D.200人【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为 100÷20%=500(人);所以乘公共汽车的学生人数为 500×40%=200(人).故选D..B...解:从正面看,下列选项中的整数,与最接近的是( )<<∴与最接近的是=,则小车上升的A.5米B.6米C.6.5米D.12米【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是( )A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣3【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为( )A.12S B.10S C.9S D.8S【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为( )A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.这组数据的平均数为=4.8时,这组数据的平均数为=5时,这组数据的平均数为=5×=3出方程: = .=和甲、乙完成铺:=.故答案是:=.y=(的值为 .(m,m【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆8 ﹣x+x+246+8,据此可得点∴=,即=,,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10。
浙江省温州市永嘉县2019届中考数学三模试卷(解析版)一.选择题1.下列等式计算正确的是()A. (﹣2)+3=﹣1B. 3﹣(﹣2)=1C. (﹣3)+(﹣2)=6D. (﹣3)+(﹣2)=﹣52.下列四个几何体中,主视图是三角形的是()A. B. C. D.3.要使二次根式有意义,则x应满足()A. x≠1B. x≥1C. x≤1D. x<14.抛物线y=x2﹣3x+2与y轴交点的坐标为()A.(0,2)B.(1,0)C.(2,0)D.(0,﹣3)5.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=22°,那么∠2的度数是()A. 22°B. 78°C. 68°D. 70°6.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=6,DB=3,则的值为()A. B. C. D. 27.四张完全相同的卡片上,分别画有圆、正方形、等边三角形和线段,现从中随机抽取两张,卡片上画的恰好都是中心对称图形的概率为()A. 1B.C.D.20名队员身高的中位数是()A. 176cmB. 177cmC. 178cmD. 180cm9.某工厂接到加工600件衣服的订单,预计每天做25件,正好按时完成,后因客户要求提前3天交货,工人则需要提高每天的工作效率,设工人每天应多做x件,依题意列方程正确的是()A. ﹣=3B. +3=C. ﹣=3D. ﹣=310.如图,在菱形ABCD中,tan∠ABC= ,P为AB上一点,以PB为边向外作菱形PMNB,连结DM,取DM中点E,连结AE,PE,则的值为()A. B. C. D.二.填空题11.分解因式:m2﹣9=________.12.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是________.13.不等式组的解为________.14.如图,在△ABC中,两条中线BE、CD相交于点O,则S△ADE:S△COE=________.15.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,D为AC中点,P为AB上的动点,将P绕点D逆时针旋转90°得到P′,连CP′,则线段CP′的最小值为________.16.如图,在△ABC中,B、C两点恰好在反比例函数y= (k>0)第一象限的图象上,且BC= ,S△ABC= ,AB∥x轴,CD⊥x轴交x轴于点D,作D关于直线BC的对称点D′.若四边形ABD′C 为平行四边形,则k为________.三.解答题17.计算题()﹣1+ +sin30°;(1)计算:()﹣1+ +sin30°;(2)先化简,再求值:(m+2)(m﹣2)﹣(m﹣2)2+1,其中m=2.18.温州市政府计划投资百亿元开发瓯江口新区,打造出一个“东方时尚岛、海上新温州”.为了解温州市民对瓯江口新区的关注情况,某学校数学兴趣小组随机采访部分温州市民,对采访情况制作了统计图表的一部分如下:.不知道(1)根据上述统计表可得此次采访的人数为________人;m=________,n=________;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,估计25000名温州市民中高度关注瓯江口新区的市民约________人.19.如图,在方格纸中,线段AB的两个端点都在小方格的格点上,AB=5,请找到一个格点P,连结PA,PB,使得△PAB为等腰三角形(请画出两种,若所画三角形全等,则视为一种).20.如图,一艘渔船位于码头M的南偏东45°方向,距离码头120海里的B处,渔船从B处沿正北方向航行一段距离后,到达位于码头北偏东60°方向的A处.(1)求渔船从B到A的航行过程中与码头M之间的最小距离.(2)若渔船以20海里/小时的速度从A沿AM方向行驶,求渔船从A到达码头M的航行时间.21.如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB相切于点P.(1)求证:BP平分∠ABC;(2)若PC=1,AP=3,求BC的长.22.温州某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至于30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2015年学校寝室数为64个,2019届建成后寝室数为121个,求2015至2019届的平均增长率;(2)若建成后的寝室可供600人住宿,求单人间的数量;(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?23.如图,抛物线y=ax2+3x交x轴正半轴于点A(6,0),顶点为M,对称轴MB交x轴于点B,过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD于点F,作直线MF.(1)求a的值及M的坐标;(2)当BD为何值时,点F恰好落在该抛物线上?(3)当∠DCB=45°时:①求直线MF的解析式;________②延长OE交FM于点G,四边形DEGF和四边形OEDC的面积分别记为S1、S2,则S1:S2的值为________(直接写答案)24.如图,在矩形ABCD中,AD=10,E为AB上一点,且AE= AB=a,连结DE,F是DE中点,连结BF,以BF为直径作⊙O.(1)用a的代数式表示DE2=________,BF2=________;(2)求证:⊙O必过BC的中点;(3)若⊙O与矩形ABCD各边所在的直线相切时,求a的值;(4)作A关于直线BF的对称点A′,若A′落在矩形ABCD内部(不包括边界),则a的取值范围________.(直接写出答案)答案解析部分一.<b >选择题</b>1.【答案】D【考点】有理数的加减混合运算【解析】【解答】解:∵(﹣2)+3=1,故答案为:项A错误,∵3﹣(﹣2)=3+2=5,故答案为:项B错误,∵(﹣3)+(﹣2)=﹣5,故答案为:项C错误,∵(﹣3)+(﹣2)=﹣5,故答案为:项D正确,故答案为:D.【分析】异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;减去一个数,等于加上这个数的相反数;同号两数相加取相同的符号,并把绝对值相加。
2017年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1 C.0 D.﹣62.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.(4分)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.4.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.65.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y17.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3 9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m=.12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD 对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A 至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO 交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN 上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C (点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.(4分)(2017•温州)﹣6的相反数是()A.6 B.1 C.0 D.﹣6【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选D.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)(2017•温州)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017•温州)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【分析】依据被开放数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)(2017•温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt △ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a ﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)(2017•温州)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)(2017•温州)分解因式:m2+4m=m(m+4).【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)(2017•温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2.【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.13.(5分)(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为3.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD 关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)(2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(2017•温州)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)(2017•温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B (4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)等,△PAB如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)(2017•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【分析】(1)首先确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.【点评】本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,又∵300﹣3x>0,综上所述,50<x<100,150<3x<300,∴丙瓷砖单价3x的范围为150<3x<300元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP 的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的而得出S△ACG面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG 和△DEG 的面积之比为.理由:如图6,∵DM ∥AF ,∴DF=AM=DE=1,又由对称性可得GE=GD ,∴△DEG 是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE ,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD ﹣∠GDM=15°,∴GMD=∠GDM ,∴GM=GD=1,过C 作CH ⊥AB 于H ,由∠BAC=30°可得CH=AC=AB=1=MG ,AH=,∴CG=MH=﹣1,∴S △ACG =CG ×CH=, ∵S △DEG =,∴S △ACG :S △DEG =.【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。
浙江省温州市2017年中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6B.1C.0D.﹣62.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.(4分)某运动会颁奖台如图所示,它的主视图是()A.B.C.D.4.(4分)下列选项中的整数,与最接近的是()A.3B.4C.5D.65.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y17.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣3 9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m=.12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC 内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.(4分)(2017•温州)﹣6的相反数是()A.6B.1C.0D.﹣6【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【考点】VB:扇形统计图.【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选D.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)(2017•温州)某运动会颁奖台如图所示,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017•温州)下列选项中的整数,与最接近的是()A.3B.4C.5D.6【考点】2B:估算无理数的大小.【分析】依据被开放数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)(2017•温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个【考点】W5:众数.【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1【考点】F8:一次函数图象上点的坐标特征.【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣3【考点】A3:一元二次方程的解.【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【考点】KR:勾股定理的证明.【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)(2017•温州)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【考点】D2:规律型:点的坐标.【专题】17:推理填空题.【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)(2017•温州)分解因式:m2+4m=m(m+4).【考点】53:因式分解﹣提公因式法.【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)(2017•温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2.【考点】W4:中位数;W1:算术平均数.【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.13.(5分)(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为3.【考点】MO:扇形面积的计算.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【考点】B6:由实际问题抽象出分式方程.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【考点】G6:反比例函数图象上点的坐标特征;LB:矩形的性质.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)(2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【考点】HE:二次函数的应用.【专题】153:代数几何综合题.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP ⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(2017•温州)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【考点】4F:平方差公式;2C:实数的运算;4A:单项式乘多项式.【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【考点】KD:全等三角形的判定与性质.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【考点】X6:列表法与树状图法;V5:用样本估计总体;VC:条形统计图.【专题】11:计算题.【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)(2017•温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B (4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【考点】N4:作图—应用与设计作图.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)等,△PAB如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【考点】MC:切线的性质;L7:平行四边形的判定与性质;T7:解直角三角形.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEC=∠B=45°,∠FEO=90°,根据平行线的性质得到∠ECD=∠FEC=45°,得到∠EOC=90°,求得EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∵EF是⊙O的切线,∴∠FEC=∠B=45°,∠FEO=90°,∴∠CEO=45°,∵DE∥CF,∴∠ECD=∠FEC=45°,∴∠EOC=90°,∴EF∥OD,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)(2017•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式.【分析】(1)思想确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.【点评】本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【考点】C9:一元一次不等式的应用;HE:二次函数的应用;LB:矩形的性质.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,∴0<x<50,∴丙瓷砖单价3x的范围为0<3x<150元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【考点】MR:圆的综合题.【专题】16:压轴题.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C 作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,=CG×CH=,∴S△ACG=,∵S△DEG:S△DEG=.∴S△ACG【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。
2017年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1 C.0 D.﹣62.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人 B.100人C.125人D.200人3.(4分)某运动会颁奖台如图所示,它的主视图是()A .B .C .D .4.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.65.(4分)温州某企业车间有50名工人,某一天他们生产的机1器零件个数统计如下表:5678零件个数(个)人数(人)3152210表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y17.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣329.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD 的面积为()A.12S B.10S C.9S D.8S10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()3A.(﹣6,24) B.(﹣6,25) C.(﹣5,24) D.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m= .12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D 与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.416.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则为cm.点E到洗手盆内侧的距离EH17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).518.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)620.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A 的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O7的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD 的函数表达式.823.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.924.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B 和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.10112017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.(4分)(2017•温州)﹣6的相反数是()A.6 B.1 C.0 D.﹣6【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()12A.75人 B.100人C.125人D.200人【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为 100÷20%=500(人);所以乘公共汽车的学生人数为 500×40%=200(人).故选D.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)(2017•温州)某运动会颁奖台如图所示,它的主视图是()A .B .C .D .【分析】根据从正面看得到的图形是主视图,可得答案.13【解答】解:从正面看,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017•温州)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【分析】依据被开放数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)(2017•温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:14零件个数5678(个)人数(人)3152210表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的15图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,16∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解17两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S18【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于19中考选择题中的压轴题.10.(4分)(2017•温州)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24) B.(﹣6,25) C.(﹣5,24) D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.20【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)(2017•温州)分解因式:m2+4m= m(m+4).【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)(2017•温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2 .【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,21当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.(2017•温州)已知扇形的面积为3π,圆心角为120°,(5分)13.则它的半径为 3 .【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,22根据题意可列出方程:=.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD 对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.23【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m ,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m ,A′E=m,∴A′(m ,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,24∴m •m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)(2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH 为24﹣825cm.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,26∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.27【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(2017•温州)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;28(2)原式=1﹣a2+a2﹣2a=1﹣2a.【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,29∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三30个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,31所以他和小慧被分到同一个班的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)(2017•温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A 的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;32(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)等,△PAB如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D33(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,34∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,35∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)(2017•温州)如图,过抛物线y=x2﹣2x上一点A 作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD36的函数表达式.【分析】(1)首先确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,37由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).38设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P (,5),∴直线PD的解析式为y=﹣x+.【点评】本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比39为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.40(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,又∵300﹣3x>0,综上所述,50<x<100,150<3x<300,∴丙瓷砖单价3x的范围为150<3x<300元/m2.41【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B 和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.42【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ 的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG =CG×CH=,再根据S△DEG =,即可得到△ACG和△DEG的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,43∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,44∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,45Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,46∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ 的值为或或;②△ACG和△DEG 的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,47∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG =CG×CH=,∵S△DEG =,∴S△ACG:S△DEG =.【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周48角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.49。
温州市永嘉县2017年中考三模科学试卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平。
答题时,请注意以下几点:1.全卷共8页,有四大题,33小题。
全卷满分180分。
考试时间120分钟。
2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效。
3.本卷可能用到的相对原子质量H-1 C-12 N-14 O-16 Na-23 Cl-35.5 Ba-1374.本卷用到的g取10牛/千克。
祝你成功!一、选择题(本题有15小题,每小题4分,共60分)1. 2017年3月,永嘉县制定了“一河一策”,开展全境剿灭劣五类水行动。
下列措施中有利于剿灭劣五类水的是A.任意排放工业污水B.禁止使用农药和化肥C.生活污水经净化处理后再排放D.抑制水中所有植物生长2. 规范的实验操作是获得实验成功的重要保证。
下列粗盐提纯的实验操作中,错误..的是A.取粗盐B.溶解C.过滤D.蒸发3. 我国已执行“二胎政策”,每对夫妇可以生育二孩。
一个小小的受精卵发育成一个3千克左右的胎儿,关于受精卵的变化,下列选项表述正确且完整.....的是A.细胞生长、分裂B.细胞生长、分化C.细胞分化、分裂D.细胞生长、分裂、分化4. 在观察洋葱鳞片叶内表皮胞时,从图甲转为图乙,下列操作不必要...的是A.转动细准焦螺旋B.选用更小光圈C.移动装片D.转动转换器,换用高倍物镜5. 俗话说“万物生长靠太阳”,地球上的生命依靠太阳的能量生存。
以下关于太阳的说法中错误的是A. 常见的太阳活动有太阳黑子、日珥B. 太阳位于银河系中心C. 太阳是地球生命活动所需能量的最主要来源D. 太阳是离地球最近的恒星6. 在“探究鱼类适应水中生活特征”的实验中,某兴趣小组正在激烈讨论,甲的疑惑属于探究过程中的A.提出问题B.建立假设C.设计实验D.得出结论7. 人体每天通过泌尿系统(如右图)形成的原尿约有150升,真正排出体外的尿液约1.5升,完成该生理过程的器官是A.①B.②C.③D.④8. 在用光具座研究凸透镜成像规律的实验中,测量凸透镜的焦距如图所示,则该凸透镜的焦距是A.10厘米B.20厘米C.30厘米D.50厘米9. 如图是在密闭容器内发生化学前后微观粒子的变化情况,该化学反应的类型属A .化合反应B .分解反应C .置换反应D .复分解反应10.如果用右图表示各种概念之间的关系,右表所示选项中与图示相符的是11.超市的商品上贴有具有磁性的标签,当未消磁的标签经过超市出口处的安全门时,安全门上的线圈会产生电流,触发报警器达到防盗目的。
永嘉县2017年初中毕业升学考试第二次适应性测试数 学 试 题 卷亲爱的同窗:欢迎参加考试! 请你认真审题,踊跃试探,细心答题,发挥最正确水平. 答题时,请注意以下几点:1.全卷共4页,有三大题,24小题.全卷总分值150分.考试时刻120分钟. 2.答案必需写在答题纸相应的位置上,写在试题卷、草稿纸上均无效. 3.答题前,认真阅读答题纸上的《注意事项》,按规定答题.祝你成功!卷Ⅰ一、选择题(此题有10小题,每题4分,共40分,每题只有一个选项是正确的,不选、多项选择、错选,均不给分)1.在-4,2,-1,3这四个数中,最小的数是( ▲ ) A .-1 B .2 C .3 D .-4 2.小明对九(1)班同窗“你最喜爱的球类项目是什么?(只选一项)”的 问题进行了调查,把所得数据绘制成如下图的扇形统计图. 由图可知, 该班同窗最喜爱的球类项目是( ▲ )A .羽毛球B .篮球C .排球D .乒乓球 3.假设3a -在实数范围内成心义,那么a 的取值范围是( ▲ ) A .a ≤3 B .a ≥3 C .a ≤-3 D .a ≥-3 4.如图是由四个相同的小正方体组成的立体图形,它的主视图是( ▲ )5.假设点A (2,3)在反比例函数ky x=的图象上,那么该图象必然通过点( ▲ ) A .(-2,3) B .(1,-6) C .(-3,-2) D .(3,3)6.用配方式解一元二次方程542=-x x 时,以下配方正确的选项是 ( ▲ )A .9)2(2=-xB .1)2(2=-xC .9)2(2=+xD .1)2(2=+x 7.如图,直线1l ∥2l ∥3l , 直线AC 别离交1l ,2l ,3l 于点A ,B ,C , 直线DF 别离交1l ,2l ,3l 于点D ,E ,F .若DE =3,EF =6,AB =4, 则AC 的长是( ▲ )(第7题)l 1l 2l 3FE CB A D A . B .C .D .(第2题)九(1)班同学最喜欢 的球类项目统计图排球23%午餐40%篮球 32%乒乓球 20%羽毛球A .6B .8C .9D .128.如图,在平面直角坐标系中,点A ,B 的坐标别离为(0,4)和(1,3)△OAB 沿x 轴向右平移后取得△O ′A ′B ′,点A 的对应点A ′ 在直线y =45x 上,那么点B 与O ′ 间的距离为( ▲ )A .3B .4C .5D .349.如图,扇形OAB 中,∠AOB =120°,半径OA =6,C 是AB 的中点, CD ⊥OA ,交AB 于点 D ,那么CD 的长为( ▲ ) A .23B .3C .3D .32 10.已知二次函数2(0)y ax bx c a =++≠图象上部份点的坐标()x y ,的对应值如下表所示:x… 0 50 200 … y…1-11…那么方程220ax bx ++=的根是( ▲ )A .x 1=x 2=100B .x 1=0,x 2=200C .x 1=50,x 2=150D .x 1=50,x 2=250卷Ⅱ二、填空题(此题有6小题,每题5分,共30分) 11.分解因式:m 2-2m +1 = ▲ .12.一个不透明的袋中装有3个黄球,4个黑球和5个红球,它们除颜色外都相同.那么从袋中摸出一个球是黑球的概率为 ▲ . 13.如图,已知△ABC ≌△BAD ,若∠DAC =20°,∠C =88°,则∠DBA = ▲ 度.14.九年级某班同窗,每人都会游泳或滑冰,其中会游泳的人数比会滑冰的人数多10人,两种都会的有5人.设会游泳的有a 人, 那么该班同窗共有 ▲ 人(用含a 的代数式表示). 15.如图,矩形ABCD 中,AB =10,AD =6,以A 为圆心,AB 为半径作圆弧交CD 于E ,连结EA ,EB .那么tan ∠AEB 的值为 ▲ . 16.如图,正方形ABCD 的边长为6,E ,F 别离是边CD 和AD 上的点,且DF =DE =2,连结AE ,作点F 关于AE 的对称点G ,连结AG 并延 长交CD 于点H ,过点G 的直线l 别离交线段AF ,BC 于点M ,N , 且MN =AH .则AH 和MF 的长别离是 ▲ 和 ▲ .D CAB(第13题)(第16题) H GFE ACD B(第9题)DC BOA(第8题)O'B'A'BAOxy(第15题)三、解答题(此题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明进程) 17.(此题10分)(1)计算:20170-8+|1|.(2)先化简,再求值:⎪⎪⎭⎫⎝⎛++÷--x x x x x 121222,其中x =99.18.(此题8分)某县在一次九年级数学模拟测试中,有一道总分值为8分的解答题,按评分标准,所有考生的得分只有四种情形:0分、3分、5分、8分.教师为了了解学生的得分情形与题目的难易程度,从全县9000名考生的试卷中随机抽取假设干份,通过度析与整理,绘制了如下两幅不完整的统计图.请依照以上信息解答以下问题:(1)该题学生得分情形的众数是 ▲ . (2)求所抽取的试卷份数,并补全条形统计图. (3)已知难度系数的计算公式为L =XW,其中L 为难度系数,X 为样本平均得分,W 为试题总分值值.一样来讲,依照试题的难度系数可将试题分为以下三类:当0≤L <时,此题为难题;当≤L ≤时,此题为中等难度试题;当<L ≤1时,此题为容易题.通过计算,说明此题关于该县的九年级学生来讲属于哪一类?19.(此题8分)如图,在10×10的方格中有线段AD ,作三边互不相等的△ABC ,使其知足以下条件:(1)在图甲中,作格点△ABC ,使AD 为△ABC 的中线. (2)在图乙中,作格点△ABC ,使AD 为△ABC 的高线.(图甲、图乙在答题纸上)20.(此题8分)如图,点A ,D 在BC 的同侧,AB ⊥BC ,CD ⊥BC ,点E 在线段BC 上,且AE ⊥DE . (1)要取得△ABE ≌△ECD ,请你添加一个条件: ▲ ,并证明结论成立.(2)在(1)的结论下,假设已知BC =5,ADABE 的面积.(第20题)BA12243648607284961081200分3分5分8分类别九年级数学质量检测一道解答题学生得分情况统计图(第18题)(第19题)21.(此题10分)已知抛物线2y ax bx =+通过点A (-3,-3)和点P (m ,0(1)如图,假设该抛物线的对称轴通过点A ,求现在y 的最小值和m (2)假设m=-2时,设现在抛物线的极点为B ,求四边形OAPB 的面积.22.(此题10分)如图,已知AB 是半圆O 的直径,OC ⊥AB 交半圆于点C ,D 是射线OC 上一点,连结AD 交半圆O 于点E ,连结BE ,CE . (1)求证:EC 平分∠BED . (2)当EB =ED 时,求证:AE =CE .23.(此题12分)为了迎接浙江省中小学生健康体质测试,某学校开展“健康校园,阳光跳绳”活动,为此学校预备购买A ,B ,C 三种跳绳.已知某厂家的跳绳的规格与价钱如下表:(1)已知购买A ,B 两种绳索共20条花了180元,问A ,B 两种绳子各购买了多少条? (2)假设该厂家有一根长200米的绳索,现将其裁成A ,C 两种绳子销售总价为240元,则剩余的绳索长度最多可加工几条B 种绳子?(3)假设该厂家有一根长200米的绳索,现将其裁成A ,B ,C 三种绳子共40条(没有剩余)销售给学校,学校要求A 种绳子的数量少于B 种绳子的数量但很多于B 种绳子的数量的一半,请直接写出所有的裁剪方案.24.(此题14分)如图,在△ABC 中,∠ACB =90º,AC =8,CB =6,点D 在线段CB 的延长线上,且BD =2,点P 从点D 动身沿着DC 向终点C 以每秒1个单位的速度运动,同时点Q 从点C 动身沿着折线C -B -A 往终点A 以每秒2个单位的速度运动.以PQ 为直径构造⊙O ,设运动的时刻为t (t ≥0)秒.(1)当0≤t <3时,用含t 的代数式表示BQ 的长度.(2)当点Q 在线段CB 上时,求⊙O 和线段AB 相切时t 的值. (3)在整个运动进程中,①点O 是不是会出此刻△ABC 的内角平分线上?假设存在, 求t 的值;假设不存在,说明理由. ②直接写出点O 运动途径的长度.(第24题)(第21题)(第22题)永嘉县2017年初中升学考试第二次适应性考试数学学科参考答案一、选择题(此题有10小题,每题4分,共40分,每题只有一个选项是正确的,不选、多项选择、二、填空题(此题有6小题,每题5分,共30分) 11.(m -1)212.1313.36 14.(2a -15) 15.3 16.152,135(过E 作PE ⊥AH 于点P ,设HE =x ,由sin ∠AHD ==AD PE AH HE ,得62=AH x,∴AH =3x ,∴62+(2+x )2=(3x )2,解得x =52,∴AH =152.过G作GQ ⊥AD 于点Q ,并反向延长交BC 于点R ,易患GQ =AG ·sin ∠DAH =125,∴GR =185,∴23=GM GN ,∴GM =3,∴MQ =95,由tan ∠QGF =tan ∠DAE =13,得QF =1214535⨯=,∴MF =9413555+=)三、解答题(此题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明进程) 17.(此题10分) 解:(1)原式=1--1=.……5分(2)原式=1x x÷221x x x =1x x ·2(1)xx =11x , 当x =99时,原式=111100x . ……5分18.(此题8分)(1)5. ………………………2分(2)24÷10%=240(份).………………………2分………………………2分(3)010%325%545%820%0.5758L ⨯+⨯+⨯+⨯==∵<L <,∴此题为中等难度试题.………………………2分12243648607284961081200分3分5分8分19.(此题8分)参考答案(不唯一),每图4分.20.(此题8分)(1)BE=CD .证明:∵AB ⊥BC ,CD ⊥BC , AE ⊥DE ,∴∠B =∠C =∠AED =Rt ∠,∴∠AEB +∠DEC =90°,∠DEC +∠EDC =90° ∴∠AEB =∠EDC 又∵BE =DC∴△ABE ≌△ECD (ASA ). ………………………4分(2)∵△ABE ≌△ECD ∴AE =ED ,AB =EC ∵AD 26 ∴AE =ED 13 设BE =x ,那么AB =EC =5-x .在△ABE 中,x ²+(5-x )²=13,解得1x =2, 2x =3. 13232ABES=⨯⨯= ………………………4分21.(此题10分)解:(1)依照题意得,A 是抛物线的极点,∴现在y 的最小值-3,对称轴是直线x =-3,∴m =-6. ………………………4分(2)将(-2,0)和(-3,-3)别离代入2y ax bx =+,得420933a b a b -=⎧⎨-=-⎩,解得12a b =-⎧⎨=-⎩.∴244144ac b a --==-,∴S △OP A =12332⨯⨯=,S △OP A =12112⨯⨯=. ∴四边形OAPB 的面积是4. ………………………6分(第20题)B甲乙(图2) 22.(此题10分)(1)∵AB 是半圆O 的直径,∴∠AEB =90°,∴∠DEB =90°.∵OC ⊥AB ,∴90AC BC ==︒,∴∠BEC =45°,∴∠DEC =45°. ∴∠BEC =∠DEC ,即EC 平分∠BEC .…………5分 (2)连结BC .∵BE =DE ,∠BEC =∠DEC ,EC =EC , ∴△BEC ≌△DEC ,∴∠CBE =∠CDE . ∵∠CDE =90°-∠A =∠ABE , ∴∠ABE =∠CBE .∴AE EC =,∴AE =CE . …………5分23.(此题12分)(1)设A 种绳索买了x 条,B 种绳索买了y 条. 则20128180x y x y +=⎧⎨+=⎩,解得515x y =⎧⎨=⎩………………………4分(2)设A 种绳索裁了a 条,C 种绳索裁了c 条.则12a +6c =240,化简得c =40-2a .B 种绳索的总长度为:200-8a -4c =200-8a -4(40-2a )=40(米)40646=,B 种绳索最多可加工6条.. ………………………4分(3)A ,B ,C 三种绳索别离为5条、10条、25条或6条、8条、26条. ……4分 24.(此题14分)(1)6-2t .…………………………………………………………2分 (2)分两种情形讨论:①当P ,Q 还未相遇时,如图1,CQ=2t ,DP=t , QP=8-3t ,OE=12QP=832t -,OB=BP +OP =832t-+()222t -=42t -,∵⊙O 与AB 相切,∴OE ⊥AB ,∵sin ∠ABC=OE AC OB AB =,∴8342452tt -=-,解得t =2411.……………3分 ②当P ,Q 相遇后,如图2,BQ =6-2t ,PQ =BP -BQ =(t -2)-(6-2t )=3t -8,OE=12QP=382t -,OB =OQ +BQ =42t -,∵⊙O 与AB 相切, ∴OE ⊥AB ,∵sin ∠ABC=OE AC OB AB =,∴3842452t t -=-,解得t =5619.………3分 (图1)(第22题)CDEB综上所述,知足条件的t 的值有t =2411,5619. (3)①i)当点O 在∠B 的角平分线上时,如图3,可得BQ =BP ,即2 t -6=t -2,解得t =4. …………………………………………2分 ii)当点O 在∠C 的角平分线上时,如图4, 过点O ,Q 别离做AC 的垂线交点为F ,G .则GQ = AQ ·sin ∠BAC =35AQ =3(162)5t -.同理可得GC =45BQ =4(26)5t - 在梯形CPQG 中,OF 是中位线,那么OF =12(GQ +CP )=13(162)(8)25t t -⎡⎤+-⎢⎥⎣⎦=881110t-∵点O 在∠C 的角平分线上,∴CF =OF .88112(26)105t t --=,解得t =11219.……………………………………………2分iii)当点O 在∠A 的角平分线上时,如图5,作∠A 的角平分线交BC 于点H ,过点H 做HI ⊥AB 于I , 则HI =CH .∵sin ∠ABC =HI AC HB AB=,那么45HI HB =, ∴CH =HI =83,∴tan ∠CAH=13,由ii)中得OF =12(GQ +CP )=881110t-,CF =2(26)5t -,AF =AC -CF =5245t-,∴tan ∠CAH=881111052435tOF t AF -==-,解得t =325.………………………………2分 综上所述,当t =4,11219,325时,点O 会出此刻△ABC 的内角平分线上. ②1853+………………………………………………………………………2分(图4)(图5)OQ B ADP(图3)略解:133(64)2222+--+=+=。
浙江省温州市永嘉县2017年中考数学三模试卷(解析版)一.选择题1.下列等式计算正确的是()A. (﹣2)+3=﹣1B. 3﹣(﹣2)=1C. (﹣3)+(﹣2)=6D. (﹣3)+(﹣2)=﹣52.下列四个几何体中,主视图是三角形的是()A. B. C. D.3.要使二次根式有意义,则x应满足()A. x≠1B. x≥1C. x≤1D. x<14.抛物线y=x2﹣3x+2与y轴交点的坐标为()A.(0,2)B.(1,0)C.(2,0)D.(0,﹣3)5.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=22°,那么∠2的度数是()A. 22°B. 78°C. 68°D. 70°6.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=6,DB=3,则的值为()A. B. C. D. 27.四张完全相同的卡片上,分别画有圆、正方形、等边三角形和线段,现从中随机抽取两张,卡片上画的恰好都是中心对称图形的概率为()A. 1B.C.D.8.某校男子篮球队20名队员的身高如表:则此男子排球队20名队员身高的中位数是()身高(cm) 170 176 178 182 198人数(个)4 6 5 3 2A. 176cmB. 177cmC. 178cmD. 180cm9.某工厂接到加工600件衣服的订单,预计每天做25件,正好按时完成,后因客户要求提前3天交货,工人则需要提高每天的工作效率,设工人每天应多做x件,依题意列方程正确的是()A. ﹣=3B. +3=C. ﹣=3D. ﹣=310.如图,在菱形ABCD中,tan∠ABC= ,P为AB上一点,以PB为边向外作菱形PMNB,连结DM,取DM中点E,连结AE,PE,则的值为()A. B. C. D.二.填空题11.分解因式:m2﹣9=________.12.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是________.13.不等式组的解为________.14.如图,在△ABC中,两条中线BE、CD相交于点O,则S△ADE:S△COE=________.15.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,D为AC中点,P为AB上的动点,将P绕点D逆时针旋转90°得到P′,连CP′,则线段CP′的最小值为________.16.如图,在△ABC中,B、C两点恰好在反比例函数y= (k>0)第一象限的图象上,且BC= ,S△ABC= ,AB ∥x轴,CD⊥x轴交x轴于点D,作D关于直线BC的对称点D′.若四边形ABD′C为平行四边形,则k为________.三.解答题17.计算题()﹣1+ +sin30°;(1)计算:()﹣1+ +sin30°;(2)先化简,再求值:(m+2)(m﹣2)﹣(m﹣2)2+1,其中m=2.18.温州市政府计划投资百亿元开发瓯江口新区,打造出一个“东方时尚岛、海上新温州”.为了解温州市民对瓯江口新区的关注情况,某学校数学兴趣小组随机采访部分温州市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注 m 0.1B.一般关注 100 0.5C.不关注30 nD.不知道50 0.25(1)根据上述统计表可得此次采访的人数为________人;m=________,n=________;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,估计25000名温州市民中高度关注瓯江口新区的市民约________人.19.如图,在方格纸中,线段AB的两个端点都在小方格的格点上,AB=5,请找到一个格点P,连结PA,PB,使得△PAB为等腰三角形(请画出两种,若所画三角形全等,则视为一种).20.如图,一艘渔船位于码头M的南偏东45°方向,距离码头120海里的B处,渔船从B处沿正北方向航行一段距离后,到达位于码头北偏东60°方向的A处.(1)求渔船从B到A的航行过程中与码头M之间的最小距离.(2)若渔船以20海里/小时的速度从A沿AM方向行驶,求渔船从A到达码头M的航行时间.21.如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB相切于点P.(1)求证:BP平分∠ABC;(2)若PC=1,AP=3,求BC的长.22.温州某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至于30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2015年学校寝室数为64个,2017年建成后寝室数为121个,求2015至2017年的平均增长率;(2)若建成后的寝室可供600人住宿,求单人间的数量;(3)若该校今年建造三类不同的寝室的总数为180个,则该校的寝室建成后最多可供多少师生住宿?23.如图,抛物线y=ax2+3x交x轴正半轴于点A(6,0),顶点为M,对称轴MB交x轴于点B,过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD于点F,作直线MF.(1)求a的值及M的坐标;(2)当BD为何值时,点F恰好落在该抛物线上?(3)当∠DCB=45°时:①求直线MF的解析式;________②延长OE交FM于点G,四边形DEGF和四边形OEDC的面积分别记为S1、S2,则S1:S2的值为________(直接写答案)24.如图,在矩形ABCD中,AD=10,E为AB上一点,且AE= AB=a,连结DE,F是DE中点,连结BF,以BF为直径作⊙O.(1)用a的代数式表示DE2=________,BF2=________;(2)求证:⊙O必过BC的中点;(3)若⊙O与矩形ABCD各边所在的直线相切时,求a的值;(4)作A关于直线BF的对称点A′,若A′落在矩形ABCD内部(不包括边界),则a的取值范围________.(直接写出答案)答案解析部分一.<b >选择题</b>1.【答案】D【考点】有理数的加减混合运算【解析】【解答】解:∵(﹣2)+3=1,故答案为:项A错误,∵3﹣(﹣2)=3+2=5,故答案为:项B错误,∵(﹣3)+(﹣2)=﹣5,故答案为:项C错误,∵(﹣3)+(﹣2)=﹣5,故答案为:项D正确,故答案为:D.【分析】异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;减去一个数,等于加上这个数的相反数;同号两数相加取相同的符号,并把绝对值相加。
2.【答案】B【考点】简单几何体的三视图【解析】【解答】解:主视图是三角形的一定是一个锥体,只有B是锥体.故答案为:B.【分析】主视图就是从正面看得到的正投影,主视图是三角形的一定是一个锥体。
3.【答案】C【考点】二次根式有意义的条件【解析】【解答】解:由题意得:1﹣x≥0,解得:x≤1,故答案为:C.【分析】由二次根式有意义的条件得出不等式,解出不等式即可。
4.【答案】A【考点】二次函数图象上点的坐标特征【解析】【解答】解:对于y=x2﹣3x+2,当x=0时,y=2,则抛物线y=x2﹣3x+2与y轴交点的坐标为(0,2),故答案为:A.【分析】把x=0代入y=x2﹣3x+2,得到y=2,从而就知道其与y轴交点的坐标.5.【答案】C【考点】余角和补角,平行线的性质【解析】【解答】解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°﹣∠1=90°﹣22°=68°,∵a∥b,∴∠2=∠3=68°.故答案为:C.【分析】先利用余角的定义得出∠3的度数,再利用二直线平行同位角相等得出结论。
6.【答案】A【考点】平行线分线段成比例【解析】【解答】解:∵AD=6,DB=3,∴AB=AD+DB=9,∵DE∥BC,∴= = = ;故答案为:A.【分析】利用平行线分线段成比例得出结论。
7.【答案】C【考点】列表法与树状图法,概率公式【解析】【解答】解:列表如下:1 2 3 41 ﹣﹣﹣(2,1)(3,1)(4,1)2 (1,2)﹣﹣﹣(3,2)(4,2)3 (1,3)(2,3)﹣﹣﹣(4,3)4 (1,4)(2,4)(3,4)﹣﹣﹣其中1表示圆,2表示正方形,3表示等边三角形,4表示线段,所有等可能情况数为12种,其中两张卡片上图形都是中心对称图形的有6种,∴卡片上画的恰好都是中心对称图形的概率为= ,故答案为:C.【分析】根据题意列出表格知所有等可能情况数为12种,其中两张卡片上图形都是中心对称图形的有6种,利用概率公式计算即可。
8.【答案】B【考点】中位数、众数【解析】【解答】解:中位数是第10、11位队员的身高的平均数,即(176+178)÷2=177(cm).故答案为:B.【分析】把这组数据按从小到大的顺序排列后处于最中间位置的两个数的平均数就是中位数。
9.【答案】D【考点】由实际问题抽象出分式方程【解析】【解答】解:设工人每天应多做x件,则原来所用的时间为:,实际所用的时间为:.所列方程为:﹣=3.故答案为:D.【分析】设工人每天应多做x件,用原来所用的时间-实际所用的时间=3得出方程。
10.【答案】C【考点】全等三角形的判定与性质,等腰三角形的性质,勾股定理,菱形的性质,解直角三角形【解析】【解答】解:如图,延长AE交MP的延长线于F,作AH⊥PF于H.∵AD∥CN∥PM,∴∠ADE=∠EMF,∵ED=EM,∠AED=∠MEF,∴△AED≌△FEM,∴AE=EF.AD=MF=AB,∵PM=PB,∴PA=PF,∴PE⊥AF,∠APE=∠FPE,∵∠APF=∠ABC,∴tan∠APF=tan∠ABC= = ,设AH=4k,PH=3k,则PA=PF=5k,FH=2k,AF= =2 k,∵•PF•AH= •AF•PE,∴PE=2 k,AE= k∴AE:PE= k:2 =1:2,故答案为:C.【分析】延长AE交MP的延长线于F,作AH⊥PF于H.根据菱形的性质及题意判断出△AED≌△FEM,由三角形全等的性质得AE=EF.AD=MF=AB,再根据菱形的性质及线段的和差得PA=PF,根据等腰三角形的三线合一得出PE⊥AF,∠APE=∠FPE,根据等角的同名三角函数相等及三角形的面积法找到PE,AE的长度,进而得出结论。
二.<b >填空题</b>11.【答案】(m+3)(m﹣3)【考点】因式分解-运用公式法【解析】【解答】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【分析】二项式符合平方差公式的特点,故两数的平方差等于这两数的和乘以这两数的差即可。