嵌入式系统发展与应用
- 格式:docx
- 大小:16.87 KB
- 文档页数:5
嵌入式系统的应用前景及未来发展趋势分析嵌入式系统是指将计算机处理器和软件嵌入到各种设备中,使其具备智能化和自动化的功能,广泛应用于各个行业和领域。
从工业自动化到医疗保健,从军事航空到车联网,嵌入式系统已经成为无处不在的支撑技术,为人们的生产和生活带来了便利和创新。
本文将从应用前景和未来发展趋势两个方面,探讨嵌入式系统的未来发展。
一、应用前景分析1、工业自动化:随着工业发展和技术进步,嵌入式系统在工业生产中的应用不断增多。
例如,PLC控制器、传感器、智能仪表等设备,都是嵌入式系统的典型应用。
这些设备将生产环境中各种条件监测和控制的任务集成到一起,可实现自动化控制和协调生产过程,提高生产效率和质量。
2、医疗保健:随着人口老龄化的加剧和医疗技术的发展,嵌入式系统在医疗设备中的应用也日益广泛。
例如,心脏起搏器、血糖监测仪、医疗图像处理系统等,都依赖嵌入式系统实现自动化和智能化的功能。
这些设备可实时监测病人的身体状况,提供精准的诊断和治疗方案,为医疗保健带来了新的变革。
3、智能家居:随着人们生活水平的提高和家庭需求的不断增多,嵌入式系统在智能家居中的应用也越来越多。
例如,智能家居控制中心、安防系统、智能家电等,通过嵌入式系统实现自动化和智能化的控制,提供便利和安全保障,改善人们的家居生活质量。
4、车联网:随着汽车智能化和互联网技术的发展,嵌入式系统在车联网中的应用也日益广泛。
例如,智能导航系统、车辆监测系统、智能驾驶系统等,都是嵌入式系统的重要应用。
这些设备可提高车辆驾驶安全性、提供更舒适的交互和娱乐体验,形成智能出行新模式。
二、未来发展趋势分析1、智能化和自动化水平不断提高:未来,随着人工智能和大数据技术的发展,嵌入式系统将不断智能化和自动化,更好地适应和服务于人们的生产和生活需求。
例如,智能家居将更加智能化和个性化,能够自动识别用户的需求和习惯,提供更优质的服务和体验。
车辆和机器人将更加自主化和智能化,能够自动执行各种任务,提高工作效率和产品质量。
嵌入式系统的基本原理与应用嵌入式系统(Embedded System)是指内置在其他设备或系统中的计算机系统,它专门用于控制和管理设备的特定功能。
嵌入式系统的发展和应用涵盖了很多领域,包括家电、通信、汽车、医疗保健、工业控制等。
本文将介绍嵌入式系统的基本原理和其在各个领域的应用。
一、嵌入式系统的基本原理嵌入式系统的基本原理主要涉及硬件和软件两个方面。
1. 硬件方面嵌入式系统的硬件是由各种集成电路、处理器、存储器、输入输出设备等组成的。
它通常需要具备小型化、低功耗和高可靠性的特点。
常见的嵌入式处理器有ARM、Intel x86等,而存储器则包括EEPROM、SDRAM等。
此外,嵌入式系统还需要与外部设备进行通信,如串口、网口、USB等接口。
硬件的设计和选型要根据具体的应用需求进行选择。
2. 软件方面嵌入式系统的软件是用来控制和管理硬件的。
它通常由实时操作系统(RTOS)和应用软件构成。
RTOS具备快速响应和实时性的特点,能够有效地与硬件进行交互。
而应用软件则根据具体的功能需求进行编写,如传感器数据采集、数据处理、通信控制等。
此外,嵌入式系统的软件开发还需要考虑资源利用率和代码大小的优化,以保证系统的性能和效率。
二、嵌入式系统的应用领域嵌入式系统在各个领域都有广泛的应用,下面将介绍几个常见的领域。
1. 家电领域现代家庭中的许多电器产品都运用了嵌入式系统,如智能电视、空调、洗衣机等。
嵌入式系统能够实现设备的智能控制和互联互通,提高用户的使用体验。
2. 通信领域手机、路由器、交换机等通信设备都采用了嵌入式系统,它们能够实现数据的高效传输和网络的稳定运行。
嵌入式系统在通信领域的应用还包括无线通信、卫星通信等。
3. 汽车领域现代汽车中嵌入式系统的应用越来越广泛,包括车载导航、智能驾驶、车载娱乐等功能。
嵌入式系统能够提高汽车的安全性、舒适性和智能化程度。
4. 医疗领域医疗设备中常常运用嵌入式系统,如心脏起搏器、血糖仪、医疗监护仪等。
嵌入式系统的应用及发展【摘要】21世纪无疑将是一个网络的时代,将嵌入式系统应用到各种网络环境中去的呼声自然也越来越高。
目前大多数嵌入式系统还孤立于internet之外,随着internet的进一步发展,以及internet技术与信息家电、工业控制技术等的结合日益紧密,嵌入式设备与internet的结合才是嵌入式技术的真正未来。
【关键词】嵌入式;应用;发展1嵌入式arm技术及应用随着嵌入式系统处理器的不断发展,典型的32位risc 芯片——arm处理器,不论是在pda,stb,dvd等消费类电子产品中,还是在ps,航空,勘探,测量等军方产品中都得到了广泛的应用。
越来越多的芯片厂商早已看好arm的前景,比如intel,ns,atmel,philips,nec,cirrusloic等公司都有相应的产品。
他们把更多的功能集成在arm芯片中,使其成为了高集成度,低功耗的典型代表。
arm将其技术授权给世界上许多著名的半导体、软件和oem厂商,每个厂商得到的都是一套独一无二的arm相关技术及服务。
利用这种合伙关系,arm很快成为许多全球性risc 标准的缔造者。
arm架构是面向低预算市场设计的第一款risc微处理器。
arm提供一系列内核、体系扩展、微处理器和系统芯片方案。
由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行(理论上如此)。
典型的产品如下。
①cpu内核——arm7:小型、快速、低能耗、集成式risc内核,用于移动通信。
——arm7tdmi(thumb):这是公司授权用户最多的一项产品,将arm7指令集同thumb扩展组合在一起,以减少内存容量和系统成本。
同时,它还利用嵌入式ice调试技术来简化系统设计,并用一个dsp增强扩展来改进性能。
该产品的典型用途是数字蜂窝电话和硬盘驱动器。
——arm9tdmi:采用5阶段管道化arm9内核,同时配备thumb扩展、调试和harvard总线。
《嵌入式系统开发与应用》教学教案一、教学目标1. 了解嵌入式系统的概念、特点和应用领域。
2. 掌握嵌入式系统的基本组成和开发流程。
3. 学习嵌入式操作系统的基本原理和常用操作系统。
4. 掌握嵌入式系统编程方法和常用编程工具。
5. 培养学生的嵌入式系统设计和开发能力。
二、教学内容1. 嵌入式系统概述1.1 嵌入式系统的定义1.2 嵌入式系统的特点1.3 嵌入式系统的应用领域2. 嵌入式系统的基本组成2.1 硬件平台2.2 软件系统2.3 中间件和驱动程序3. 嵌入式系统开发流程3.1 需求分析3.2 硬件选型和系统设计3.3 软件开发3.4 系统集成与测试3.5 产品发布与维护4. 嵌入式操作系统原理4.1 嵌入式操作系统的概念4.2 嵌入式操作系统的分类4.3 嵌入式操作系统的特点4.4 常用嵌入式操作系统介绍5. 嵌入式系统编程方法5.1 嵌入式编程语言5.2 嵌入式系统编程工具5.3 嵌入式系统编程规范5.4 嵌入式系统编程实例三、教学方法1. 讲授法:讲解嵌入式系统的基本概念、原理和开发流程。
2. 案例分析法:分析实际项目中的嵌入式系统设计和开发案例。
3. 实验法:动手实践,掌握嵌入式系统编程方法和工具。
4. 小组讨论法:分组讨论,培养团队合作能力。
四、教学资源1. 教材:《嵌入式系统开发与应用》2. 课件:教学PPT3. 实验设备:嵌入式开发板、编程器、仿真器等4. 在线资源:相关论文、博客、教程、论坛等五、教学评价1. 课堂参与度:观察学生在课堂上的发言和讨论情况。
2. 作业完成情况:评估学生作业的质量和完成速度。
3. 实验报告:评估学生在实验过程中的操作能力和解决问题的能力。
4. 期末考试:测试学生对嵌入式系统开发与应用知识的掌握程度。
六、教学内容6. 嵌入式系统硬件平台6.1 微控制器(MCU)6.2 应用处理器(AP)6.3 系统级芯片(SoC)6.4 硬件选型的考虑因素7. 嵌入式系统软件系统7.1 固件编程7.2 嵌入式操作系统7.3 中间件与驱动程序开发7.4 软件开发工具与环境8. 嵌入式系统中间件与驱动程序8.1 中间件的概念与作用8.2 常用中间件介绍8.3 驱动程序的概念与开发8.4 设备驱动程序的框架9. 嵌入式系统项目开发流程9.1 需求分析与规格说明书编写9.2 硬件设计与选型9.3 软件设计与开发9.4 系统集成与测试9.5 项目管理与迭代10. 嵌入式系统案例分析与实践10.1 案例选择与分析10.2 系统设计与开发过程10.3 项目实施与调试10.4 项目报告与评审七、教学方法1. 案例分析法:通过分析具体的嵌入式系统项目案例,使学生了解项目开发的实际过程。
嵌入式系统的发展历程嵌入式系统是一种特殊的计算机系统,它嵌入在一些特定的设备中,用于控制和执行特定的功能。
随着科技的发展,嵌入式系统得到了广泛的应用,其发展历程也经历了几个阶段。
第一阶段是嵌入式系统的起步阶段。
在20世纪50年代和60年代,嵌入式系统主要用于军事和航空领域。
这些系统使用的是早期的电子管和磁芯存储器,体积庞大且功能有限。
然而,随着集成电路技术的发展,嵌入式系统开始变得更小巧、更高效。
第二阶段是嵌入式系统的成熟阶段。
在20世纪70年代和80年代,嵌入式系统开始在工业控制、汽车电子和家用电器等领域得到广泛应用。
这些系统使用的是更加先进的微处理器和存储器,能够实现更多样化的功能。
同时,实时操作系统的发展也使得嵌入式系统能够更好地响应外部事件和控制任务。
第三阶段是嵌入式系统的智能化阶段。
在20世纪90年代和2000年代,嵌入式系统开始融合更多的智能化技术,如人工智能、机器学习和无线通信等。
这些系统能够实现更复杂的任务,如语音识别、图像处理和无线通信。
同时,嵌入式系统的体积也进一步缩小,能够嵌入到更多的设备中。
第四阶段是嵌入式系统的互联网化阶段。
随着互联网的普及,嵌入式系统开始与互联网进行连接,形成了IoT(物联网)的概念。
这使得嵌入式系统能够实现远程访问、数据共享和云计算等功能,极大地扩展了其应用范围。
例如,智能家居、智能交通和智能医疗等领域的发展,都与嵌入式系统的互联网化密不可分。
第五阶段是嵌入式系统的人工智能阶段。
随着深度学习和神经网络等人工智能技术的快速发展,嵌入式系统也开始加入更复杂的智能化算法和硬件。
这使得嵌入式系统能够实现更高级的人工智能功能,如人脸识别、自动驾驶和智能机器人等。
同时,人工智能技术的推动也使得嵌入式系统在医疗、安防和工业等领域发挥了更大的作用。
总的来说,嵌入式系统在发展历程中经历了起步阶段、成熟阶段、智能化阶段、互联网化阶段和人工智能阶段等几个阶段。
每个阶段都伴随着技术的进步和应用的拓展,使得嵌入式系统在各个领域发挥了越来越重要的作用。
嵌入式系统技术在智能制造中的应用现状与前景随着智能制造技术的不断发展,嵌入式系统技术也日渐成为其中的重要组成部分。
嵌入式系统是一种专用计算机系统,它被嵌入到其他设备中,具有高效、稳定、安全、低功耗等特点。
根据市场研究机构IDC的数据,2020年全球嵌入式系统市场规模已达到1940亿美元,预计到2024年将达到2400亿美元。
嵌入式系统技术在智能制造中的应用也得到了越来越广泛的关注与应用。
嵌入式系统技术的应用现状智能制造中,嵌入式系统技术被广泛应用于各种工业设备和设施、物联网智能终端设备等多个领域。
以下是一些常见的嵌入式系统技术应用案例:1. 工业控制系统嵌入式系统技术在工业控制系统中应用非常广泛,其主要作用是监测和控制生产流程。
嵌入式系统可以对传感器数据进行采集、处理和分析,然后通过控制算法对设备进行控制。
比如,在自动化车间,灯光、风扇、传送带等设备可以通过嵌入式系统技术来集成控制,实现自动化生产。
2. 物联网智能化嵌入式系统技术也是实现物联网智能化的重要技术之一。
目前智能家居、智能车辆、智能城市等物联网应用中,嵌入式系统技术已被广泛应用。
通过嵌入式系统,各种智能设备可以实现互为连接、互相沟通,从而打造出更加智能化的生活方式。
3. 人工智能人工智能是智能制造技术的基础,而嵌入式系统技术也与之息息相关。
嵌入式系统可以协助计算机系统进行推理、学习和决策,同时可以将人工智能算法应用于现实生产流程中。
比如,在机器人生产流程中,嵌入式系统可以协调机器人的运动、采集环境数据等,从而实现高效、智能的生产。
嵌入式系统技术在智能制造中的未来前景随着嵌入式系统技术的不断发展,其在智能制造中的应用前景也愈加广阔。
未来,嵌入式系统技术将有以下发展趋势和应用前景:1. 面向物联网的嵌入式系统未来物联网将是智能制造的重要组成部分,相应的嵌入式系统技术也将面临更高的需求。
在面向物联网的应用场景下,嵌入式系统需要具备更高的能耗效率、更加稳定的工作性能和更强的安全性,以应对连接数量的增加和安全威胁的风险。
嵌入式发展历程嵌入式系统是指由微处理器或单片机芯片组成的控制系统,它在不同的领域中得到了广泛的应用,如家电、汽车、手机等。
随着科技的不断进步和市场需求的不断增长,嵌入式系统经历了多年的发展,逐渐成为了现代社会不可或缺的一部分。
嵌入式系统的发展可以追溯到上个世纪70年代。
当时,微处理器刚刚出现,越来越多的计算机开始采用集成电路。
早期的嵌入式系统仅仅是一些单独的计算机模块,被用于控制和操作一些简单的设备,如电视机、录音机等。
随着时间的推移,嵌入式系统的功能不断增强,应用范围也在不断扩大。
80年代到90年代初,嵌入式系统开始应用于汽车领域,被用于汽车引擎的控制和监控。
这使得汽车变得更加智能化,提高了车辆的性能和安全性能。
随后,嵌入式系统又逐渐应用于家电领域,如冰箱、洗衣机等,使得家庭生活更加便利和舒适。
到了21世纪初,嵌入式系统的发展进入了一个全新的阶段。
随着互联网的普及和智能手机的出现,嵌入式系统与互联网之间的结合变得越来越密切。
人们可以通过手机控制家中的电器设备,实现远程监控和管理,这为家庭生活带来了前所未有的便利。
同时,嵌入式系统在医疗领域也得到了广泛的应用。
医疗器械、手术机器人等都采用了嵌入式系统,提高了医疗技术的水平和患者的生活质量。
随着嵌入式系统的不断发展,其硬件和软件技术也随之不断进步。
硬件方面,微处理器的性能越来越强大,功耗越来越低,体积越来越小。
软件方面,嵌入式系统的操作系统越来越成熟,开发和调试工具也越来越完善。
这为嵌入式系统的设计和开发提供了更大的便利,使得嵌入式系统的应用变得更加广泛。
未来,随着人工智能和物联网技术的发展,嵌入式系统的前景更加广阔。
人们可以通过嵌入式系统实现智能家居、智能交通等新的应用场景,使得生活更加智能化和便捷化。
同时,嵌入式系统还可以应用于工业自动化、能源管理等领域,提高生产效率和资源利用率。
可以预见,嵌入式系统在未来的发展中将发挥越来越重要的作用。
总结起来,嵌入式系统经过多年的发展,已从最初的简单控制系统逐渐演变为功能强大的智能化系统。
嵌入式系统发展与应用引言不论是日常生活中经常使用的家庭自动化产品、家用电器、手提电话、自动柜员机(ATM),还是各行各业的办公设备、现代化医疗设备、航空电子、计算机网络设备、用于工业自动化和监测的可编程逻辑控制器(PLC),甚至是娱乐设备的固定游戏机和便携式游戏机等都属于嵌入式系统。
嵌入式系统始于微型机时代的嵌入式应用,通过将微型机嵌入到一个对象体系中,实现对象系统的智能化控制。
随着科技的不断发展,在单片机时代,嵌入式系统以器件形态迅速进入到传统电子技术领域中,以电子技术应用工程师为主体,实现传统电子系统的智能化。
而后,随着后PC时代的到来,网络、通信技术得以发展;同时,嵌入式系统软、硬件技术有了很大的提升,形成了基于嵌入式系统软、硬件平台,以网络、通信为主的非嵌入式底层应用的计算机应用模式。
1嵌入式系统的概念与发展1.1 嵌入式系统的概念嵌入式系统是以应用为中心、以计算机技术为基础、软硬件可裁剪、适应应用系统,对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。
嵌入式系统主要由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户的应用程序等4个部分组成,它是集软硬件于一体的可独立工作的“器件”。
它必然是一个技术密集、资金密集、高度分散、不断创新的知识集成系统。
1.2 嵌入式系统发展纵观嵌入式系统的发展历程,大致经历了以下四个阶段:(1)无操作系统阶段嵌入式系统最初的应用是基于单片机的,大多以可编程控制器的形式出现,具有监测、伺服、设备指示等功能通常应用于各类工业控制和飞机、导弹等武器装备中,一般没有操作系统的支持,只能通过汇编语言对系统进行直接控制,运行结束后再清除内存。
这些装置虽然已经初步具备了嵌入式的应用特点,但仅仅只是使用8位的CPU芯片来执行一些单线程的程序,因此严格地说还谈不上系统的概念。
这一阶段嵌入式系统的主要特点是:系统结构和功能相对单一,处理效率较低,存储容量较小,几乎没有用户接口。
由于这种嵌入式系统使用简便、价格低廉,因而曾经在工业控制领域中得到了非常广泛的应用,但却无法满足现今对执行效率、存储容量都有较高要求的信息家电等场合的需要。
(2)简单操作系统阶段20世纪80年代,随着微电子工艺水平的提高,Ic制造商开始把嵌入式应用中所需要的微处理器、I/O接口、串行接口以及RAM、ROM等部件统统集成到一片VLSI中,制造出面向I /0设计的微控制器,并一举成为嵌入式系统领域中异军突起的新秀。
与此同时,嵌入式系统的程序员也开始基于一些简单的操作系统开发嵌入式应用软件,大大缩短了开发周期、提高了开发效率。
(3)实时操作系统阶段20世纪9O年代,在分布控制、柔性制造、数字化通信和信息家电等巨大需求的牵引下,嵌入式系统进一步飞速发展,而面向实时信号处理算法的DSP产品则向着高速度、高精度、低功耗的方向发展。
随着硬件实时性要求的提高,嵌入式系统的软件规模也不断扩大,逐渐形成了实时多任务操作系统(RTOS),并开始成为嵌入式系统的主流。
这一阶段嵌入式系统的主要特点是:操作系统的实时性得到了很大改善,已经能够运行在各种不同类型的微处理器上,具有高度的模块化和扩展性。
此时的嵌入式操作系统已经具备了文件和目录管理、设备管理、多任务、网络、图形用户界面(GUI)等功能,并提供了大量的应用程序接口(API),从而使得应用软件的开发变得更加简单。
(4)面向Internet阶段21世纪无疑将是一个网络的时代,将嵌入式系统应用到各种网络环境中去的呼声自然也越来越高。
目前大多数嵌入式系统还孤立于Internet之外,随着Internet的进一步发展,以及Internet技术与信息家电、工业控制技术等的结合日益紧密,嵌入式设备与Internet的结合才是嵌入式技术的真正未来。
信息时代和数字时代的到来,为嵌入式系统的发展带来了巨大的机遇,同时也对嵌入式系统厂商提出了新的挑战。
目前,嵌入式技术与Internet技术的结合正在推动着嵌入式技术的飞速发展,嵌入式系统的研究和应用产生了如下新的显著变化:2 嵌入式系统的组成与特点一个嵌入式系统装置一般都由嵌入式计算机系统和执行装置组成嵌入式计算机系统是整个嵌入式系统的核心,由硬件层、中间层、系统软件层和应用软件层组成。
执行装置也称为被控对象,它可以接受嵌入式计算机系统发出的控制命令,执行所规定的操作或任务。
执行装置可以很简单,如手机上的一个微小型的电机,当手机处于震动接收状态时打开;也可以很复杂,如智能机器狗,上面集成了多个微上控制电机和多种传感器,从而可以执行各种复杂的动作和感受种状态信息。
如图2-1所示嵌入式计算机系统。
图2-1嵌入式计算机系统下面对嵌入式计算机系统的组成进行介绍2.1 系统硬件层硬件层中包含嵌入式微处理器、存储器(SDRAM、ROM、Flash等)、通用设备接口和I/O接口(A/D、D/A、I/O等)。
在一嵌入式处理器基础上添加电源电路、时钟电路和存储器电路,就构成了一个嵌入式核心控制模块。
其中操作系统和应用程序都可以固化在ROM中。
2.2 系统中间层硬件层与软件层之间为中间层,也称为硬件抽象层或者板级支持包,它半系统上层软件与底层硬件分离开来,使系统的底层驱动程序与硬件无关,上层软件开发人员无需关心底层硬件的具体情况,根据BSP层提供的接口即可进行开发。
该层一般包含相关底层硬件的初始化、数据的输入/输出操作和硬件设备的配置功能。
实际上,BSP是一个介于操作系统和底层硬件之间的软件层次,包括了系统中大部分与硬件联系紧密的软件模块。
设计一个完整的BSP需要完成两部分工作:嵌入工系统的硬件初始化的BSP功能,设计硬件相关的设备驱动。
2.3 系统软件层系统软件层由实时多任务操作系统、文件系统、图形用户接口、网络系统及通用组件模块组成。
RTOS是嵌入式应用软件的基础和开发平台。
嵌入式操作系统(Embedded Operation System,EOS)是一种用途广泛的系统软件,过去它主要应用于工业控制和国防系统领域。
EOS负责嵌入系统的全部软、硬件资源的分配、任务调度,控制、协调并发活动。
它必须体现其所在系统的特征,能够通过装卸某些模块来达到系统所要求的功能。
已推出一些应用比较成功的EOS产品系列。
随着Internet技术的发展、信息家电的普及应用及EOS的微型化和专业化,EOS开始从单一的弱功能向高专业化的强功能方向发展。
嵌入式操作系统在系统实时高效性、硬件的相关依赖性、软件固化以及应用的专用性等方面具有较为突出的特点。
EOS是相对于一般操作系统而言的,它除具有了一般操作系统最基本的功能,还有以下功能:如任务调度、同步机制、中断处理、文件处理等。
3 嵌入式系统的特点与分类3.1 嵌入式系统的特点(1)系统内核小由于嵌入式系统一般是应用于小型电子装置的,系统资源相对有限,所以内核较之传统的操作系统要小得多。
比如Enea公司的OSE分布式系统,内核只有5K。
(2)专用性强嵌入式系统的个性化很强,其中的软件4种嵌入式操作系统的调度机制系统和硬件的结合非常紧密,一般要针对硬件进行系统的移植,即使在同一品牌、同一系列的产品中也需要根据系统硬件的变化和增减不断进行修改。
同时针对不同的任务,往往需要对系统进行较大更改,程序的编译下载要和系统相结合,这种修改和通用软件的“升级”是完全两个概念。
(3)系统精简嵌入式系统一般没有系统软件和应用软件的明显区分,不要求其功能设计及实现上过于复杂,这样一方面利于控制系统成本,同时也利于实现系统安全。
(4)高实时性高实时性的系统软件(OS)是嵌入式软件的基本要求。
而且软件要求固态存储,以提高速度;软件代码要求高质量和高可靠性。
(5)多任务的操作系统嵌入式软件开发要想走向标准化,就必须使用多任务的操作系统。
嵌入式系统的应用程序可以没有操作系统直接在芯片上运行;但是为了合理地调度多任务、利用系统资源、系统函数以及和专用库函数接口,用户必须自行选配RTOS(Real-Time Operating System)开发平台,这样才能保证程序执行的实时性、可靠性,并减少开发时间,保障软件质量。
(6)需要开发工具和环境嵌入式系统开发需要开发工具和环境。
由于其本身不具备自主开发能力,即使设计完成以后用户通常也是不能对其中的程序功能进行修改的,必须有一套开发工具和环境才能进行开发,这些工具和环境一般是基于通用计算机上的软硬件设备以及各种逻辑分析仪、混合信号示波器等。
开发时往往有主机和目标机的概念,主机用于程序的开发,目标机作为最后的执行机,开发时需要交替结合进行。
3.2 嵌入式系统的分类嵌入式系统是将先进的计算机技术、半导体技术和电子技术和各个行业的具体应用相结合后的产物,这一点就决定了它必然是一个技术密集、资金密集、高度分散、不断创新的知识集成系统。
目前根据其发展现状,嵌入式计算机可以分成下面几类:(1)、单个微处理器这类系统可以在小型设备中(如温度传感器、烟雾和气体探测器及断路器)找到。
这类设备是供应商根据设备的用途来设计的。
这类设备受Y2K影响的可能性不大。
(2)、不带计时功能的微处理器装置这类系统可在过程控制、信号放大器、位置传感器及阀门传动器等中找到。
这类设备也不太可能受到Y2K的影响。
但是,如果它依赖于一个内部操作时钟,那么这个时钟可能受Y2K 问题的影响。
(3)、带计时功能的组件这类系统可见于开关装置、控制器、电话交换机、电梯、数据采集系统、医药监视系统、诊断及实时控制系统等。
它们是一个大系统的局部组件,由它们的传感器收集数据并传递给该系统。
这种组体可同Pc机一起操作,并可包括某种数据库(如事件数据库)。
(4)、在制造或过程控制中使用的计算机系统对于这类系统,计算机与仪器、机械及设备相连来控制这些装置的工作。
这类系统包括自动仓储系统和自动发货系统。
在这些系统中,计算机用于总体控制和监视,而不是对单个设各直接控制。
过程控制系统可与业务系统连接(如根据销售额和库存量来决定定单或产品量)。
4 嵌入式系统的应用与发展趋势4.1 嵌入式系统的应用(1)工业控制基于嵌入式芯片的工业自动化设备将获得长足的发展,已经有大量的8、16、32 位嵌入式微控制器在应用中,网络化是提高生产效率和产品质量、减少人力资源主要途径,如工业过程控制、数字机床、电力系统、电网安全、电网设备监测、石油化工系统。
就传统的工业控制产品而言,低端型采用的往往是8位单片机。
但是随着技术的发展,32位、64位的处理器逐渐成为工业控制设备的核心,在未来几年内必将获得长足的发展。
(2)交通管理在车辆导航、流量控制、信息监测与汽车服务方面,嵌入式系统技术已经获得了广泛的应用,内嵌GPS模块,GSM模块的移动定位终端已经在各种运输行业获得了成功的使用。