人因可靠性分析正式版
- 格式:docx
- 大小:50.06 KB
- 文档页数:49
YF-ED-J3347可按资料类型定义编号人因可靠性分析实用版In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment.(示范文稿)二零XX年XX月XX日人因可靠性分析实用版提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。
下载后可以对文件进行定制修改,请根据实际需要调整使用。
第一节人因可靠性研究一、人因可靠性分析的研究背景随着科技发展,系统及设备自身的安全与效益得到不断提高,人-机系统的可靠性和安全性愈来愈取决于人的可靠性。
核电厂操纵员可靠性研究是“核电厂人因工程安全”的主要组成部分。
在核电厂发生的重大事件和事故中,由人因引起的已占到一半以上,震惊世界的三里岛和切尔诺贝利核电厂事故清楚地表明,人因是导致严重事故发生的主要原因。
据统计,(20~90)%的系统失效与人有关,其中直接或间接引发事故的比率为(70~90)%,这其中包括许多重大灾难事故,如:l 印度Bhopal化工厂毒气泄漏l 切尔诺贝利核电站事故l 三里岛核电站事故l 挑战者航天飞机失事因此,如何把人的失误对于风险的后果考虑进去,以及如何揭示系统的薄弱环节,在事故发生之前加以防范,便成为亟待解决的重要问题。
而这些都以详尽和准确的人因可靠性分析(Human Reliability Analysis,HRA)为基础。
对人因加以研究,在核电厂各个阶段应用人因工程的原则来防止和减少人的失误,已成为国际上核电事业发展所面临的重大课题。
目前,我国核电厂操纵员的可靠性研究还处于起步阶段。
( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改人因可靠性分析(最新版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes人因可靠性分析(最新版)第一节人因可靠性研究一、人因可靠性分析的研究背景随着科技发展,系统及设备自身的安全与效益得到不断提高,人-机系统的可靠性和安全性愈来愈取决于人的可靠性。
核电厂操纵员可靠性研究是“核电厂人因工程安全”的主要组成部分。
在核电厂发生的重大事件和事故中,由人因引起的已占到一半以上,震惊世界的三里岛和切尔诺贝利核电厂事故清楚地表明,人因是导致严重事故发生的主要原因。
据统计,(20~90)%的系统失效与人有关,其中直接或间接引发事故的比率为(70~90)%,这其中包括许多重大灾难事故,如:l印度Bhopal化工厂毒气泄漏l切尔诺贝利核电站事故l三里岛核电站事故l挑战者航天飞机失事因此,如何把人的失误对于风险的后果考虑进去,以及如何揭示系统的薄弱环节,在事故发生之前加以防范,便成为亟待解决的重要问题。
而这些都以详尽和准确的人因可靠性分析(HumanReliabilityAnalysis,HRA)为基础。
对人因加以研究,在核电厂各个阶段应用人因工程的原则来防止和减少人的失误,已成为国际上核电事业发展所面临的重大课题。
目前,我国核电厂操纵员的可靠性研究还处于起步阶段。
在理论方面,以往的研究主要停留在利用国外较成熟的理论模型阶段,对理论模型的深入研究较为缺乏;在实际方面,所进行的研究还未能与我国的核电厂实际运行紧密配合。
因此,对我国核电厂操纵员进行可靠性研究有着重要的意义:第一,填补在高风险情况下人对事故响应的可靠性数据的空白;第二,了解操纵员或其他电厂人员如何对事故进行响应,改进核电厂的操作规程;第三,为改善安全管理系统提供建议;第四,为提高操纵员的技术与素质培训提供条件。
人因可靠性分析(HRA)1 概述人因可靠性分析(Human reliability analysis,简称HRA)关注的是人因对系统绩效的影响,可以用来评估人为错误对系统的影响。
很多过程都有可能出现人为错误,尤其是当操作人员可用的决策时间较短时。
问题最终发展到严重地步的可能性或许不大。
但是,有时,人的行为是惟一能避免最初的故障演变成事故的防卫。
HRA的重要性在各种事故中都得到了证明。
在这些事故中,人为错误导致了一系列灾难性的事项。
有些事故向人们敲响警钟,不要一味进行那些只关注系统软硬件的风险评估。
它们证明了忽视人为错误这种诱因发生的可能性是多么危险的事情。
而且,HRA可用来凸显那些妨碍生产效率的错误并揭示了操作人员及维修人员如何“补救”这些错误和其他故障(硬件和软件)。
2 用途HRA可进行定性或定量使用。
如果定性使用,HRA可识别潜在的人为错误及其原因,从而降低了人为错误发生的可能性;如果定量使用,HRA可以为FTA(故障树)或其它技术的人为故障提供数据。
3 输入人因可靠性分析方法的输入包括:●明确人们必须完成的任务的信息;●实际发生及有可能发生的各类错误的经验;●有关人为错误及其量化的专业知识。
4 过程HRA过程如下所示:●问题界定——计划调查/评估哪种类型的人为参与?●任务分析——计划怎样执行任务?为了协助任务的执行,需要哪类帮助?●人为错误分析——任务执行失败的原因?可能出现什么错误?怎样补救错误?●表示——怎样将这些错误或任务执行故障与其他硬件、软件或环境事项整合起来,从而对整个系统故障的概率进行计算?●筛查——有不需要细致量化的错误或任务吗?●量化——任务的单项错误和失败的可能性如何?●影响评估——哪些错误或任务是最重要的?哪些错误或任务是可靠性或风险的最大诱因?●减少错误——如何提高人因可靠性?●记录——有关HRA的哪些详情应记录在案?在实践中,HRA会分步骤进行,尽管某些部分(例如任务分析及错误识别)有时会与其他部分同步进行。
解决方案编号:LX-FS-A61915 人因可靠性分析标准范本In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior oractivity reaches the specified standard编写:_________________________审批:_________________________时间:________年_____月_____日A4打印/ 新修订/ 完整/ 内容可编辑人因可靠性分析标准范本使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。
资料内容可按真实状况进行条款调整,套用时请仔细阅读。
第一节人因可靠性研究一、人因可靠性分析的研究背景随着科技发展,系统及设备自身的安全与效益得到不断提高,人-机系统的可靠性和安全性愈来愈取决于人的可靠性。
核电厂操纵员可靠性研究是“核电厂人因工程安全”的主要组成部分。
在核电厂发生的重大事件和事故中,由人因引起的已占到一半以上,震惊世界的三里岛和切尔诺贝利核电厂事故清楚地表明,人因是导致严重事故发生的主要原因。
据统计,(20~90)%的系统失效与人有关,其中直接或间接引发事故的比率为(70~90)%,这其中包括许多重大灾难事故,如:l 印度Bhopal化工厂毒气泄漏l 切尔诺贝利核电站事故l 三里岛核电站事故l 挑战者航天飞机失事因此,如何把人的失误对于风险的后果考虑进去,以及如何揭示系统的薄弱环节,在事故发生之前加以防范,便成为亟待解决的重要问题。
人因可靠性分析方法人因可靠性分析方法是一种用于评估和改进人因可靠性的方法。
它是基于人因工程学原理,旨在识别和解决人为失误和行为问题,以提高工作效率、降低错误率,并减少潜在的事故和故障发生的概率。
下面将介绍几种常用的人因可靠性分析方法。
1.任务分析方法:任务分析是人因可靠性分析的核心步骤之一、它通过对特定任务的分解和分析,确定操作员需要完成的任务,包括任务目标、任务要求、任务环境等。
任务分析的目的是了解任务的可靠性需求,发现人为失误和行为问题,并设计改善措施。
2.人因失误分析方法:人因失误分析是一种系统性的分析方法,通过对人的行为和决策过程进行分析,找出可能导致人为失误的原因,并提出相应的改进措施。
常用的人因失误分析方法包括谱系分析法、HEART分析法和THERP分析法等。
-谱系分析法根据失误的类型和性质,将失误分为动作失误、认知失误、决策失误等,然后通过对失误链和失误树的分析,找出失误发生的主要原因和潜在的影响因素,并提出改进措施。
-HEART分析法(人类失误分析和评估技术)是一种基于心理学原理的失误分析方法,通过对人的心理状态、行为和环境等因素进行评估,识别出可能导致人为失误的关键因素,并提出相应的改进措施。
-THERP分析法(人类错误及后果分析)是一种定性和定量相结合的人因失误分析方法,通过对人的任务特性、行为和错误发生的可能性等因素进行评估,确定人为失误的概率,并评估其对系统可靠性的影响。
3.人机界面分析方法:人机界面是指操作员与机器、设备、系统之间相互作用和信息传递的界面。
人机界面分析方法是一种通过分析和评估人机界面的设计质量和可用性,发现和解决人因可靠性问题的方法。
常用的人机界面分析方法包括任务分析、认知任务分析和多模态界面分析等。
任务分析通过对操作员的任务需求和操作流程进行分析,确定操作员与系统之间的交互方式和信息传递方式,发现可能导致人为失误的因素,并提出相应的改进措施。
认知任务分析是一种基于认知心理学原理的人机界面分析方法,通过对操作员的注意力、记忆、决策等认知过程进行分析,评估人机界面的适应性和可理解性,并提出相应的改进建议。
In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.人因可靠性分析正式版人因可靠性分析正式版下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。
文档可以直接使用,也可根据实际需要修订后使用。
第一节人因可靠性研究一、人因可靠性分析的研究背景随着科技发展,系统及设备自身的安全与效益得到不断提高,人-机系统的可靠性和安全性愈来愈取决于人的可靠性。
核电厂操纵员可靠性研究是“核电厂人因工程安全”的主要组成部分。
在核电厂发生的重大事件和事故中,由人因引起的已占到一半以上,震惊世界的三里岛和切尔诺贝利核电厂事故清楚地表明,人因是导致严重事故发生的主要原因。
据统计,(20~90)%的系统失效与人有关,其中直接或间接引发事故的比率为(70~90)%,这其中包括许多重大灾难事故,如:l 印度Bhopal化工厂毒气泄漏l 切尔诺贝利核电站事故l 三里岛核电站事故l 挑战者航天飞机失事因此,如何把人的失误对于风险的后果考虑进去,以及如何揭示系统的薄弱环节,在事故发生之前加以防范,便成为亟待解决的重要问题。
而这些都以详尽和准确的人因可靠性分析(Human Reliability Analysis,HRA)为基础。
对人因加以研究,在核电厂各个阶段应用人因工程的原则来防止和减少人的失误,已成为国际上核电事业发展所面临的重大课题。
目前,我国核电厂操纵员的可靠性研究还处于起步阶段。
在理论方面,以往的研究主要停留在利用国外较成熟的理论模型阶段,对理论模型的深入研究较为缺乏;在实际方面,所进行的研究还未能与我国的核电厂实际运行紧密配合。
因此,对我国核电厂操纵员进行可靠性研究有着重要的意义:第一,填补在高风险情况下人对事故响应的可靠性数据的空白;第二,了解操纵员或其他电厂人员如何对事故进行响应,改进核电厂的操作规程;第三,为改善安全管理系统提供建议;第四,为提高操纵员的技术与素质培训提供条件。
二、人的自然倾向与可靠性人的可靠性可定义为在规定的最小限度内,在系统运行的任一要求阶段,由人成功地完成工作或任务的概率。
影响人操作可靠性的因素:包括人的因素和环境的因素。
①人的因素:心理因素、生理因素、个体因素、操作能力。
②环境因素:机械因素、环境因素和管理因素。
习惯是人长期养成而不易改变的语言、行动和生活方式。
习惯分个人习惯和群体习惯。
群体习惯是指在一个国家或一个民族内部,人们所形成的共同习惯。
符合群体习惯的机械工具,可使作业者提高工作效率,减少操作错误。
群体习惯的研究,在人机工程学中占有重要的位置。
人的内在状态可以用意识水平或大脑觉醒水平来衡量。
第I层次是睡眠状态,处于睡眠状态时,大脑的觉醒水平极低。
层次II是意识的松弛阶段。
层次III是意识的清醒阶段,在此状态下,大脑处理信息的能力、准确决策能力、创造能力都很强。
第IV层次为超常状态。
处于第I层次状态时,大脑活动水平低下,反应迟钝,易于发生人为失误或差错。
处于第II、III 层次时,均属于正常状态。
在工程心理学中,常用闪光融合阈限值表示大脑意识水平,来说明明人体的机能状况。
频闪融合阈限值越高,大脑意识水平越高。
压力是人在某种条件刺激(在机体内部的或外部的)的作用下,所产生的生理变化和情绪波动,使人在心理上所体验到的一种压迫感或威胁感。
紧张状态的发展可分为三个阶段:警戒反应期、抵抗期、衰竭期。
工作中对人造成压力的原因通常有四个方面:⑴工作的负荷。
⑵工作的变动。
⑶工作中的挫折。
⑷不良的环境。
三、人因可靠性分析方法的发展(一)人因可靠性分析的种类人因可靠性分析(Human Reliability Analysis, HRA)的方法发展得很快,种类也较多,有些已在HRA中正式得到应用,有些仅是提出作为HRA的可选择方法。
人的可靠性评价的主要目的,在于提供事故序列中所定义的人员动作有一个合理可信的人误概率值,同时为系统可靠性的改善提供决策参考。
针对系统操作和认知判断是现代人—机系统最普遍的作业,由于人员行为的多样性和高度复杂性,故不存在一种对任何行为模式都适用的可靠性分析方法。
表1汇总了部分重要方法的主要特点与资料来源。
几种常用且较为成熟的人员可靠性分析方法,并讨论它们的特点和局限性。
(二)现有HRA方法的不足之处迄今为止,HRA已有数十种方法,这些方法对HRA的发展和应用起了良好的推动作用。
但正如许多HRA专家所评论的那样,它们均存在诸多不足。
1.使用HRA事件树的两分法逻辑(成功与失败)不能真实、全面地描述人的行为现象,因人在对系统的动态响应过程中,可能有多种选择方式,其优化价值不同。
同时,人的认知失败产生的失误行为的形式多种多样,其对风险的后果不同,决不能用简单的“失败”概括。
2.缺乏充分的数据。
人的可靠性数据的缺乏是一个严重的、长期未决的而困惑至今的老问题,这与数据收集方式和人的心理状态有很大关系。
这些数据对于复杂系统中人的行为的定量化预测具有重要意义,它应包括与时间相关的和与时间不相关的人误数据。
3.多依赖专家判断。
由于缺乏在复杂系统中人在真实运行环境下或培训模拟机上的人员失误数据,只能采取弥补性质的模型(如时间相关性模型)和/或专家判断作为HRA的基础。
专家判断法的使用难以显示出专家群体水平的一致性,并且预测的正确性和准确性受到很大的主观因素影响。
4.缺乏对模拟机数据修正的一致认同。
使用来自模拟机的数据,对专家判断的人的绩效数据进行修正必须得到足够的重视。
但是模拟机实验并不能完全反映真实的运行环境,如何修正来自模拟机的数据以反映真实环境下的人的绩效一直是一个有待研究的课题。
5.HRA方法的正确性与准确性难以验证。
HRA的各种方法,对于真实环境下的人的可靠性的预测的正确性几乎无法得到证明。
特别是非常规任务中人的可靠性评价的正确性更是一个难题,例如与时间相关的误诊断、误决策的概率。
6.HRA方法缺乏心理学基础。
一些HRA方法/模型中缺乏对人的认知行为及心理过程的探索和研究;另一方面,尽管认知模型类型颇多,但难以找到与工程实际的结合点。
7.缺乏对重要的行为形成因子的恰当考虑和处理。
即使在较好的HRA方法中,一些重要的PSF也没有给予充分的考虑,例如组织管理的方法和态度、文化差异、社会背景和不科学行为等,在处理方法上也缺乏一致性和可比性。
(三)HRA的发展趋势HRA方法的模型是以多种学科为基础而建立的,着重研究产生人的行为的情景及它们是如何影响人的行为的,因此,笔者认为HRA将沿着下列方向发展:1.建立多种学科相结合的干扰信号图形事件描述。
通过干扰信号图形的操纵员事件树,分析各个节点处的人的事物机理和可能的事物模式。
2.建立人的信息处理理论上的人的行为通用模型,即带有反馈的序贯式行为模型。
该模型的研究重点是结合系统的实际运行经验和数据,探究和查找人的认知不同阶段的诱发失误环境与它如何通过人的失误机理产生人的非安全动作,并给出定量分析的方法。
3.循环式的人的行为模型。
即假设人的任何行为都是在意向或事件的驱动下产生的,人的动作过程不是事先规定而是依赖于当时情景条件建造出来的,这些动作之间高度相关。
4.建立人因数据库。
目前的单纯数字式数据或数字加简要条件式数据,不能满足人因分析者对数据所描述的人误的理解和对该数据的有效使用,因此,需研究和使用能保持失误因素间原始基本关系的新型数据。
5.人的行为机理研究。
对此,虽以Reason1990年的著作《Human Error》为里程碑而进入一个新的阶段,但其后无多少具有实质性进展的成果问世。
人的行为机理研究应建立在个体、群体和组织行为的基础上,系统地研究人的行为特性、行为模式、失误源、控制管理、失误形态等,完善和拓展人的行为机理研究的内涵。
第二节人的失误率预测技术(THERP )一、THERP背景描述20世纪80年代初,SwainA.D.,Guttmann H.E.等著名人因分析专家,经过多年艰苦细致的工作,完成了研究报告“Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications”(人因可靠性分析手册)。
在该报告中提出了一套完整的人员可靠性分析方法—人的失误率预测技术(Technique for Human Error RatePrediction ,THERP)。
这套方法问世以来,已被美国等多个国家广泛用于核电站、石化工业、大型武器系统等领域的风险评价之中。
二、THERP方法描述用THERP方法完**的失误概率定量化计算包括4个阶段:①系统熟悉阶段;②定性分析阶段;③定量分析阶段;④应用阶段。
共有10个步骤,如图1所示。
(一)系统熟悉阶段该阶段对系统的考察访谈与资料收集,需完成以下任务:①了解核电站PSA事件树和故障树中有关的人的失误事件;②了解与基本事件有关的人员任务;③人进行此项任务时的边界条件,包括:l 控制室的特点;l 系统的总体布置;l 行政管理系统;l 任务的时间要求;l 工作人员的指定职能技术要求;l 报警症状;l 恢复因子(二)定性分析阶段1.任务分析了解人员每项任务的内容并将它分解为相应的一系列相连贯的动作或子任务序列;找出人—机系统相互作用的界面;判断人在完成任务时所产生的失误的类别,对于分解得到的每一项子任务,同时必须查明以下几点:①动作实施的设备或仪表;②要求操作人员的动作;③可能潜在的人因失误;④控制器、显示器、操纵阀的位置等。
当任务是由不同的人员完成时,还需了解人员之间的监督关系对人员动作失误的恢复关系。
图2 串联和并联系统的HRA事件树2.HRA事件树的建造HRA事件树在人员任务分析的基础上,以两状态事件树的形式描述,以时间为序的人的各项行为与活动的过程。
一般情况下,用人因可靠性事件树进行人的失误分析时,每一个分支节点上都只存在两种决策可能,即进行此项操作时失败或成功的两种可能性。
图2给出了一个简单的HRA 事件树。
建树的有关规则如下:①用大写字母(如A)表示某一项子任务失败和它的失败概率,相应的小写字母(如a)则表示该项子任务成功和它的成功概率;②位于HRA事件树各序列末尾的字母S 和F分别表示人员完成任务的成功和失败,如图2中的串联任务的情况,存在1个成功分支序列和3个失败分支序列;③HRA事件树的每个节点上有两个分支,左侧的分支表示成功,右侧分支表示失败,对于表示系统中硬件状态的分支点,从左至右按照失误的严重状态予以排列;④对于极小概率的分支事件可以从事件树中删去,并忽略恢复因子的影响;⑤在HRA事件树中,将相依的人员动作事件合并为一个子任务分支;⑥对于HRA事件树中的失败或成功节点,如果事件树中的一个支路已鉴别出其分析任务为成功或失败,这一个节点不再进一步分解。