《机械优化设计》第6章习题解答-1
- 格式:doc
- 大小:514.50 KB
- 文档页数:7
机械优化设计课后习题答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章习题答案1-1 某厂每日(8h 制)产量不低于1800件。
计划聘请两种不同的检验员,一级检验员的标准为:速度为25件/h ,正确率为98%,计时工资为4元/h ;二级检验员标准为:速度为15件/h ,正确率为95%,计时工资3元/h 。
检验员每错检一件,工厂损失2元。
现有可供聘请检验人数为:一级8人和二级10人。
为使总检验费用最省,该厂应聘请一级、二级检验员各多少人 解:(1)确定设计变量;根据该优化问题给定的条件与要求,取设计变量为X = ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡二级检验员一级检验员21x x ;(2)建立数学模型的目标函数;取检验费用为目标函数,即:f (X ) = 8*4*x 1+ 8*3*x 2 + 2(8*25* +8*15* ) =40x 1+ 36x 2(3)本问题的最优化设计数学模型:min f (X ) = 40x 1+ 36x 2 X ∈R 3·. g 1(X ) =1800-8*25x 1+8*15x 2≤0g 2(X ) =x 1 -8≤0 g 3(X ) =x 2-10≤0g 4(X ) = -x 1 ≤0 g 5(X ) = -x 2 ≤01-2 已知一拉伸弹簧受拉力F ,剪切弹性模量G ,材料重度r ,许用剪切应力[]τ,许用最大变形量[]λ。
欲选择一组设计变量T T n D dx x x ][][2321==X 使弹簧重量最轻,同时满足下列限制条件:弹簧圈数3n ≥,簧丝直径0.5d ≥,弹簧中径21050D ≤≤。
试建立该优化问题的数学模型。
注:弹簧的应力与变形计算公式如下322234881,1,(2n s s F D FD D k k c d c d Gd τλπ==+==旋绕比), 解: (1)确定设计变量;根据该优化问题给定的条件与要求,取设计变量为X = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡n D d x x x 2321; (2)建立数学模型的目标函数;取弹簧重量为目标函数,即:f (X ) =322124x x rx π(3)本问题的最优化设计数学模型:min f (X ) =322124x x rx π X ∈R 3·. g 1(X ) = ≤0g 2(X ) =10-x 2 ≤0 g 3(X ) =x 2-50 ≤0 g 4(X ) =3-x 3 ≤0 g 5(X ) =[]τπ-+312218)21(x Fx x x ≤0 g 6(X ) =[]λ-413328Gx x Fx ≤01-3 某厂生产一个容积为8000 cm 3的平底、无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型。
第六章习题解答1.已知约束优化问题:2)(0)()1()2()(min 21222112221≤-+=≤-=⋅-+-=x x x g x x x g ts x x x f试从第k 次的迭代点[]T k x21)(-= 出发,沿由(-1 1)区间的随机数0.562和-0.254所确定的方向进行搜索,完成一次迭代,获取一个新的迭代点)1(+k x 。
并作图画出目标函数的等值线、可行域和本次迭代的搜索路线。
[解] 1)确定本次迭代的随机方向:[]T TRS 0.4120.9110.2540.5620.2540.2540.5620.5622222-=⎥⎥⎦⎤⎢⎢⎣⎡++=2) 用公式:R k k S x xα+=+)()1( 计算新的迭代点。
步长α取为搜索到约束边界上的最大步长。
到第二个约束边界上的步长可取为2,则:176.1)412.0(22822.0911.0212212111=-⨯+=+==⨯+-=+=++R kk R k k S x x S x xαα⎥⎦⎤⎢⎣⎡=+176.1822.01k X即: 该约束优化问题的目标函数的等值线、可行域和本次迭代的搜索路线如下图所示。
2.已知约束优化问题:)(0)(025)(124)(m in 231222211221≤-=≤-=≤-+=⋅--=x x g x x g x x x g ts x x x f试以[][][]T T T x x x 33,14,12030201===为复合形的初始顶点,用复合形法进行两次迭代计算。
[解] 1)计算初始复合形顶点的目标函数值,并判断各顶点是否为可行点:[][][]935120101-=⇒==⇒=-=⇒=030302023314f x f x f x 经判断,各顶点均为可行点,其中,为最坏点。
为最好点,0203x x2)计算去掉最坏点 02x 后的复合形的中心点:⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡==∑≠=3325.221132103312i i i c x Lx3)计算反射点1R x (取反射系数3.1=α)20.693.30.551422.51.322.5)(1102001-=⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-+=R R c c R f x x x x x 值为可行点,其目标函数经判断α 4)去掉最坏点1R0301x x x x 和,,由02构成新的复合形,在新的复合形中 为最坏点为最好点,011R x x ,进行新的一轮迭代。
第一章习题答案1-1某厂每日(8h制)产量不低于1800件。
计划聘请两种不同的检验员,一级检验员的标准为:速度为25件/ h,正确率为98%,计时工资为4元/ h;二级检验员标准为:速度为15件/力,正确率为95%,计时工资3 元/ ho检验员每错检一件,工厂损失2元。
现有可供聘请检验人数为:一级8人和二级10人。
为使总检验费用最省, 该厂应聘请一级、二级检验员各多少人?解:(1)确定设计变量;根据该优化问题给定的条件与要求,取设计变量为(2)建立数学模型的目标函数;取检验费用为目标函数,即:f(力二8*4**+ 8*3*X2 + 2 ( 8*25*0.02*+8*15*0. 05x2 )二40K+ 36x2(3) 本问题的最优化设计数学模型:min f (X)二40K+36X2X W Rs. t. g y (力=800-8*25^+8*15匕WOgi (X) =Xi-8W0§3 (A) ~%2_1 0^0闽(力二—Xi WOgs (A) —~x2 WO1-2已知一拉伸弹簧受拉力F,剪切弹性模量5 材料重度「,许用剪切应力国,许用最大变形量〔刃。
欲选择一组设计变量X = [X| x2x3]r =[d D2 n]r使弹簧重量最轻,同时满足下列限制条件:弹簧圈数心簧丝直径〃沖10<D2<50 o 试建立该优化问题的数学模型。
注:弹簧的应力与变形计算公式如下S罟,—1 +瘁,心牛(旋绕比),"器解:(1)确定设计变量;根据该优化问题给定的条件与要求,取设计变量为X二(2) 建立数学模型的目标函数;取弹簧重量为目标函数,即:心二分也(3) 本问题的最优化设计数学模型: min f (X -匚心山XwR4s. t. gi (力—0. 5-Xi WO §2(A)—10—%2 WO 戲(力—^2—50 WO切(力~3—%3 W0馬(无二(1+宀警十]W02X2兀勺说(力二氾*]W01-3某厂生产一个容积为8000 co?的平底、无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型。
机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X *附近偏导数连续,则该点位极小值点的充要条件为( )A .()*0F X ∇= B. ()*0F X ∇=,()*H X 为正定 C .()*0H X = D. ()*0F X ∇=,()*H X 为负定2.为克服复合形法容易产生退化的缺点,对于n 维问题来说,复合形的顶点数K 应( )A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤- 3.目标函数F (x )=4x 21+5x 22,具有等式约束,其等式约束条件为h(x)=2x 1+3x 2-6=0,则目标函数的极小值为( )A .1B . 19.05C .0.25D .0.14.对于目标函数F(X)=ax+b 受约束于g(X)=c+x ≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M (k))为( )。
A. ax+b+M (k){min [0,c+x ]}2,M (k)为递增正数序列B. ax+b+M (k){min [0,c+x ]}2,M (k)为递减正数序列C. ax+b+M (k){max [c+x,0]}2,M (k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 19.B.20.D 21.A 22.D 23.C 24.B 25.D 26.D 27.A 28.B 29.B 30.B5.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( )。
A.0.382 B.0.186 C.0.618 D.0.8166.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。
8. 有一汽门用弹簧,已知安装高度H1=50.8mm,安装(初始)载荷F1=272N ,最大工作载荷F2=680N ,工作行程h=10.16mm 弹簧丝用油淬火的50CrV A 钢丝,进行喷丸处理; 工作温度126°C ;要求弹簧中径为20mm ≤D2≤50mm ,弹簧总圈数4≤n1≤50,支 承圈数n2=1.75,旋绕比C ≥6;安全系数为1.2;设计一个具有重量最轻的结构方案。
[解] 1.设计变量:影响弹簧的重量的参数有弹簧钢丝直径:d ,弹簧中径D1和弹簧总圈数n1,可取这三个参数作为设计变量:即:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=H D x x x 212.目标函数:弹簧的重量为式中 ρ――钢丝材料的容重,目标函数的表达式为3221611262101925.0108.725.0)(x x x n D d x F --⨯=⨯⨯=π3.约束条件:1)弹簧的疲劳强度应满足min S S ≥式中 2.1m i n m i n =--S S ,可取最小安全系数,按题意S ――弹簧的疲劳安全系数,由下式计算:m s s s S ττττττττα⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=002式中 :劳极限,计算方法如下弹簧实际的脉动循环疲--0τ初选弹簧钢丝直径:4mm ≤d ≤8mm ,其抗拉强度MPa b 1480=σ,取弹簧的循环工作次数大于710,则材料的脉动循环疲劳极限为MPa b 44414803.03.0'0=⨯==στ设可靠度为90%,可靠性系数 868.0=r k ; 工作温度为126°C ,温度修正系数 862.0126273344273344=+=+=T k t再考虑到材料经喷丸处理,可提高疲劳强度10%,则弹簧实际的脉动循环疲劳极限为MPa k k t r 4.365444862.0868.01.1)1.01('00=⨯⨯⨯=+=ττ36/107.8mm kg -⨯=ρρπ12220.25n D d W =--s τ弹簧材料的剪切屈服极限,计算公式为MPa b s 74014805.05.0=⨯==στ--ατ弹簧的剪应力幅,计算公式为328dD F ka πτα=式中 k ――曲度系数,弹簧承受变应力时,计算公式为14.02)(6.1615.04414d D C C C k ≈+--=a F ――载荷幅,其值为N F F F a 2042/)272680(2/)(12=-=-=m τ――弹簧的平均剪应力,计算公式为328dD F k m sm πτ=式中s k ――应力修正系数,计算公式为dD C k s /615.01615.012+=+= m F ――平均载荷,其值为N F F F m 4762/)272680(2/)(12=+=+=由此,得到弹簧疲劳强度的约束条件为 计算剪应力幅ατ:86.2186.023214.023.8308)/(6.1x x d D F d D dD F ka a =⋅==ππτα328 计算平均应力幅m τ:21312246.74512.1212615.01x x x d D F Dd dD F k m m sm +=⎪⎪⎭⎫ ⎝⎛+==33288ππτ 计算弹簧的实际疲劳安全系数S :mms s s S τττττττττταα494.0506.14.365+=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=0002从而得到弹簧的疲劳强度约束条件为012.1)(min 1≤-=-=SS S S x g 2)根据旋绕比的要求,得到约束条件016)(21min 2≤-=-=x x C C C x g3)根据对弹簧中径的要求,得到约束条件50222≤-=-=≤-=-=1)4(0120)3(max max 242min 3x D D D g x D D D g4)根据压缩弹簧的稳定性条件,要求:c F F ≤2式中 c F ――压缩弹簧稳定性的临界载荷,可按下式计算:K H D H F C ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=2022085.611813.0μ 式中 K ――要求弹簧具有的刚度,按下式计算:mm N h F F K /2.4016.1027268012=-=-=0H ――弹簧的自由高度,按下式计算: 当mm K F 16.9240.26802===λ 时, 304.20)5.0(2.1)5.0(310+-=+-=x n H λμ――长度折算系数,当弹簧一端固定,一端铰支时,取 7.0=μ;则:[][]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+---+-=221398.1311304.20)5.0(268.320.3040.5)(13x x x x x F C于是得 01680)(25≤-=-=CC C F F F F x g5)为了保证弹簧在最大载荷作用下不发生并圈现象,要求弹簧在最大载荷2F 时的高度2H 应大于压并高度b H ,由于13112)5.0()5.0(64.4016.108.50x x d n H h H H b -=-==-=-=于是得到010123.00246.0)(131226≤--=-=x x x H H H x g b6)为了保证弹簧具有足够的刚度,要求弹簧的刚度αK 与设计要求的刚度K 的误差小于1/100,其误差值用下式计算:401.02.40)75.1(8100/)(33241---=--=x x Gx K K K αθ式中 G ――弹簧材料的剪切弹性模量,取G=80000Mpa 。
9.图6-39所示为一对称的两杆支架,在支架的顶点承受一个载荷为2F=300000N , 支架之间的水平距离2B=1520mm ,若已选定壁厚T=2.5mm 钢管,密度/1083-6mm Kg ⨯=.7ρ,屈服极限700=s σMpa ,要求在满足强度与稳定性条件下设计最轻的支架尺寸。
[解] 1.建立数学模型 设计变量:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=H D x x x 21目标函数:221422577600101.2252)(x x HBD T x f +⨯=+=πρ约束条件:1)圆管杆件中的压应力σ应小于或等于y ο,即y TDHHB F σπσ≤+=22于是得2122157760019098.59)(x x x x g +=2)圆管杆件中的压应力α应小于或等于压杆稳定的临界应力c σ,由欧拉公式得钢管的压杆温度应力c σ222152222225776006.25102.6)8()(x x H B T D E AL EIC ++⨯=++==ππσ2式中 A ――圆管的截面积;L ――圆管的长度。
于是得0)6006.25)/(577(102.657760019098.59)(2221521222≤++⨯-+=-=x x x x x x g c σσ3)设计变量的值不得小于或等于0于是得)(0)(2213≤-=≤-=x x g x x g2.从以上分析可知,该优化设计问题具有2个设计变量,4个约束条件,按优化方法程序的规定编写数学模型的程序如下:subroutine ffx(n,x,fx)dimension x(n) fx=1.225e-4*x(1)*sqrt(577600.0+x(2)*x(2))dimension x(n) fx=1.225e-4*x(1)*sqrt(577600.0+x(2)*x(2))fx=1.225e-4*x(1)*sqrt(577600.0+x(2)*x(2))endsubroutine ggx(n,kg,x,gx)dimension x(n),gx(kg)gx(1)=19098.59*sqrt(577600.0+x(2)*x(2))/(x(1)*x(2))-700.0gx(2)=19098.59*sqrt(577600.0+x(2)*x(2))/(x(1)*x(2))-1 2.6e5*(x(1)*x(1)+6.25)/(577600.0+x(2)*x(2))gx(3)=-x(1)gx(4)=-x(2)end3.利用惩罚函数法(SUMT法)计算,得到的最优解为:============== PRIMARY DATA ==============N= 2 KG= 4 KH= 0X : .7200000E+02 .7000000E+03FX: .9113241E+01GX: -.3084610E+03 -.8724784E+03 -.7200000E+02 -.7000000E+03PEN = .9132947E+01R = .1000000E+01 C = .4000000E+00 T0= .1000000E-01EPS1= .1000000E-05 EPS2= .1000000E-05=============== OPTIMUM SOLUTION ==============IRC= 18 ITE= 39 ILI= 39 NPE= 229 NFX= 0 NGR= 57R= .1717988E-06 PEN= .6157225E+01X : .4868305E+02 .6988214E+03FX: .6157187E+01GX: -.1204029E+03 -.1266042E-01 -.4868305E+02 -.6988207E+0310.图6-40所示为一箱形盖板,已知长度L=6000mm ,宽度b=600mm ,厚度mm t s 5= 承受最大单位载荷q=0.01Mpa ,设箱形盖板的材料为铝合金,其弹性模量MPa E 4107⨯=,泊松比3.0=μ,许用弯曲应力[]MPa 70=σ,许用剪应力[]MPa 45=τ,要求在满足强度、刚度和稳定性条件下,设计重量最轻的结构方案。
第六章习题解答1.已知约束优化问题:2)(0)()1()2()(min ≤-+=≤-=⋅-+-=xx x g xxx g ts xx x f试从第k 次的迭代点[]x21-= 出发,沿由(-1 1)区间的随机数0.562和-0.254所确定的方向进行搜索,完成一次迭代,获取一个新的迭代点+x 。
并作图画出目标函数的等值线、可行域和本次迭代的搜索路线。
[解] 1)确定本次迭代的随机方向:[]S0.4120.9110.2540.5620.2540.2540.5620.5622222-=⎥⎥⎦⎤⎢⎢⎣⎡++=2)用公式:Sx x α+=+计算新的迭代点。
步长α取为搜索到约束边界上的最大步长。
到第二个约束边界上的步长可取为2,则:176.1)412.0(22822.0911.021=-⨯+=+==⨯+-=+=++Sx xS x x αα⎥⎦⎤⎢⎣⎡=+176.1822.0X即:该约束优化问题的目标函数的等值线、可行域和本次迭代的搜索路线如下图所示。
2.已知约束优化问题:)(0)(025)(124)(min ≤-=≤-=≤-+=⋅--=xx g x x g x x x g ts xx x f试以[][][]x x x33,14,12===为复合形的初始顶点,用复合形法进行两次迭代计算。
[解] 1)计算初始复合形顶点的目标函数值,并判断各顶点是否为可行点:[][][]93512-=⇒==⇒=-=⇒=03032023314f xf x fx经判断,各顶点均为可行点,其中,为最坏点。
为最好点,x x 2)计算去掉最坏点 02x后的复合形的中心点:⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡==∑≠=3325.22113312x Lx 3)计算反射点x(取反射系数3.1=α)20.693.30.551422.51.322.5)(11021-=⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-+=fx xxx x值为可行点,其目标函数经判断α4)去掉最坏点1R 0301x x x x 和,,由构成新的复合形,在新的复合形中为最坏点为最好点,011R x x ,进行新的一轮迭代。
5)计算新的复合形中,去掉最坏点后的中心点得:⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡= 3.151.7753.30.553321x6)计算新一轮迭代的反射点得:,完成第二次迭代。
值为可行点,其目标函数经判断413.14 5.9451.4825123.151.7751.33.151.775)(121112-=⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-+=fx x xxxα3.设已知在二维空间中的点[]xxx =,并已知该点的适时约束的梯度[]g 11--=∇,目标函数的梯度[]f 15.0-=∇,试用简化方法确定一个适用的可行方向。
[解] 按公式6-32 计算适用的可行方向:)(xf P xf P d ∇∇-=/)(x 点的目标函数梯度为:[]xf 15.0)(-=∇x点处起作用约束的梯度G 为一个J n ⋅ 阶的矩阵,题中:n=2,J=1:[]xg G 11)(--=∇=梯度投影矩阵P 为:[][][]⎥⎦⎤⎢⎣⎡--=-⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡----⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡=-=--5.05.05.05.00111111111001GGGG I P则:适用可行方向为:⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡---=707.0707.010.50.50.50.50.510.50.50.50.50.5d4.已知约束优化问题:00)(34)(min ≤-=≤-=≤-=⋅-+-=xgx g x g ts xxxx xx f试求在[]x1/21/4=点的梯度投影方向。
[解] 按公式6-32 计算适用的可行方向:)(x f P x f P d ∇∇-=/)(x 点的目标函数梯度为:[]xf 125.0125.0--=∇)(x点处起作用约束的梯度G 为一个J n ⋅ 阶的矩阵,题中:n=3,J=1:[]xg G 001)(1-=∇=梯度投影矩阵P 为:[][][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=--10001000000100100100110001000111GGGG I P则:适用可行方向为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=97.0243.00125.0100010.250.1251000100000.12500100d312)(2112221≤-=⋅+-+=xg ts x xx x f m in(提示:可构造惩罚函数 []∑=-=)(ln )(),(x g r x f r x φ,然后用解析法求解。
)[解] 构造内点惩罚函数:[]∑=--+-+=-=21)()(),(x r x x xx g r x f r x )3ln(12ln φ令惩罚函数对x 的极值等于零:0)3/()(222=⎥⎦⎤⎢⎣⎡----=x r x x dx d φ得:48366121r xx +±== 舍去负根后,得483662r x++=当 []x xr 31302=→→该问题的最优解为,时,。
0)(min ≤-=≤-=⋅+=xgx x g ts xx x f[解] 将上述问题按规定写成如下的数学模型: subroutine ffx(n,x,fx) dimension x(n) fx=x(1)+x(2) endsubroutine ggx(n,kg,x,gx) dimension x(n),gx(kg) gx(1)=x(1)*x(1)-x(2) gx(2)=-x(1)endsubroutine hhx(n,kh,x,hx) domension x(n),hx(kh) hx(1)=0.0 end然后,利用惩罚函数法计算,即可得到如下的最优解:============== PRIMARY DATA ============== N= 2 KG= 2 KH= 0 X : .1000000E+01 .2000000E+01 FX: .3000000E+01GX: -.1000000E+01 -.1000000E+01 X : .1000000E+01 .2000000E+01 FX: .3000000E+01GX: -.1000000E+01 -.1000000E+01 PEN = .5000000E+01R = .1000000E+01 C = .2000000E+00 T0= .1000000E-01 EPS1= .1000000E-05 EPS2= .1000000E-05=============== OPTIMUM SOLUTION ============== IRC= 21 ITE= 54 ILI= 117 NPE= 3759 NFX= 0 NGR= 0 R= .1048577E-13 PEN= .4229850E-06 X : .9493056E-07 .7203758E-07 FX: .1669681E-06GX: -.7203757E-07 -.9493056E-077.用混合惩罚函数法求下列问题的最优解:1)(0)()(2121112≤-+=≤-=⋅-=xx x h x x g ts x xx f ln m in[解] 将上述问题按规定写成如下的数学模型: subroutine ffx(n,x,fx) dimension x(n) fx=x(2)-x(1) endsubroutine ggx(n,kg,x,gx) dimension x(n),gx(kg) gx(1)=-log(x(1))] gx(2)=-x(1) gx(3)=-x(2) endsubroutine hhx(n,kh,x,hx) domension x(n),hx(kh) hx(1)=x(1)+x(2)-1end然后,利用惩罚函数法计算,即可得到如下的最优解:============== PRIMARY DATA ============== N= 2 KG= 3 KH= 1 X : .2000000E+01 .1000000E+01FX: -.1000000E+01GX: -.6931472E+00 -.2000000E+01 -.1000000E+01 X : .2000000E+01 .1000000E+01 FX: -.1000000E+01GX: -.6931472E+00 -.2000000E+01 -.1000000E+01 HX: .2000000E+01 PEN = .5942695E+01R = .1000000E+01 C = .4000000E+00 T0= .1000000E-01 EPS1= .1000000E-05 EPS2= .1000000E-05=============== OPTIMUM SOLUTION ============== IRC= 29 ITE= 143 ILI= 143 NPE= 1190 NFX= 0 NGR= 172 R= .7205765E-11 PEN= -.9999720E+00 X : .1000006E+01 .3777877E-05FX: -.1000012E+01GX: -.5960447E-05 -.1000006E+01 .6222123E-05 HX: -.2616589E-06。