探索勾股定理(一)知识讲解
- 格式:ppt
- 大小:603.50 KB
- 文档页数:20
《探索勾股定理(一)》说课稿高明区东洲中学谢雪莲各位评委、老师,你们好! 我是高明区东洲中学谢雪莲。
今天我说课的内容是九年义务教育北师大版数学教材八年级上册第一章第一节《探索勾股定理(一)》,下面让我来阐述一下我是如何分析教材、如何设计教学过程的。
一、学生起点分析认识基础:在学习本节内容之前,学生已经掌握了三角形的三边关系及等腰三角形、等边三角形的相关性质,对于直角三角形内角之间的数量关系也十分熟悉。
活动经验基础:在七年级下册《三角形》一章中,学生通过测量、拼图、折纸等多种形式的活动,进行了充分的实践与探索,在活动中学会了与他人交流、合作的策略,初步获得了数学活动经验,提高了思维水平。
二、教学任务分析勾股定理揭示了直角三角形三边之间的一种美妙关系,将数与形紧密联系起来,在数学的发展和现实世界中有着广泛的作用。
本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性.此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。
三、教学目标分析●知识与技能目标用正方形面积的等量关系验证勾股定理并理解勾股定理反映的直角三角形三边之间的数量关系,初步运用勾股定理进行简单的计算和实际运用。
●解决问题经历探索勾股定理的过程,进一步发展学生的推理能力。
●情感与态度1、激励学生自主探究,从中获得成功的体验,培养学生的合作意识和团队精神。
从而让学生多角度地思考问题,发展思维。
2、通过互联网搜索相关内容进行预习与拓展勾股定理的知识,激发学生热爱祖国悠久文化的思想,激励学生发奋学习。
四、教学重点与难点:●重点:用面积法探索勾股定理,理解并掌握勾股定理。
●难点:计算以斜边为边长的大正方形R面积以及割补思想的方法理解与应用。
五、教法、学法1.教学方法:在整个准备过程中遵循学生的认知规律,分别从问题的引入、结论的得出、定理的证明与运用进行教学设计、教学实践和教学反思。
《探索勾股定理》第一课时说课稿相信勾股定理大家都很熟悉,但是让你说课你应该觉得很难。
下面是整理的《探索勾股定理》第一课时说课稿,请阅读,上,发现学习。
一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。
2、会初步运用勾股定理进行简单的计算和实际运用。
3、在探索勾股定理的过程中,让学生经历观察猜想归纳验证的数学思想,并体会数形结合和特殊到一般的思想方法。
4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决课堂小结布置作业六部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是已知一直角三角形的两边,如何求第三边? 的问题。
勾股定理知识点学习要求:学习重点是利用计算面积和拼图的方法探索并验证勾股定理借助三角形三边关系来判断一个三角形是否是直角三角形。
难点是各种拼图的理解和勾股定理的应用。
中考热点:主要考查勾股定理与直角三角形判定条件的应用和勾股数常与三角形其他知识结合考查。
一、探索勾股定理: 1.勾股定理(重点)内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 即:直角三角形的三边关系为:两直角边的平方和等于斜边的平方注:勾股定理揭示的是直角三角形三边关系的定理,只使用与直角三角形。
使用勾股定理时首先确定最长边即斜边。
2.勾股定理的证明(难点)勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:见右图四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用X围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形(22+<2c的三边就不具有这一特征,因而在a b+>2c)和钝角三角形(22a b应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用(重点)①已知直角三角形的任意两边长,求第三边在ABC∠=︒,则22∆中,90Ca c b=-,22=-b c ac a b=+,22②知道直角三角形一边,可得另外两边之间的数量关系。
勾股定理第一节 探索勾股定理●应知 基础知识1、勾股定理(1)勾股定理的内容:在直角三角形中,两直角边的 等于 的平方.(2)勾股定理的表示方法:如果直角三角形的两直角边分别为,a b ,斜边为c ,那么有 。
2、理解(1)勾股定理存在和运用的前提条件是在直角三角形中,如果不是直角三角形,那么三边之间不存在这种关系。
(2)勾股定理把“图形”与“数量”有机地结合起来,即把直角三角形的“形”与三边关系的“数”结合起来,是数形结合思想的典型代表之一。
(3)利用勾股定理,可以在直角三角形中已知两边长的情况下,求出未知的第三边长。
一般情况下,用,a b 表示直角边,c 表示斜边,则有:222222222a b c b c a a c b +==-=- 在运用勾股定理求第三边时,首先应确定是求直角边还是求斜边,在选择利用勾股定理的原形公式还是变形公式。
【例1】在ABC ∆中,90C ︒∠=, (1)若3,4,a b ==则c = ; (2)若6,10a c ==,则b = ;(3)若:3:4,15a b c ==,则a = ,b = 。
【例2】已知直角三角形的两边长分别是3和4,如果这个三角形是直角三角形,求以第三边为边长的正方形的面积。
3、勾股定理的验证至少掌握勾股定理的三种验证方法,并从中体会到这种验证方法所体现的数学思想。
【例3】2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾 股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所 示).如果大正方形的面积是13,小正方形的面积是1,直角三角形较短直角边为a ,较长 直角边为b ,那么2()a b 的值为( ).A .13B .19C .25D .169 ●应会 基本方法1、如何利用勾股定理求长度利用勾股定理求长度,关键是找出直角三角形或构造直角三角形,把实际问题转化为直 角三角形问题。
在已知两边求第三边时,关键是弄清已知什么边,要求什么边,用平方和还 是平方差。
第一讲 探索勾股定理知识点一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2) 要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 知识点二勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA一般题型1、在Rt △ABC 中,∠C=90°(1)若a=5,b=12,则c=________ 经典题型例1.在ABC ∆中,90C ∠=︒. ⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=2、一架4.1m 长的梯子斜靠在一竖直的墙上,这时梯足距墙脚0.9m .那么梯子的顶端与地面的距离是( ).(A )3.2m (B )4.0m (C )4.1m (D )5.0m 练习1、已知直角三角形的两条边长分别是5和12,则第三边为2、如果梯子底端离建筑物9m ,那么15m 长的梯子可达到建筑物的高度是__ _ __ 。