应力面或主平面。在主应力面上, = 0; = T = 为主应力。从而,
T1 .n1 , T2 .n2 , T3 .n3
即:
Ti .ni
代入方程 Ti ij.nj , 有:.ni ij.nj , 或 ij ij nj 0
即: (11 )n1 12n2 13n3 0 21n1 (22 )n2 23n3 0 31n1 32n2 (33 )n3 0
18
y
x xy y
Ox
x
y
xy
y
0
x
二维平面斜截面上的应力
x
y
2
x
y
2
cos2xy
sin2
x
y
2
sin2xy
cos2
上式平方和相加,得:
x 2y 2 2 x 2y 2x 2y
n
在 坐标系中,与
落在一个,圆上
19
§ 1-1-3 主应力和主平面
若斜截面上只有正应力,而没有剪应力时,我们把这个平面叫做主
I1112233123 I21 2[(112222332)2(122232312)I12]1 22 33 1 I3det[ij]
21
应力不变量亦可写成:
I1 11 22 33
I2
11 21
12 22 22 32
23 33 33 13
x
x x
11 12 13
[ ij ] 21
22
23
31 32 33
13
• 一点的应力 各向同性材料过一点的其它各面上的应力都可以通过平衡关系用这9个量来表示。
这9个量表示了一点的应力状态。张量是一组表示某种性质的量的组合。它不是一个值。 因此,不可以说一点的应力多大,只能说某个面上的应力有多大,或一点某个方向