2010、2011、2012年四川省眉山中考数学试题含答案(合集)
- 格式:docx
- 大小:1.65 MB
- 文档页数:33
四川省眉山市xx年中考数学真题试题一、选择题1. 绝对值为1的实数共有().A. 0个B. 1个C. 2个D. 4个【答案】C【解析】分析:直接利用绝对值的性质得出答案.详解:绝对值为1的实数有:1,-1共2个.故选:C.点睛:此题主要考查了实数的性质以及绝对值,正确把握绝对值的性质是解题关键.2. 据相关报道,开展精准扶贫工作以来,我国约有65000000人摆脱贫困,将65000000用科学记数法表示为().A. 65×106B. 0.65×108C. 6.5×106D. 6.5×107【答案】D【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n是负数.详解:65000000=6.5×107,故选:D.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列计算正确的是().A. (x+y)2=x2+y2B. (-xy2)3=- x3y6C. x6÷x3=x2D. =2【答案】D【解析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.详解:(x+y)2=x2+2xy+y2,A错误;(-xy2)3=-x3y6,B错误;x6÷x3=x3,C错误;==2,D正确;故选:D.点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.4. 下列立体图形中,主视图是三角形的是().A. B. C. D.【答案】B【解析】分析:根据从正面看得到的图形是主视图,可得图形的主视图.详解:A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选:B.点睛:本题考查了简单几何体的三视图,圆锥的主视图是三角形.5. 将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A. 45°B. 60°C. 75°D. 85°【答案】C【解析】分析:先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB可得答案.详解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.点睛:本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.6. 如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于().【答案】A【解析】分析:直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP=54°,结合圆周角定理得出答案.详解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=27°.故选:A.点睛:此题主要考查了切线的性质以及圆周角定理,正确得出∠AOP的度数是解题关键.7. 某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(). A. 众数 B. 中位数 C. 平均数 D. 方差【答案】B【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B.点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数8. 若α,β是一元二次方程3x2+2x-9=0的两根,则的值是().A. B. - C. - D.【答案】C【解析】分析:根据根与系数的关系可得出α+β=-、αβ=-3,将其代入=中即可求出结论.详解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴===.故选:C.点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.9. 下列命题为真命题的是().A. 两条直线被一组平行线所截,所得的对应线段成比例B. 相似三角形面积之比等于相似比C. 对角线互相垂直的四边形是菱形D. 顺次连结矩形各边的中点所得的四边形是正方形【答案】A【解析】分析:根据平行线分线段成比例定理、相似三角形的性质、菱形的判定定理、中点四边形的性质判断即可.详解:两条直线被一组平行线所截,所得的对应线段成比例,A是真命题;相似三角形面积之比等于相似比的平方,B是假命题;对角线互相垂直的平行四边形是菱形,C是假命题;顺次连结矩形各边的中点所得的四边形是菱形,D是假命题;故选:A.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10. 我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是().A. 8%B. 9%C. 10%D. 11%【答案】C【解析】分析:设平均每次下调的百分率为x,则两次降价后的价格为6000(1-x)2,根据降低率问题的数量关系建立方程求出其解即可.详解:设平均每次下调的百分率为x,由题意,得6000(1-x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.11. 已知关于x的不等式组仅有三个整数解,则a的取值范围是().A. ≤a<1B. ≤a≤1C. <a≤1D. a<1【答案】A【解析】分析:根据解不等式组,可得不等式组的解,根据不等式组的解是整数,可得答案。
四川省眉山市中考数学试卷及答案第1卷(选择题 共36分)一、选择题:本大题共12个小题,每小题3分.共36分.在每个小题给出的四个选项中只 有一项是正确的.请把正确选项的字母填涂在答题卡上相应的位置1.计算3-1的结果是( ).A .31B .—31C .3D .—3 2.下列计算错误的是( ).A .(一2x)3=一2x 3B .一a 2·a =一a 3C .(一x)9 ÷(一x)3=x 6D .(-2a 3)2=4a 63.下列二次根式中与2是同类二次根式的是( ).A .12B .23C .32 D .18 4、下列图形中,不是三棱柱的表面展开图的是( ).5.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:m1 2 3 4 v 0.01 2.9 8.03 15.1 A v =2m 一2 D . v =m 2一1 C . v =3m 一3 D v =m 十1 6.一元二次方程x 2+x +2=0的根的情况是A .有两个不相等的正根B .有两个不相等的负根C .没有实数根D .有两个相等的实数根区县东坡区 仁寿县 彭山县 洪雅县 青神县 丹棱县 人口数(万人) 83 160 33 34 20 16 则眉山市各区、县人口数的极差和中位数分别是( ).A .160万人,33.5万人 B.144万人,33.5万人C .144万人,34万人D .144万人,33万人8.下列命题中的假命题是( ).A .一组邻边相等的平行四边形是菱形B .一组邻边相等的矩形是正方形c 一组对边平行且相等的四边形是平行四边形D .一组对边相等且有一个角是直角的四边形是矩形9.某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ).A .b a -8分钟B .b a +8分钟C .b b a +-8分钟D .bb a --8分钟 10.如图,ΔACD 和ΔAEB 都是等腰直角三角形,∠CAD =∠EAB =900.四边形ABCD 是平行四边形,下列结论中错误的是( ).A .ΔACE 以点A 为旋转中心,逆时针方向旋转900后与ΔADB 重合B .ΔACB 以点A 为旋转中心,顺时针方向旋转2700后与ΔDAC 重合C .沿AE 所在直线折叠后,ΔACE 与ΔADE 量重合D .沿AD 所在直线折叠后,ΔADB 与ΔADE 重台11.如图,A 、B 是反比例函数y =x2的图象上的两点.AC 、BD 都垂直于x 轴,垂足分别为C 、D .AB 的延长线交x 轴于点E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是( ).A .21B .41 C.81 D .161 11.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是( ).A .-1,1B .1,3C . 3,ID .1,l第II 卷 (非选择题 共84分)二、填空题:本大题共6个小题,每小题4分.共24分 将正确答案直接填在题中横线上.)13.某校九年级一班体育兴趣小组四位同学的身高(单位:cm)分别为:170、170、t66、174,则这四位同学的平均身高为________cm .14.在同一圆中,一条弧所对的圆心角和圆周角分别为(2x +70)0和900,则x =_______.15.关于x 的一元二次方程x 2+bx +c =0的两个实数根分别为1和2,则b =______;c =______.16.圆锥的体积公式是:圆锥的体积=31×底面积×高,则高为7.6cm ,底面半径为2.7cm 的圆锥的体积等于________cm .(结果保留2个有效数字,π取3.14)17.在Rt ΔABC 中,∠C =900,BC :AC =3:4.则cosA =_______.18.如图,已知等腰直角ΔABC 的直角边长与正方形MNPQ 的边长均为20厘米,AC 与MN 在同一直线上,开始时点A 与点N 重合.让ΔABC 以每秒2厘米的速度向左运动,最终点A 与点M 重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为____________.18题图 22题图三、本大题共2个小题.每小题5分,共10分.19.计算: 2sin450+cos300·tan600—2)3(- (应有必要的运算步骤) 20.计算:ba b -2十a 十b 四、本大题共3个小题,每小题7分.共21分.21 在如图所示的5×6方格中(每个方格的边长为1)画一圆,要求所画的圆经过四个格点,并求出你画的圆的半径.22.如图,将两个可以自由转动的转盘分别分成面积相等的几个扇形,在分成的扇形上分别标上数字1,2,3,4,5.同时转动两个转盘.(1)用树状图或列表法表示转盘停止后指针所指扇形上的数字可能出现的所有结果(若指针指在分界线上,则重转);(2)如果甲、乙两人分别同时转动两个转盘,并规定:转盘停止后,若两转盘指针所指扇形上的数字之和为偶数,则甲胜;若数字之和为奇数,则乙胜.这个游戏对甲、乙两人公平吗?请说明理由.23.黄金周长假推动了旅游经济的发展.下图是根据国家旅游局提供的近年来历次黄金周旅游收入变化图.(1)根据图中提供的信息.请你写出两条结论;(2)根据图中数据,求至的“十一”黄金周全国旅游收入平均每年增长的百分率(精确到0.1)五、本大题共2个小题,每小题9分,共18分24.如图.在线段AE的同侧作正方形ABCD和正方形BEFG(BE<AB),连结EG并延长交DC于M,过M作MN⊥AB.垂足为N,MN交BD于P(1)找出图中—对全等三角形.并加以证明(正方形的对角线分正方形得到的两个三角形除外);(2)设正方形ABCD的边长为1,按照题设方法作出的四边形BGMP若是菱形,求BE的长.25.某县响应“建设环保节约型社会”的号召,决定资助部分付镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:占地面积(m2/个)沼气池修建费用(万元/个) 可供使用户数(户/个)A型 3 20 48B型 2 3 6政府相关部门批给该村沼气池修建用地708m2.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)求y与x之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.六、本大题共1个小题,共11分26.如图,矩形A’BC’O’是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕B点逆时针旋转得到的.O’点在x轴的正半轴上,B点的坐标为(1,3).(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O、O’两点且图象顶点M的纵坐标为—1.求这个二次函数的解析式;(2)在(1)中求出的二次函数图象对称轴的右支上是否存在点P,使得ΔPOM为直角三角形?若存在,请求出P点的坐标和ΔPOM的面积;若不存在,请说明理由;(3)求边C’O’所在直线的解析式.。
A四川省眉山市2010年初中学业暨高中阶段教育学校招生考试数 学 试 卷注意事项:1.本试卷分为A 卷和B 卷.A 卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共12个小题,共36分,第1页至第2页;第Ⅱ卷共11个小题,共54分,第3页至第5页;B 卷共3个小题,共30分,第6页至第8页.全卷满分120分,考试时间120分钟.2.答第Ⅰ卷前,考生务必将姓名、准考证号、考试科目用铅笔涂写在答题卡上相应的位置,并请将密封线内的内容填写清楚.第Ⅰ卷不能答在试卷上,第Ⅱ和B 卷答在试卷上.3.不允许使用计算器进行运算,凡无精确度要求的题目,结果均保留准确值,解答题应写出演算过程、推理步骤或文字说明.A 卷题号一二三四总分全卷 总分总分人得分B 卷题号一二总分得分A 卷(共90分)第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,每个小题3分,共36分.在每个小题给出的四个选项中只有一项是正确的,请把正确选项的字母用铅笔填涂在答题卡上相应的位置. 1.5-的倒数是 A .5 B .15 C .5- D .15- 2.计算2(3)-的结果是A .3B .3-C .3±D . 9 3.下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+4.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,圆心距O 1O 2=2cm ,这两圆的位置关系是 A .外切 B .相交 C .内切 D .内含 5.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 6.下列命题中,真命题是A .对角线互相垂直且相等的四边形是正方形B .等腰梯形既是轴对称图形又是中心对称图形C .圆的切线垂直于经过切点的半径D .垂直于同一直线的两条直线互相垂直7.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为A .B .C .D .DBAyxO C A .90° B .60° C .45° D .30° 8.下列说法不正确的是 A .某种彩票中奖的概率是11000,买1000张该种彩票一定会中奖 B .了解一批电视机的使用寿命适合用抽样调查C .若甲组数据的标准差S 甲=0.31,乙组数据的标准差S 乙=0.25,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 9.下列四个图中,是三棱锥的表面展开图的是10.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为A .7-B .3-C .7D .311.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为12.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜 边OA 的中点D ,且与直角边AB 相交于点C .若点A 的 坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D . 4OyxOxyOy xO xyA .B .C .D .60°30°D CBA……图③图②图①CBA O第Ⅱ卷(非选择题 共54分)二、填空题:本大题共6个小题,每个小题3分,共18分.将正确答案直接填在题中横线上.13.某班一个小组七名同学在为地震灾区“爱心捐助”活动中,捐款数额分别为10,30,40,50,15,20,50(单位:元).这组数 据的中位数是__________(元). 14.一元二次方程2260x -=的解为___________________.15.如图,∠A 是⊙O 的圆周角,∠A =40°,则∠OBC 的度数为_______.16.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.17.已知圆锥的底面半径为4cm ,高为3cm ,则这个圆锥的侧面积为__________cm 2. 18.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB =33,则下底BC 的长为 __________.三、本大题共2个小题,每个小题6分,共12分.19.计算:1021()(52)18(2)23---+--⋅得分 评卷人得分 评卷人DCBAOE20.解方程:2111x x x x++=+四、本大题共3个小题,每个小题8分,共24分.21.如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.得分 评卷人40m60°30°G F EDC BA22.有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.23.如图,在一次数学课外实践活动中,要求测教学楼的高度AB .小刚在D 处用高1.5m 的测角仪CD ,测得教学楼顶端A 的仰角为30°,然后向教学楼前进40m 到达E ,又测得教学楼顶端A 的仰角为60°.求这幢教学楼的高度AB .B卷(共30分)得分评卷人一、本大题共2个小题,每小题9分,共18分.24.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?FEC BAB'C'25.如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB ' 于点F .(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.EN MDCBAOyx二、本大题共1个小题,共12分.26.如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c =++经过B 点,且顶点在直线52x =上.(1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.得分 评卷人DCB AO E眉山市2010年初中学业暨高中阶段教育学校招生考试数学试卷参考答案及评分意见说明:一、如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.二、评阅试卷,不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分但该步以后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半,明显笔误,可酌情少扣;如有严重概念性错误,就不记分.在这一道题解答过程中,对发生第二次错误的部分,不记分.三、涉及计算过程,允许合理省略非关键步骤.四、以下各题解答中右端所注分数,表示考生正确做到这一步应得的累加分数.A 卷一、选择题:本大题共12小题,每小题3分,共36分.1.D 2.A 3.B 4.C 5.D 6.C 7.C 8.A 9.B 10.D 11.D 12.B 二、填空题:本大题共6个小题,每小题3分,共18分.13.30 14.3x =± 15.50° 16.17 17.20π 18.10 三、本大题共2个小题,每小题6分,共12分.19.解:原式=313242-+- ……………………(4分) =22- ………………………………(6分) 20.解:2(1)(21)(1)x x x x x ++=++ ………………(2分) 解这个整式方程得:12x =-………………(4分) 经检验:12x =-是原方程的解. ∴原方程的解为12x =-.……………………(6分)四、本大题共3个小题,每小题8分,共24分.21.解:(1)四边形OCED 是菱形.…………(2分)∵DE ∥AC ,CE ∥BD , ∴四边形OCED 是平行四边形,…………(3分) 又 在矩形ABCD 中,OC =OD , ∴四边形OCED 是菱形.…………………(4分)(2)连结OE .由菱形OCED 得:CD ⊥OE , …………(5分) ∴OE ∥BC 又 CE ∥BD∴四边形BCEO 是平行四边形∴OE =BC =8……………………………………………(7分)∴S 四边形OCED =11862422OE CD ⋅=⨯⨯=……………(8分)22.解:(1)列表如下:40m60°30°G F EDC BA小敏1 2 3 4 1 1 2 3 4 22468 33 6 9 12………………………………………………………(2分)总结果有12种,其中积为6的有2种,∴P (积为6)=21126=. ………………………………………(4分)(2)游戏不公平,因为积为偶数的有8种情况,而积为奇数的有4种情况.(6分) 游戏规则可改为:若积为3的倍数,小敏赢,否则,小颖赢. ………(8分)注:修改游戏规则,应不改变已知数字和小球、卡片数量.其他规则,凡正确均给分. 23.解:在Rt △AFG 中,tan AGAFG FG∠=∴tan 3AG AGFG AFG ==∠……………(2分) 在Rt △ACG 中,tan AGACG CG ∠=∴3tan AGCG AG ACG==∠…………(4分)又 40CG FG -=即 3403AGAG -= ∴203AG =…………………………(7分) ∴203 1.5AB =+(米)答:这幢教学楼的高度AB 为(203 1.5)+米.(8分)B 卷一、本大题共2个小题,每小题9分,共18分.24.解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000)x -尾,由题意得:0.50.8(6000)3600x x +-= ………………………………………(1分)解这个方程,得:4000x = ∴60002000x -=答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. …………………(2分) (2)由题意得:0.50.8(6000)4200x x +-≤ ……………………………(3分) 解这个不等式,得: 2000x ≥即购买甲种鱼苗应不少于2000尾. ………………………………(4分) (3)设购买鱼苗的总费用为y ,则0.50.8(6000)0.34800y x x x =+-=-+ (5分)由题意,有909593(6000)6000100100100x x +-≥⨯………………………(6分) 解得: 2400x ≤…………………………………………………………(7分) 在0.34800y x =-+中∵0.30-<,∴y 随x 的增大而减少积 小颖FEC BAB'C'EN MD CBA O yx∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.………(9分)25.(1)证明:∵Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的, ∴AC =AC ',AB =AB ',∠CAB =∠C 'AB ' ………………(1分) ∴∠CAC '=∠BAB '∴∠ACC '=∠ABB ' ……………………………………(3分) 又∠AEC =∠FEB∴△ACE ∽△FBE ……………………………………(4分)(2)解:当2βα=时,△ACE ≌△FBE . …………………(5分) 在△ACC '中,∵AC =AC ',∴180'180'9022CAC ACC βα︒-∠︒-∠===︒- ………(6分)在Rt △ABC 中,∠ACC '+∠BCE =90°,即9090BCE α︒-+∠=︒, ∴∠BCE =α. ∵∠ABC =α,∴∠ABC =∠BCE ……………………(8分) ∴CE =BE由(1)知:△ACE ∽△FBE ,∴△ACE ≌△FBE .………………………(9分)二、本大题共1个小题,共12分.26.解:(1)由题意,可设所求抛物线对应的函数关系式为225()32y x m =-+ …(1分) ∴2254()32m =⨯-+ ∴16m =- ……………………………………………………………(3分)∴所求函数关系式为:22251210()432633y x x x =--=-+ …………(4分)(2)在Rt △ABO 中,OA =3,OB =4,∴225AB OA OB =+=∵四边形ABCD 是菱形∴BC =CD =DA =AB =5 ……………………………………(5分) ∴C 、D 两点的坐标分别是(5,4)、(2,0). …………(6分)当5x =时,2210554433y =⨯-⨯+= 当2x =时,2210224033y =⨯-⨯+=∴点C 和点D 在所求抛物线上. …………………………(7分) (3)设直线CD 对应的函数关系式为y kx b =+,则5420k b k b +=⎧⎨+=⎩解得:48,33k b ==-.∴4833y x =- ………(9分)∵MN ∥y 轴,M 点的横坐标为t , ∴N 点的横坐标也为t .则2210433M y t t =-+, 4833N y t =-,……………………(10分)∴22248210214202734()3333333322N M l y y t t t t t t ⎛⎫=-=---+=-+-=--+ ⎪⎝⎭∵203-<, ∴当72t =时,32l =最大, 此时点M 的坐标为(72,12). ………………………………(12分)。
四川眉山市2011年中考数学试卷解析1.(2011四川眉山,1,3分)—2的相反数是A .2B .—2C .21 D .—21【解题思路】根据相反数的定义:只有符号不同的两个数就是相反数,进行判断【答案】A 【点评】本题考查了相反数的定义.应该从相反数的符号特点及在数轴上的位置关系进行判断.难度较小. 2.(2011四川眉山,2,3分)下列运算正确的是A .a a a =-22B .4)2(22+=+a a C .632)(a a = D .3)3(2-=- 【解题思路】根据整式加减法则,完全平方公式,幂的乘方法则,二次根式的性质,逐一检验.A .2a 2与-a 不是同类项,不能合并,本选项错误;B .∵44)2(22++=+a a a ,本选项错误; C .63232)(a a a ==⨯,本选项正确;D .33)3(22==-,本选项错误 .【答案】C【点评】本题考查了整式加减法则,完全平方公式,幂的乘方法则,二次根式的性质的运用.关键是熟悉各种运算法则.难度较小.3.(2011四川眉山,3,3分)函数21-=x y 中自变量x 的取值范围是 A .2-≠x B .2≠x C .2<x D .2->x【解题思路】根据分式有意义的条件是分母不等于0,即可求解 【答案】B【点评】本题主要考查了分式有意义的条件,是需要熟记的内容.难度较小.4.(2011四川眉山,4,3分)2011年,我市参加中考的学生约为33200人,用科学记数法表示为A .332×102B .33.2×103C .3.32×104D .0.332×105 【解题思路】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【答案】C【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.难度较小.5.(2011四川眉山,5,3分)若一个正多边形的每个内角为150°,则这个正多边形的边数是A .12B .11C .10D .9 【解题思路】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°-150°=30°,再根据多边形外角和为360度即可求出边数.【答案】A 【点评】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.难度较小. 6.(2011四川眉山,6,3分)下列命题中,假命题是A .矩形的对角线相等B .有两个角相等的梯形是等腰梯形C .对角线互相垂直的矩形是正方形D .菱形的面积等于两条对角线乘积的一半【解题思路】分别根据矩形的性质、等腰梯形的判定定理、正方形的判定及菱形的性质对各选项进行逐一判断即可.A .对角线相等是矩形的性质,故本选项正确;B .直角梯形中有两个角相等但不是等腰梯形,故本选项错误;C .符合正方形的判定定理,故本选项正确;D .符合菱形的性质,故本选项正确. 【答案】B【点评】本题考查的是命题与定理,熟知矩形的性质、等腰梯形的判定定理、正方形的判定及菱形的性质是解答此题的关键.难度较小.7.(2011四川眉山,7,3分)化简:mm nm n -÷-2)(结果是 A .1--m B .1+-m C .m mn +- D .n mn --【解题思路】根据分式乘法及除法的运算法则进行计算,即分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.【答案】原式=1)1()(+-=-⨯-m nm m m n 故选B【点评】本题考查的是分式的乘除法,分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.难度较小. 8.(2011四川眉山,8,3分)下列说法正确的是A .打开电视机,正在播放新闻B .给定一组数据,那么这组数据的中位数一定只有一个C .调查某品牌饮料的质量情况适合普查D .盒子里装有2个红球和2个黑球,搅均后从中摸出两个球,一定一红一黑【解题思路】分别根据随机事件、中位数及全面调查与抽样调查的概念进行解答. A .打开电视机,正在播放新闻是随机事件,故本选项错误;B .由中位数的概念可知,给定一组数据,那么这组数据的中位数一定只有一个,故本选项正确;C.由于调查某品牌饮料的质量具有一定的破坏性,故适合抽样调查,故本选项错误;D.由于盒子里装有2个红球和2个黑球,所以搅匀后从中摸出两个球,一红一黑是随机事件,故本选项错误.【答案】B【点评】本题考查的是随机事件、中位数及全面调查与抽样调查的概念,熟知以上知识是解答此题的关键,难度较小.9.(2011四川眉山,9,3分)如图所示的物体的左视图是【解题思路】根据左视图就是从左面看到的图形,从左边看去,就是两个长方形叠在一起,即可得出结果.【答案】D【点评】本题考查了三视图的知识,左视图就是从左面看到的图形,难度较小.10.(2011四川眉山,10,3分)已知三角形的两边长是方程x2-5x+6的两个根,则该三角形的周长L的取值范围是A.1<L<5 B.2<L<6 C.5<L<9 D.6<L<10【解题思路】先利用因式分解法解方程x2-5x+6=0,得到x=2或x=3,即三角形的两边长是2和3,再根据三角形三边的关系确定第三边的取值范围,从而得到三角形的周长L的取值范围.【答案】∵x2-5x+6=0,∴(x-2)(x-3)=0,∴x=2或x=3,即三角形的两边长是2和3,∴第三边a的取值范围是:1<a<5,∴该三角形的周长L的取值范围是6<L<10.故选D.【点评】题考查了用因式分解法解一元二次方程的方法:把方程左边分解成两个一次式的乘积,右边为0,从而方程就转化为两个一元一次方程,解一元一次方程即可.也考查了三角形三边的关系:三角形任意两边之和大于第三边.难度中等.11.(2011四川眉山,11,3分)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为A.50° B.25°C.40° D.60°【解题思路】由PA、PB是⊙O的切线,根据切线的性质得到∠OAP=∠OBP=90°,再根据四边形的内角和为360°可得到∠AOB,而AC是⊙O的直径,根据互补即可得到∠BOC 的度数.【答案】∵PA 、PB 是⊙O 的切线,∴∠OAP=∠OBP=90°, 而∠P=50°, ∴∠AOB=360°-90°-90°-50°=130°, 又∵AC 是⊙O 的直径, ∴∠BOC=180°-130°=50°. 故选A【点评】本题考查了圆的切线的性质:圆的切线垂直于过切点的半径;也考查了四边形的内角和为360°.难度中等.12.(2011四川眉山,12,3分)如图,直线b x y +-=(b >0)与双曲线xky =(x >0)交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于M ,BN ⊥x 轴于N ;有以下结论: ①OA=OB②△AOM ≌△BON③若∠AOB=45°,则S △AOB =k ④当AB=2时,ON-BN=1;其中结论正确的个数为A .1B .2C .3D .4【解题思路】①②设A (x 1,y 1),B (x 2,y 2),联立b x y +-=与xk y =,得x 2-bx+k=0,则x 1•x 2=k ,又x 1•y 1=k ,比较可知x 2=y 1,同理可得x 1=y 2,即ON=OM ,AM=BN ,可证结论;③作OH ⊥AB ,垂足为H ,根据对称性可证△OAM ≌△OAH ≌△OBH ≌△OBN ,可证S △AOB =k ;④延长MA ,NB 交于G 点,可证△ABG 为等腰直角三角形,当AB= 时,【答案】设A (x 1,y 1),B (x 2,y 2),代入xky =中,得x 1•y 1=x 2•y 2=k , 联立 ⎝⎛=+-=x ky b x y ,得x 2-bx+k=0, 则x 1•x 2=k ,又x 1•y 1=k , ∴x 2=y 1, 同理可得x 1=y 2, ∴ON=OM ,AM=BN ,∴①OA=OB ,②△AOM ≌△BON ,正确;③作OH ⊥AB ,垂足为H ,∵OA=OB ,∠AOB=45°,∴△OAM ≌△OAH ≌△OBH ≌△OBN , ∴S △AOB =S △AOH +S △BOH =S △AOM +S △BON = 21k+ 21k=k ,正确; ④延长MA ,NB 交于G 点, ∵NG=OM=ON=MG ,BN=AM , ∴GB=GA ,∴△ABG 为等腰直角三角形, 当AB=时,GA=GB=1,∴ON-BN=GN-BN=GB=1,正确.正确的结论有4个. 故选D .【点评】本题考查了反比例函数的综合运用.关键是明确反比例函数图象上点的坐标特点,反比例函数图象的对称性.难度较大.13.(2011四川眉山,13,3分)因式分解:=-234xy x .【解题思路】先提公因式x ,再利用平方差公式继续分解因式. 【答案】)2)(2(y x y x x -+【点评】本题考查了提公因式法与公式法分解因式,提取公因式后继续进行二次因式分解是关键,注意分解因式要彻底.难度较小. 14.(2011四川眉山,14,3分)有一组数据,2、6、5、4、5,它们的众数是 .【解题思路】根据众数的定义解答即可 【答案】5【点评】此题考查了众数的概念----一组数据中,出现次数最多的数位众数,众数可以有多个.难度较小. 15.(2011四川眉山,15,3分)如图,梯形ABCD 中,如果AB ∥CD ,AB=BC ,∠D=60°,AC 丄AD ,则∠B= .【解题思路】由∠D=60°,AC 丄AD ,得到∠ACD=30°,而AB ∥CD ,根据平行线的性质得到∠BAC=∠ACD=30°,又因为AB=BC ,根据等腰三角形的性质得到∠BCA=∠BAC=30°,最后根据三角形的内角和定理计算出∠B 的度数.【答案】120°【点评】:本题考查了梯形的性质:梯形的两底边平行.也考查了等腰三角形的性质和三角形内角和定理.难度较小.16.(2011四川眉山,16,3分)已知一个圆锥形的零件的母线长为3cm ,底面半径为2cm , 则这个圆锥形的零件的侧面积为 cm2.(用π表示).【解题思路】先计算出底面圆的周长,根据圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆的周长,利用扇形的面积公式进行计算即可.【答案】6π【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆的周长.也考查了扇形的面积公式. 难度较小.17.(2011四川眉山,17,3分)已知一元二次方程0132=+-y y 的两个实数根分别为y 1、y 2,则(y 1-1)(y 2-1)的值为 .【解题思路】先根据一元二次方程y 2-3y+1=0的两个实数根分别为y 1、y 2,求出y 1+y 2及y 1•y 2的值,再代入(y 1-1)(y 2-1)进行计算即可.【答案】∵一元二次方程y 2-3y+1=0的两个实数根分别为y 1、y 2,∴y 1+y 2=3,y 1•y 2=1, ∴(y 1-1)(y 2-1),=y 1y 2-y 1-y 2+1,=y 1y 2-(y 1+y 2)+1, =1-3+1, =-1.故答案为:-1.【点评】题考查的是一元二次方程根与系数的关系及代数式求值,若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=ab-,x 1x 2= a c ,难度中等.18.(2011四川眉山,18,3分)关于x 的不等式3x-a≤0,只有两个正整数解,则a 的取值范围是 .【解题思路】解不等式得x≤3a ,由于只有两个正整数解,即1,2,故可判断3a的取值范围,求出a 的职权范围【答案】原不等式解得x≤3a , ∵解集中只有两个正整数解, 可知是1,2, ∴2≤3a<3, 解得6≤a <9.故答案为:6≤a <9.【点评】题考查了一元一次不等式的整数解.正确解不等式,求出正整数是解答本题的关键.解不等式应根据不等式的基本性质.对3a的范围的把握是本题最易错的地方,也是学生最难理解之处.难度较难.19.(2011四川眉山,19,6分)计算:28)1()14.3(2011--+-+-π【解题思路】根据0指数幂,二次根式的化简,去绝对值法则分别计算,再合并同类项.【答案】2【点评】本题考查了实数的运算,0指数幂.关键是熟悉各项的运算法则,先分别计算,再合并同类项.难度较小.20.(2011四川眉山,20,6分)解方程:⎩⎨⎧=-=+②①212y x y x【解题思路】由于两方程中y 的系数互为相反数,所以可先用加减消元法,再用代入消元法求方程组的解.【答案】⎩⎨⎧-==11y x【点评】本题考查的是解二元一次方程组的加减消元法和代入消元法,熟知以上知识是解答此题的关键.难度较小. 21.(2011四川眉山,21,8分)如图,图中的小方格都是边长为1的正方形,△ABC 的顶点坐标为A (0,-2)、B (3,-1)、C (2,1).(1)请在图中画出△ABC 关于y 轴对称的图形△AB′C′; (2)写出点B′和C′的坐标.【解题思路】(1)根据对称轴为y 轴,作出△ABC 的轴对称图形△AB′C′;(2)根据所画出的图形,求点B′和C′的坐标.【答案】(1)△ABC 关于y 轴对称的图形△AB′C′如图所示;(2)由图形可知B′(-3,-1),C′(-2,1).【点评】本题考查了轴对称变换的作图.关键是明确对称轴,根据对应点的连线被对称轴垂直平分,找对应点的位置.难度较小. 22.(2011四川眉山,22,8分)在一次数学课外活动中,一位同学在教学楼的点A 处观察旗杆BC ,测得旗杆顶部B 的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A 距地面的高AD 为15cm .求旗杆的高度.【解题思路】过A 作AE ⊥BC ,构造两个直角三角形,然后利用解直角三角形的知识解答.【答案】过A 作AE ⊥BC ,垂足为E ,由题意可知,四边形ADCE 为矩形,yxAB CO∴EC=AD=15,在Rt △AEC 中,tan ∠EAC=AECE, ∴AE=3560tan 15tan =︒=∠EAC CE (米), 在Rt △AEB 中,tan ∠BAE=AEBE,∴BE=AE•tan ∠EAB=35•tan30°=5(米),∴BC=CE+BE=20(米). 故旗杆高度为20米.【点评】此题考查了解直角三角形的知识,作出辅助线,构造直角三角形是解题的关键.难度中等. 23.(2011四川眉山,23,9分)某中学团委、学生会为了解该校学生最喜欢的球类活动的悄況,对足球、乒乓球、篮球、排球四个项目作调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息射答下列问题:(1)求这次接受调查的学生人数,并补全条形统计图; (2)求扇形统计图中喜欢篮球的圆心角度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是最喜欢乒乓球的概率是多少?【解题思路】(1)读图可知喜欢足球的有40人,占20%,所以一共调查了40÷20%=200人,(2)喜欢篮球的占40%,所占的圆心角为360°×40%=144度,(3)喜欢乒乓球的人数为60人,总人数为200人,根据概率公式即可得出结果.【答案】(1)200,补全统计图,如图所示:(2)144°;(3) 103【点评】本题考查学生的读图能力,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,难度适中.24.(2011四川眉山,24,9分)在眉山市开展城乡综合治理的活动中,需要将A 、B 、C 三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D 、E 两地进行处理.已在(2)的条件下,请说明哪种方案的总费用最少?【解题思路】(1)设运往E 地x 立方米,由题意可列出关于x 的方程,求出x 的值即可;(2)由题意列出关于a 的一元一次不等式组,求出a 的取值范围,再根据a 是整数可得出a 的值,进而可求出答案;(3)根据(1)中的两种方案求出其费用即可. 【答案】(1)设运往E 地x 立方米,由题意得,x+2x-10=140,解得:x=50, ∴2x-10=90,答:共运往D 地90立方米,运往E 地50立方米; (2)由题意可得,[]⎩⎨⎧≤+--<+-12)30(90502)30(90a aa , 解得:20<a≤22, ∵a 是整数, ∴a=21或22, ∴有如下两种方案:第一种:A 地运往D 地21立方米,运往E 地29立方米; C 地运往D 地39立方米,运往E 地11立方米;第二种:A 地运往D 地22立方米,运往E 地28立方米; C 地运往D 地38立方米,运往E 地12立方米;(3)第一种方案共需费用:22×21+20×29+39×20+11×21=2053(元),第二种方案共需费用:22×22+28×20+38×20+12×21=2056(元),所以,第一种方案的总费用最少.【点评】本题考查的是一元一次不等式组及一元一次方程的应用,根据题意列出一元一次不等式组及一元一次方程是解答此题的关键.难度适中.25.(2011四川眉山,25,9分)如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于E ,交BA 的延长线于F .(1)求证:∠DCP=∠DAP ;(2)若AB=2,DP :PB=1:2,且PA ⊥BF ,求对角线BD 的长.【解题思路】(1)根据菱形的性质得CD=AD ,∠CDP=∠ADP ,证明△CDP ≌△ADP 即可;(2)由菱形的性质得CD ∥BA ,可证△CPD ∽△FPB ,利用相似比,结合已知DP :PB=1:2,CD=BA ,可证A 为BF 的中点,又PA ⊥BF ,从而得出PB=PF ,已证PA=CP ,把问题转化到Rt △PAB 中,由勾股定理,列方程求解.【答案】(1)证明:∵四边形ABCD 为菱形,∴CD=AD ,∠CDP=∠ADP ,∴△CDP ≌△ADP ,∴∠DCP=∠DAP ;(2)解:∵四边形ABCD 为菱形,∴CD ∥BA ,CD=BA ,∴△CPD ∽△FPB , ∴21===PF CP BF CD PB DP , ∴CD= 21BF ,CP= 21PF , ∴A 为BF 的中点,又∵PA ⊥BF ,∴PB=PF ,由(1)可知,PA=CP ,∴PA=21 PB , 在Rt △PAB 中,PB 2=22+(21PB )2, 解得PB=334, 则PD=332, ∴BD=PB+PD=32.【点评】本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是运用方程的思想,利用相似和勾股定理,列出关于PB 的方程.难度较大.26.(2011四川眉山,26,11分)如图,在直角坐标系中,已知点A (0,1),B (-4,4),将点B 绕点A 顺时针方向90°得到点C ;顶点在坐标原点的拋物线经过点B .(1)求抛物线的解析式和点C 的坐标;(2)抛物线上一动点P ,设点P 到x 轴的距离为d 1,点P 到点A 的距离为d 2,试说明d 2=d 1+1;(3)在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.【解题思路】(1)设抛物线的解析式:y=ax 2,把B (-4,4)代入即可得到a 的值;过点B 作BE ⊥y 轴于E ,过点C 作CD ⊥y 轴于D ,易证Rt △BAE ≌Rt △ACD ,得到AD=BE=4,CD=AE=OE-OA=4-1=3,即可得到C 点坐标(3,5);(2)设P 点坐标为(a ,b ),过P 作PF ⊥y 轴于F ,PH ⊥x 轴于H ,则有d 1=41a 2,又AF=OF-OA=PH-OA=d 1-1= 41a 2-1,PF=a ,在Rt △PAF 中,利用勾股定理得到PA=d 2= 41a 2+1,即有结论d 2=d 1+1; (3)△PAC 的周长=PC+PA+5,由(2)得到△PAC 的周长=PC+PH+6,要使PC+PH 最小,则C 、P 、H 三点共线,P 点坐标为(3,49),此时PC+PH=5,得到△PAC 的周长的最小值=5+6=11.【答案】(1)设抛物线的解析式:y=ax 2,∵拋物线经过点B (-4,4),∴4=a•42,解得a=41, 所以抛物线的解析式为:y=41x 2; 过点B 作BE ⊥y 轴于E ,过点C 作CD ⊥y 轴于D ,如图,∵点B 绕点A 顺时针方向90°得到点C ,∴Rt △BAE ≌Rt △ACD ,∴AD=BE=4,CD=AE=OE-OA=4-1=3,∴OD=AD+OA=5,∴C 点坐标为(3,5);(2)设P 点坐标为(a ,b ),过P 作PF ⊥y 轴于F ,PH ⊥x 轴于H ,如图,∵点P 在抛物线y= 41x 2上, ∴b=41a 2, ∴d 1= 41a 2, ∵AF=OF-OA=PH-OA=d 1-1= 41a 2-1,PF=a , 在Rt △PAF 中,PA=d 2= 22222)141(a a PF AF +-=+ = 41a 2+1, ∴d 2=d 1+1;(3)由(1)得AC=5,∴△PAC 的周长=PC+PA+5=PC+PH+6,则C 、P 、H 三点共线时,PC+PH 最小,∴此时P 点的横坐标为3,把x=3代入y=41x 2,得到y=49, 即P 点坐标为(3,49),此时PC+PH=5, ∴△PAC 的周长的最小值=5+6=11.【点评】本题考查了点在抛物线上,点的横纵坐标满足二次函数的解析式和顶点在原点的二次函数的解析式为:y=ax 2;也考查了旋转的性质、勾股定理以及两点之间线段最短.本题第(3)小题的关键是将△PAC 的周长转化为PC 与PH 和的关系,从而求出三角形周长的最小值.难度较大.本题第(3)小题与2010年南通市28题的第(3)小题非常类似,如下题,供参考。
合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网2010年眉山中考数学试题及答案注意事项:1.本试卷分为A 卷和B 卷.A 卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共12个小题,共36分,第1页至第2页;第Ⅱ卷共11个小题,共54分,第3页至第5页;B 卷共3个小题,共30分,第6页至第8页.全卷满分120分,考试时间120分钟.2.答第Ⅰ卷前,考生务必将姓名、准考证号、考试科目用铅笔涂写在答题卡上相应的位置,并请将密封线内的内容填写清楚.第Ⅰ卷不能答在试卷上,第Ⅱ和B 卷答在试卷上.3.不允许使用计算器进行运算,凡无精确度要求的题目,结果均保留准确值,解答题应写出A 卷(共90分)第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,每个小题3分,共36分.在每个小题给出的四个选项中只有一项是正确的,请把正确选项的字母用铅笔填涂在答题卡上相应的位置. 1.5-的倒数是 A .5 B .15 C .5- D .15- 2的结果是A .3B .3-C .3±D . 9 3.下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+4.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,圆心距O 1O 2=2cm ,这两圆的位置关系是 A .外切 B .相交 C .内切 D .内含 5.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 6.下列命题中,真命题是A .对角线互相垂直且相等的四边形是正方形合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网A .B .C .D .C BAB .等腰梯形既是轴对称图形又是中心对称图形C .圆的切线垂直于经过切点的半径D .垂直于同一直线的两条直线互相垂直7.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为 A .90° B .60° C .45° D .30° 8.下列说法不正确的是 A .某种彩票中奖的概率是11000,买1000张该种彩票一定会中奖 B .了解一批电视机的使用寿命适合用抽样调查C .若甲组数据的标准差S 甲=0.31,乙组数据的标准差S 乙=0.25,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 9.下列四个图中,是三棱锥的表面展开图的是10.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为A .7-B .3-C .7D .311.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为12.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜 边OA 的中点D ,且与直角边AB 相交于点C .若点A 的 坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网60°30°D CBA……图③图②图①CBA O第Ⅱ卷(非选择题 共54分)二、填空题:本大题共6个小题,每个小题3分,共18分.将正确答案直接填在题中横线上.13.某班一个小组七名同学在为地震灾区“爱心捐助”活动中,捐款数额分别为10,30,40,50,15,20,50(单位:元).这组数 据的中位数是__________(元). 14.一元二次方程2260x -=的解为___________________.15.如图,∠A 是⊙O 的圆周角,∠A =40°,则∠OBC 的度数为_______.16.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.17.已知圆锥的底面半径为4cm ,高为3cm ,则这个圆锥的侧面积为__________cm 2. 18.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB=BC 的长为 __________.三、本大题共2个小题,每个小题6分,共12分.19.计算:1021()2)(2)3---合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网DCBAOE20.解方程:2111x x x x++=+四、本大题共3个小题,每个小题8分,共24分.21.如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.合并自:(奥数)、(中考)、(高考)、(作文)、(英语)、(幼教)、、等站22.有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.23.如图,在一次数学课外实践活动中,要求测教学楼的高度AB.小刚在D处用高1.5m的测角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达E,又测得教学楼顶端A的仰角为60°.求这幢教学楼的高度AB. E度教育网合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网B 卷(共30分)一、本大题共2个小题,每小题9分,共18分.24.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾? (2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网FEC BB'C'25.如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB ' 于点F .(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.合并自: (奥数)、 (中考)、 (高考)、 (作文)、 E 度教育网26.如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c =++经过B 点,且顶点在直线52x =上.(1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由; (3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网眉山市2010年初中学业暨高中阶段教育学校招生考试数学试卷参考答案及评分意见说明:一、如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.二、评阅试卷,不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分但该步以后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半,明显笔误,可酌情少扣;如有严重概念性错误,就不记分.在这一道题解答过程中,对发生第二次错误的部分,不记分. 三、涉及计算过程,允许合理省略非关键步骤.四、以下各题解答中右端所注分数,表示考生正确做到这一步应得的累加分数.A 卷一、选择题:本大题共12小题,每小题3分,共36分.1.D 2.A 3.B 4.C 5.D 6.C 7.C 8.A 9.B 10.D 11.D 12.B 二、填空题:本大题共6个小题,每小题3分,共18分.13.30 14.x = 15.50° 16.17 17.20π 18.10 三、本大题共2个小题,每小题6分,共12分. 19.解:原式=31-+- ……………………(4分)=2 ………………………………(6分) 20.解:2(1)(21)(1)x x x x x ++=++ ………………(2分) 解这个整式方程得:12x =-………………(4分) 经检验:12x =-是原方程的解.合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网DCBAOE∴原方程的解为12x =-.……………………(6分) 四、本大题共3个小题,每小题8分,共24分.21.解:(1)四边形OCED 是菱形.…………(2分)∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,…………(3分) 又 在矩形ABCD 中,OC =OD ,∴四边形OCED 是菱形.…………………(4分)(2)连结OE .由菱形OCED 得:CD ⊥OE , …………(5分) ∴OE ∥BC 又 CE ∥BD∴四边形BCEO 是平行四边形∴OE =BC =8……………………………………………(7分)∴S 四边形OCED =11862422OE CD ⋅=⨯⨯=……………(8分)22.解:(1………………………………………………………(2分)总结果有12种,其中积为6的有2种,∴P (积为6)=21126=. ………………………………………(4分) (2)游戏不公平,因为积为偶数的有8种情况,而积为奇数的有4种情况.(6分) 游戏规则可改为:若积为3的倍数,小敏赢,否则,小颖赢. ………(8分)注:修改游戏规则,应不改变已知数字和小球、卡片数量.其他规则,凡正确均给分.23.解:在Rt △AFG 中,tan AGAFG FG∠=∴tan AG FG AFG ==∠……………(2分)在Rt △ACG 中,tan AG ACG CG∠= ∴tan AGCG ACG=∠…………(4分)又 40CG FG -=即 40=合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网F EB B'C'∴AG =…………………………(7分)∴ 1.5AB =(米)答:这幢教学楼的高度AB 为 1.5)米.(8分)B 卷一、本大题共2个小题,每小题9分,共18分. 24.解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000)x -尾,由题意得:0.50.8(6000)3600x x +-= ………………………………………(1分)解这个方程,得:4000x = ∴60002000x -=答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. …………………(2分) (2)由题意得:0.50.8(6000)4200x x +-≤ ……………………………(3分) 解这个不等式,得: 2000x ≥即购买甲种鱼苗应不少于2000尾. ………………………………(4分)(3)设购买鱼苗的总费用为y ,则0.50.8(6000)0.34800y x x x =+-=-+ (5分)由题意,有909593(6000)6000100100100x x +-≥⨯………………………(6分) 解得: 2400x ≤…………………………………………………………(7分) 在0.34800y x =-+中∵0.30-<,∴y 随x 的增大而减少∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.………(9分)25.(1)证明:∵Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的, ∴AC =AC ',AB =AB ',∠CAB =∠C 'AB ' ………………(1分) ∴∠CAC '=∠BAB '∴∠ACC '=∠ABB ' ……………………………………(3分) 又∠AEC =∠FEB∴△ACE ∽△FBE ……………………………………(4分)(2)解:当2βα=时,△ACE ≌△FBE . …………………(5分) 在△ACC '中,∵AC =AC ',∴180'180'9022CAC ACC βα︒-∠︒-∠===︒- ………(6分)在Rt △ABC 中,∠ACC '+∠BCE =90°,即9090BCE α︒-+∠=︒, ∴∠BCE =α. ∵∠ABC =α, ∴∠ABC =∠BCE ……………………(8分)合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网∴CE =BE由(1)知:△ACE ∽△FBE ,∴△ACE ≌△FBE .………………………(9分)二、本大题共1个小题,共12分.26.解:(1)由题意,可设所求抛物线对应的函数关系式为225()32y x m =-+ …(1分) ∴2254()32m =⨯-+ ∴16m =- ……………………………………………………………(3分)∴所求函数关系式为:22251210()432633y x x x =--=-+ …………(4分)(2)在Rt △ABO 中,OA =3,OB =4,∴5AB =∵四边形ABCD 是菱形∴BC =CD =DA =AB =5 ……………………………………(5分) ∴C 、D 两点的坐标分别是(5,4)、(2,0). …………(6分)当5x =时,2210554433y =⨯-⨯+= 当2x =时,2210224033y =⨯-⨯+=∴点C 和点D 在所求抛物线上. …………………………(7分) (3)设直线CD 对应的函数关系式为y kx b =+,则5420k b k b +=⎧⎨+=⎩解得:48,33k b ==-.∴4833y x =- ………(9分) ∵MN ∥y 轴,M 点的横坐标为t , ∴N 点的横坐标也为t .则2210433M y t t =-+, 4833N y t =-,……………………(10分)∴22248210214202734()3333333322N M l y y t t t t t t ⎛⎫=-=---+=-+-=--+ ⎪⎝⎭合并自: (奥数)、 (中考)、 (高考)、 (作文)、 (英语)、 (幼教)、 、 等站 E 度教育网∵203-<, ∴当72t =时,32l =最大, 此时点M 的坐标为(72,12). ………………………………(12分)。
CBA四川省眉山市2010年初中学业暨高中阶段学校招生考试数 学 试 卷注意事项:1.本试卷分为A 卷和B 卷.A 卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共12个小题,共36分,第1页至第2页;第Ⅱ卷共11个小题,共54分,第3页至第5页;B 卷共3个小题,共30分,第6页至第8页.全卷满分120分,考试时间120分钟.2.答第Ⅰ卷前,考生务必将姓名、准考证号、考试科目用铅笔涂写在答题卡上相应的位置,并请将密封线内的内容填写清楚.第Ⅰ卷不能答在试卷上,第Ⅱ和B 卷答在试卷上.3.不允许使用计算器进行运算,凡无精确度要求的题目,结果均保留准确值,解答题应写出演算过A 卷(共90分) 第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,每个小题3分,共36分.在每个小题给出的四个选项中只有一项是正确的,请把正确选项的字母用铅笔填涂在答题卡上相应的位置. 1.5-的倒数是 A .5 B .15 C .5- D .15- 2的结果是A .3B .3-C .3±D . 9 3.下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+4.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,圆心距O 1O 2=2cm ,这两圆的位置关系是 A .外切 B .相交 C .内切 D .内含 5.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 6.下列命题中,真命题是A .对角线互相垂直且相等的四边形是正方形B .等腰梯形既是轴对称图形又是中心对称图形C .圆的切线垂直于经过切点的半径D .垂直于同一直线的两条直线互相垂直 7.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为 A .90° B .60° C .45° D .30°A .B .C .D .……图③图②图①CBA O8.下列说法不正确的是 A .某种彩票中奖的概率是11000,买1000张该种彩票一定会中奖 B .了解一批电视机的使用寿命适合用抽样调查C .若甲组数据的标准差S 甲=0.31,乙组数据的标准差S 乙=0.25,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 9.下列四个图中,是三棱锥的表面展开图的是10.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为A .7-B .3-C .7D .311.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为12.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜 边OA 的中点D ,且与直角边AB 相交于点C .若点A 的 坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4第Ⅱ卷(非选择题 共54分)二、填空题:本大题共6个小题,每个小题3分,共18分.将正确答案直接填在题中横线上. 13.某班一个小组七名同学在为地震灾区“爱心捐助”活动中,捐款数额分别为10,30,40,50,15,20,50(单位:元).这组数 据的中位数是__________(元). 14.一元二次方程2260x -=的解为___________________.15.如图,∠A 是⊙O 的圆周角,∠A =40°,则∠OBC 的度数为_______.16.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.DCBAOE60°30°D CBA17.已知圆锥的底面半径为4cm ,高为3cm ,则这个圆锥的侧面积为__________cm 2. 18.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB=BC 的长为 __________.三、本大题共2个小题,每个小题6分,共12分. 19.计算:1021()2)(2)3---20.解方程:2111x x x x++=+四、本大题共3个小题,每个小题8分,共24分. 21.如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.22.有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积. (1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.23.如图,在一次数学课外实践活动中,要求测教学楼的高度AB .小刚在D 处用高1.5m 的测角仪CD ,测得教学楼顶端A 的仰角为30°,然后向教学楼前进40m 到达E ,又测得教学楼顶端A 的仰角为60°.求这幢教学楼的高度AB .FEC BAB'C'B 卷(共30分)一、本大题共2个小题,每小题9分,共18分.24.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾? (2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?25.如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB ' 于点F .(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.二、本大题共1个小题,共12分.26.如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c =++经过B 点,且顶点在直线52x =上. (1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.DCBAOE四川省眉山市2010年初中学业暨高中阶段教育学校招生考试数学试卷参考答案及评分意见说明:一、如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.二、评阅试卷,不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分但该步以后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半,明显笔误,可酌情少扣;如有严重概念性错误,就不记分.在这一道题解答过程中,对发生第二次错误的部分,不记分. 三、涉及计算过程,允许合理省略非关键步骤.四、以下各题解答中右端所注分数,表示考生正确做到这一步应得的累加分数.A 卷一、选择题:本大题共12小题,每小题3分,共36分.1.D 2.A 3.B 4.C 5.D 6.C 7.C 8.A 9.B 10.D 11.D 12.B 二、填空题:本大题共6个小题,每小题3分,共18分.13.30 14.x = 15.50° 16.17 17.20π 18.10 三、本大题共2个小题,每小题6分,共12分.19.解:原式=31-+ ……………………(4分)=2………………………………(6分) 20.解:2(1)(21)(1)x x x x x ++=++ ………………(2分) 解这个整式方程得:12x =-………………(4分) 经检验:12x =-是原方程的解. ∴原方程的解为12x =-.……………………(6分)四、本大题共3个小题,每小题8分,共24分.21.解:(1)四边形OCED 是菱形.…………(2分)∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,…………(3分) 又 在矩形ABCD 中,OC =OD ,∴四边形OCED 是菱形.…………………(4分)(2)连结OE .由菱形OCED 得:CD ⊥OE , …………(5分) ∴OE ∥BC 又 CE ∥BD∴四边形BCEO 是平行四边形∴OE =BC =8……………………………………………(7分)∴S 四边形OCED =11862422OE CD ⋅=⨯⨯=……………(8分)22.解:(1)列表如下:总结果有12种,其中积为6的有2种,∴P (积为6)=21126=. ………………………………………(4分) (2)游戏不公平,因为积为偶数的有8种情况,而积为奇数的有4种情况.(6分) 游戏规则可改为:若积为3的倍数,小敏赢,否则,小颖赢. ………(8分)注:修改游戏规则,应不改变已知数字和小球、卡片数量.其他规则,凡正确均给分.23.解:在Rt △AFG 中,tan AGAFG FG∠=∴tan AG FG AFG ==∠2分) 在Rt △ACG 中,tan AG ACG CG∠= ∴tan AGCG ACG==∠…………(4分)又 40CG FG -=即40=∴AG =7分) ∴ 1.5AB =(米)答:这幢教学楼的高度AB 为 1.5)米.(8分)B 卷 一、本大题共2个小题,每小题9分,共18分. 24.解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000)x -尾,由题意得:0.50.8(6000)3600x x +-= ………………………………………(1分)解这个方程,得:4000x = ∴60002000x -=答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. …………………(2分) (2)由题意得:0.50.8(6000)4200x x +-≤ ……………………………(3分) 解这个不等式,得: 2000x ≥即购买甲种鱼苗应不少于2000尾. ………………………………(4分) (3)设购买鱼苗的总费用为y ,则0.50.8(6000)0.34800y x x x =+-=-+ (5分)由题意,有909593(6000)6000100100100x x +-≥⨯………………………(6分) 解得: 2400x ≤…………………………………………………………(7分) 在0.34800y x =-+中∵0.30-<,∴y 随x 的增大而减少F EC B A B'C' ∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.………(9分)25.(1)证明:∵Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的, ∴AC =AC ',AB =AB ',∠CAB =∠C 'AB ' ………………(1分) ∴∠CAC '=∠BAB '∴∠ACC '=∠ABB ' ……………………………………(3分) 又∠AEC =∠FEB∴△ACE ∽△FBE ……………………………………(4分)(2)解:当2βα=时,△ACE ≌△FBE . …………………(5分) 在△ACC '中,∵AC =AC ',∴180'180'9022CAC ACC βα︒-∠︒-∠===︒- ………(6分)在Rt △ABC 中,∠ACC '+∠BCE =90°,即9090BCE α︒-+∠=︒, ∴∠BCE =α. ∵∠ABC =α,∴∠ABC =∠BCE ……………………(8分) ∴CE =BE由(1)知:△ACE ∽△FBE ,∴△ACE ≌△FBE .………………………(9分)二、本大题共1个小题,共12分.26.解:(1)由题意,可设所求抛物线对应的函数关系式为225()32y x m =-+ …(1分)∴2254()32m =⨯-+∴16m =- ……………………………………………………………(3分)∴所求函数关系式为:22251210()432633y x x x =--=-+ …………(4分)(2)在Rt △ABO 中,OA =3,OB =4,∴5AB =∵四边形ABCD 是菱形∴BC =CD =DA =AB =5 ……………………………………(5分) ∴C 、D 两点的坐标分别是(5,4)、(2,0). …………(6分)当5x =时,2210554433y =⨯-⨯+= 当2x =时,2210224033y =⨯-⨯+=∴点C 和点D 在所求抛物线上. …………………………(7分) (3)设直线CD 对应的函数关系式为y kx b =+,则5420k b k b +=⎧⎨+=⎩解得:48,33k b ==-.∴4833y x =- ………(9分)∵MN ∥y 轴,M 点的横坐标为t , ∴N 点的横坐标也为t .则2210433M y t t =-+, 4833N y t =-,……………………(10分)∴22248210214202734()3333333322N M l y y t t t t t t ⎛⎫=-=---+=-+-=--+ ⎪⎝⎭∵203-<, ∴当72t =时,32l =最大, 此时点M 的坐标为(72,12). ………………………………(12分)。
四川省眉山市2010年初中学业暨高中阶段教育学校招生考试数 学 试 卷注意事项:1.本试卷分为A 卷和B 卷.A 卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共12个小题,共36分,第1页至第2页;第Ⅱ卷共11个小题,共54分,第3页至第5页;B 卷共3个小题,共30分,第6页至第8页.全卷满分120分,考试时间120分钟.2.答第Ⅰ卷前,考生务必将姓名、准考证号、考试科目用铅笔涂写在答题卡上相应的位置,并请将密封线内的内容填写清楚.第Ⅰ卷不能答在试卷上,第Ⅱ和B 卷答在试卷上.3.不允许使用计算器进行运算,凡无精确度要求的题目,结果均保留准确值,解答题应写出演算过程、推理步骤或文字说明.A 卷题号一二三四总分全卷 总分总分人得分B 卷题号一二总分得分A 卷(共90分)第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,每个小题3分,共36分.在每个小题给出的四个选项中只有一项是正确的,请把正确选项的字母用铅笔填涂在答题卡上相应的位置. 1.5-的倒数是 A .5 B .15 C .5- D .15- 2.计算2(3)-的结果是A .3B .3-C .3±D . 9 3.下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+4.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,圆心距O 1O 2=2cm ,这两圆的位置关系是 A .外切 B .相交 C .内切 D .内含 5.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 6.下列命题中,真命题是A .对角线互相垂直且相等的四边形是正方形B .等腰梯形既是轴对称图形又是中心对称图形C .圆的切线垂直于经过切点的半径D .垂直于同一直线的两条直线互相垂直A .B .C .D .DBAyxO C C BA7.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为 A .90° B .60° C .45° D .30° 8.下列说法不正确的是 A .某种彩票中奖的概率是11000,买1000张该种彩票一定会中奖 B .了解一批电视机的使用寿命适合用抽样调查C .若甲组数据的标准差S 甲=0.31,乙组数据的标准差S 乙=0.25,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 9.下列四个图中,是三棱锥的表面展开图的是10.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为A .7-B .3-C .7D .311.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为12.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜 边OA 的中点D ,且与直角边AB 相交于点C .若点A 的 坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D . 4OyxOxyOy xO xyA .B .C .D .60°30°D CBA……图③图②图①CBA O第Ⅱ卷(非选择题 共54分)二、填空题:本大题共6个小题,每个小题3分,共18分.将正确答案直接填在题中横线上.13.某班一个小组七名同学在为地震灾区“爱心捐助”活动中,捐款数额分别为10,30,40,50,15,20,50(单位:元).这组数 据的中位数是__________(元). 14.一元二次方程2260x -=的解为___________________.15.如图,∠A 是⊙O 的圆周角,∠A =40°,则∠OBC 的度数为_______.16.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.17.已知圆锥的底面半径为4cm ,高为3cm ,则这个圆锥的侧面积为__________cm 2. 18.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB =33,则下底BC 的长为 __________.三、本大题共2个小题,每个小题6分,共12分.19.计算:1021()(52)18(2)23---+--⋅得分 评卷人得分 评卷人DCBAOE20.解方程:2111x x x x++=+四、本大题共3个小题,每个小题8分,共24分.21.如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.得分 评卷人40m60°30°G F EDC BA22.有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积. (1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.23.如图,在一次数学课外实践活动中,要求测教学楼的高度AB .小刚在D 处用高1.5m 的测角仪CD ,测得教学楼顶端A 的仰角为30°,然后向教学楼前进40m 到达E ,又测得教学楼顶端A 的仰角为60°.求这幢教学楼的高度AB .B卷(共30分)得分评卷人一、本大题共2个小题,每小题9分,共18分.24.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?FEC BAB'C'25.如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB ' 于点F .(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.EN MDCBAOy x二、本大题共1个小题,共12分.26.如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c =++经过B 点,且顶点在直线52x =上. (1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.得分 评卷人DCBA OE眉山市2010年初中学业暨高中阶段教育学校招生考试数学试卷参考答案及评分意见说明:一、如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分.二、评阅试卷,不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分但该步以后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半,明显笔误,可酌情少扣;如有严重概念性错误,就不记分.在这一道题解答过程中,对发生第二次错误的部分,不记分. 三、涉及计算过程,允许合理省略非关键步骤.四、以下各题解答中右端所注分数,表示考生正确做到这一步应得的累加分数.A 卷一、选择题:本大题共12小题,每小题3分,共36分.1.D 2.A 3.B 4.C 5.D 6.C 7.C 8.A 9.B 10.D 11.D 12.B 二、填空题:本大题共6个小题,每小题3分,共18分.13.30 14.3x =± 15.50° 16.17 17.20π 18.10 三、本大题共2个小题,每小题6分,共12分.19.解:原式=313242-+- ……………………(4分) =22- ………………………………(6分) 20.解:2(1)(21)(1)x x x x x ++=++ ………………(2分) 解这个整式方程得:12x =-………………(4分) 经检验:12x =-是原方程的解. ∴原方程的解为12x =-.……………………(6分)四、本大题共3个小题,每小题8分,共24分. 21.解:(1)四边形OCED 是菱形.…………(2分)∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,…………(3分)40m 60°30°GF E D C B A又 在矩形ABCD 中,OC =OD ,∴四边形OCED 是菱形.…………………(4分)(2)连结OE .由菱形OCED 得:CD ⊥OE , …………(5分) ∴OE ∥BC 又 CE ∥BD∴四边形BCEO 是平行四边形∴OE =BC =8……………………………………………(7分)∴S 四边形OCED =11862422OE CD ⋅=⨯⨯=……………(8分)22.解:(1)列表如下:小敏1 2 3 411 2 3 4 22 4 6 8 33 6 9 12 ………………………………………………………(2分)总结果有12种,其中积为6的有2种,∴P (积为6)=21126=. ………………………………………(4分)(2)游戏不公平,因为积为偶数的有8种情况,而积为奇数的有4种情况.(6分) 游戏规则可改为:若积为3的倍数,小敏赢,否则,小颖赢. ………(8分)注:修改游戏规则,应不改变已知数字和小球、卡片数量.其他规则,凡正确均给分.23.解:在Rt △AFG 中,tan AGAFG FG∠=∴tan 3AG AGFG AFG ==∠……………(2分)在Rt △ACG 中,tan AG ACG CG∠= ∴3tan AGCG AG ACG==∠…………(4分)又 40CG FG -=即 3403AGAG -= ∴203AG =…………………………(7分) ∴203 1.5AB =+(米)答:这幢教学楼的高度AB 为(203 1.5)+米.(8分)B 卷一、本大题共2个小题,每小题9分,共18分.24.解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000)x -尾,由题意得:0.50.8(6000)3600x x +-= ………………………………………(1分)积小颖F E CBA B'C'解这个方程,得:4000x =∴60002000x -=答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. …………………(2分)(2)由题意得:0.50.8(6000)4200x x +-≤ ……………………………(3分) 解这个不等式,得: 2000x ≥即购买甲种鱼苗应不少于2000尾. ………………………………(4分)(3)设购买鱼苗的总费用为y ,则0.50.8(6000)0.34800y x x x =+-=-+ (5分)由题意,有909593(6000)6000100100100x x +-≥⨯………………………(6分) 解得: 2400x ≤…………………………………………………………(7分) 在0.34800y x =-+中 ∵0.30-<,∴y 随x 的增大而减少∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.………(9分)25.(1)证明:∵Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,∴AC =AC ',AB =AB ',∠CAB =∠C 'AB ' ………………(1分)∴∠CAC '=∠BAB '∴∠ACC '=∠ABB ' ……………………………………(3分)又∠AEC =∠FEB∴△ACE ∽△FBE ……………………………………(4分)(2)解:当2βα=时,△ACE ≌△FBE . …………………(5分)在△ACC '中,∵AC =AC ',∴180'180'9022CAC ACC βα︒-∠︒-∠===︒- ………(6分) 在Rt △ABC 中,∠ACC '+∠BCE =90°,即9090BCE α︒-+∠=︒,∴∠BCE =α. ∵∠ABC =α, ∴∠ABC =∠BCE ……………………(8分) ∴CE =BE由(1)知:△ACE ∽△FBE ,∴△ACE ≌△FBE .………………………(9分)二、本大题共1个小题,共12分.26.解:(1)由题意,可设所求抛物线对应的函数关系式为225()32y x m =-+ …(1分) ∴2254()32m =⨯-+ ∴16m =- ……………………………………………………………(3分) ∴所求函数关系式为:22251210()432633y x x x =--=-+ …………(4分) (2)在Rt △ABO 中,OA =3,OB =4,E NM D C B A O yx ∴225AB OA OB =+=∵四边形ABCD 是菱形∴BC =CD =DA =AB =5 ……………………………………(5分) ∴C 、D 两点的坐标分别是(5,4)、(2,0). …………(6分)当5x =时,2210554433y =⨯-⨯+= 当2x =时,2210224033y =⨯-⨯+= ∴点C 和点D 在所求抛物线上. …………………………(7分)(3)设直线CD 对应的函数关系式为y kx b =+,则 5420k b k b +=⎧⎨+=⎩ 解得:48,33k b ==-. ∴4833y x =- ………(9分) ∵MN ∥y 轴,M 点的横坐标为t ,∴N 点的横坐标也为t . 则2210433M y t t =-+, 4833N y t =-,……………………(10分) ∴22248210214202734()3333333322N M l y y t t t t t t ⎛⎫=-=---+=-+-=--+ ⎪⎝⎭∵203-<, ∴当72t =时,32l =最大, 此时点M 的坐标为(72,12). ………………………………(12分)。
四川省眉山市2010年初中学业暨高中阶段教育学校招生考试数 学 试 卷注意事项:1.本试卷分为A 卷和B 卷.A 卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共12个小题,共36分,第1页至第2页;第Ⅱ卷共11个小题,共54分,第3页至第5页;B 卷共3个小题,共30分,第6页至第8页.全卷满分120分,考试时间120分钟.2.答第Ⅰ卷前,考生务必将姓名、准考证号、考试科目用铅笔涂写在答题卡上相应的位置,并请将密封线内的内容填写清楚.第Ⅰ卷不能答在试卷上,第Ⅱ和B 卷答在试卷上.3.不允许使用计算器进行运算,凡无精确度要求的题目,结果均保留准确值,解答题应写出演算过程、推A 卷(共90分)第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,每个小题3分,共36分.在每个小题给出的四个选项中只有一项是正确的,请把正确选项的字母用铅笔填涂在答题卡上相应的位置. 1.5-的倒数是 A .5 B .15 C .5- D .15-2的结果是A .3B .3-C .3±D . 9 3.下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+4.⊙O 1的半径为3cm,⊙O 2的半径为5cm,圆心距O 1O 2=2cm,这两圆的位置关系是 A .外切 B .相交 C .内切 D .内含 5.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 6.下列命题中,真命题是A .对角线互相垂直且相等的四边形是正方形B .等腰梯形既是轴对称图形又是中心对称图形C .圆的切线垂直于经过切点的半径D .垂直于同一直线的两条直线互相垂直A .B .C .D .C BA7.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为 A .90° B .60° C .45° D .30° 8.下列说法不正确的是 A .某种彩票中奖的概率是11000,买1000张该种彩票一定会中奖 B .了解一批电视机的使用寿命适合用抽样调查C .若甲组数据的标准差S 甲=0.31,乙组数据的标准差S 乙=0.25,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 9.下列四个图中,是三棱锥的表面展开图的是10.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为A .7-B .3-C .7D .311.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为12.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜 边OA 的中点D ,且与直角边AB 相交于点C .若点A 的 坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4B .C .D .60°30°D CBA……图③图②图①CBA O第Ⅱ卷(非选择题 共54分)二、填空题:本大题共6个小题,每个小题3分,共18分.将正确答案直接填在题中横线上.13.某班一个小组七名同学在为地震灾区“爱心捐助”活动中,捐款数额分别为10,30,40,50,15,20,50(单位:元).这组数 据的中位数是__________(元). 14.一元二次方程2260x -=的解为___________________.15.如图,∠A 是⊙O 的圆周角,∠A =40°,则∠OBC 的度数为_______.16.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.17.已知圆锥的底面半径为4cm,高为3cm,则这个圆锥的侧面积为__________cm 2. 18.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB=则下底BC 的长为 __________.三、本大题共2个小题,每个小题6分,共12分.19.计算:1021()2)(2)3----DCBAOE20.解方程:2111x x x x++=+四、本大题共3个小题,每个小题8分,共24分.21.如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.22.有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.23.如图,在一次数学课外实践活动中,要求测教学楼的高度AB.小刚在D处用高1.5m的测角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达E,又测得教学楼顶端A的仰角为60°.求这幢教学楼的高度AB.B卷(共30分)一、本大题共2个小题,每小题9分,共18分.24.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?FEC BAB'C'25.如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB' 于点F .(1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.二、本大题共1个小题,共12分.26.如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c =++经过B 点,且顶点在直线52x =上. (1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.DCB AOE眉山市2010年初中学业暨高中阶段教育学校招生考试数学试卷参考答案及评分意见说明:一、如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分. 二、评阅试卷,不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分但该步以后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半,明显笔误,可酌情少扣;如有严重概念性错误,就不记分.在这一道题解答过程中,对发生第二次错误的部分,不记分. 三、涉及计算过程,允许合理省略非关键步骤.四、以下各题解答中右端所注分数,表示考生正确做到这一步应得的累加分数.A 卷一、选择题:本大题共12小题,每小题3分,共36分.1.D 2.A 3.B 4.C 5.D 6.C 7.C 8.A 9.B 10.D 11.D 12.B 二、填空题:本大题共6个小题,每小题3分,共18分.13.30 14.x = 15.50° 16.17 17.20π 18.10 三、本大题共2个小题,每小题6分,共12分.19.解:原式=31-+ ……………………(4分)=2 ………………………………(6分) 20.解:2(1)(21)(1)x x x x x ++=++ ………………(2分) 解这个整式方程得:12x =-………………(4分) 经检验:12x =-是原方程的解. ∴原方程的解为12x =-.……………………(6分)四、本大题共3个小题,每小题8分,共24分.21.解:(1)四边形OCED 是菱形.…………(2分)∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,…………(3分) 又 在矩形ABCD 中,OC =OD , ∴四边形OCED 是菱形.…………………(4分) (2)连结OE .由菱形OCED 得:CD ⊥OE , …………(5分) ∴OE ∥BC 又 CE ∥BD∴四边形BCEO 是平行四边形∴OE =BC =8……………………………………………(7分)∴S 四边形OCED =11862422OE CD ⋅=⨯⨯=……………(8分)22.解:(1)………………………………………………………(2分)总结果有12种,其中积为6的有2种,∴P (积为6)=21126=. ………………………………………(4分)(2)游戏不公平,因为积为偶数的有8种情况,而积为奇数的有4种情况.(6分) 游戏规则可改为:若积为3的倍数,小敏赢,否则,小颖赢. ………(8分)注:修改游戏规则,应不改变已知数字和小球、卡片数量.其他规则,凡正确均给分.23.解:在Rt △AFG 中,tan AGAFG FG∠=∴tan AG FG AFG ==∠(2分) 在Rt △ACG 中,tan AG ACG CG∠= ∴tan AGCG ACG==∠…………(4分)又 40CG FG -=即 40= ∴AG =(7分) ∴ 1.5AB =(米)答:这幢教学楼的高度AB 为 1.5)米.(8分)B 卷一、本大题共2个小题,每小题9分,共18分.24.解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000)x -尾,由题意得:0.50.8(6000)3600x x +-= ………………………………………(1分)解这个方程,得:4000x = ∴60002000x -=答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. …………………(2分) (2)由题意得:0.50.8(6000)4200x x +-≤ ……………………………(3分) 解这个不等式,得: 2000x ≥即购买甲种鱼苗应不少于2000尾. ………………………………(4分) (3)设购买鱼苗的总费用为y ,则0.50.8(6000)0.34800y x x x =+-=-+ (5分)F E C BB'C'由题意,有909593(6000)6000100100100x x +-≥⨯………………………(6分) 解得: 2400x ≤…………………………………………………………(7分) 在0.34800y x =-+中 ∵0.30-<,∴y 随x 的增大而减少∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.………(9分)25.(1)证明:∵Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,∴AC =AC ',AB =AB ',∠CAB =∠C 'AB ' ………………(1分)∴∠CAC '=∠BAB '∴∠ACC '=∠ABB ' ……………………………………(3分)又∠AEC =∠FEB∴△ACE ∽△FBE ……………………………………(4分)(2)解:当2βα=时,△ACE ≌△FBE . …………………(5分)在△ACC '中,∵AC =AC ',∴180'180'9022CAC ACC βα︒-∠︒-∠===︒- ………(6分) 在Rt △ABC 中,∠ACC '+∠BCE =90°,即9090BCE α︒-+∠=︒,∴∠BCE =α. ∵∠ABC =α, ∴∠ABC =∠BCE ……………………(8分) ∴CE =BE由(1)知:△ACE ∽△FBE ,∴△ACE ≌△FBE .………………………(9分)二、本大题共1个小题,共12分.26.解:(1)由题意,可设所求抛物线对应的函数关系式为225()32y x m =-+ …(1分) ∴2254()32m =⨯-+ ∴16m =- ……………………………………………………………(3分) ∴所求函数关系式为:22251210()432633y x x x =--=-+ …………(4分) (2)在Rt △ABO 中,OA =3,OB =4,∴5AB =∵四边形ABCD 是菱形∴BC =CD =DA =AB =5 ……………………………………(5分)∴C 、D 两点的坐标分别是(5,4)、(2,0). …………(6分)当5x =时,2210554433y =⨯-⨯+=当2x =时,2210224033y =⨯-⨯+= ∴点C 和点D 在所求抛物线上. …………………………(7分)(3)设直线CD 对应的函数关系式为y kx b =+,则 5420k b k b +=⎧⎨+=⎩ 解得:48,33k b ==-. ∴4833y x =- ………(9分) ∵MN ∥y 轴,M 点的横坐标为t ,∴N 点的横坐标也为t . 则2210433M y t t =-+, 4833N y t =-,……………………(10分) ∴22248210214202734()3333333322N M l y y t t t t t t ⎛⎫=-=---+=-+-=--+ ⎪⎝⎭∵203-<, ∴当72t =时,32l =最大, 此时点M 的坐标为(72,12). ………………………………(12分)。
C BA眉山市2010年初中学业暨高中阶段教育学校招生考试第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,每个小题3分,共36分.在每个小题给出的四个选项中只有一项是正确的,请把正确选项的字母用铅笔填涂在答题卡上相应的位置. 1.5-的倒数是 A .5 B .15 C .5- D .15- 2A .3B .3-C .3±D . 9 3.下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+4.⊙O 1的半径为3cm ,⊙O 2的半径为5cm ,圆心距O 1O 2=2cm ,这两圆的位置关系是 A .外切 B .相交 C .内切 D .内含 5.把代数式269mx mx m -+分解因式,下列结果中正确的是A .2(3)m x +B .(3)(3)m x x +-C .2(4)m x -D .2(3)m x - 6.下列命题中,真命题是A .对角线互相垂直且相等的四边形是正方形B .等腰梯形既是轴对称图形又是中心对称图形C .圆的切线垂直于经过切点的半径D .垂直于同一直线的两条直线互相垂直7.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为 A .90° B .60° C .45° D .30° 8.下列说法不正确的是 A .某种彩票中奖的概率是11000,买1000张该种彩票一定会中奖 B .了解一批电视机的使用寿命适合用抽样调查C .若甲组数据的标准差S 甲=0.31,乙组数据的标准差S 乙=0.25,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件 9.下列四个图中,是三棱锥的表面展开图的是10.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-⋅的值为A .7-B .3-C .7D .311.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为12.如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜 边OA 的中点D ,且与直角边AB 相交于点C .若点A 的 坐标为(6-,4),则△AOC 的面积为 A .12 B .9 C .6 D .460°30°D CBA……图③图②图①CBA O第Ⅱ卷(非选择题 共54分)二、填空题:本大题共6个小题,每个小题3分,共18分.将正确答案直接填在题中横线上.13.某班一个小组七名同学在为地震灾区“爱心捐助”活动中,捐款数额分别为10,30,40,50,15,20,50(单位:元).这组数 据的中位数是__________(元). 14.一元二次方程2260x -=的解为___________________.15.如图,∠A 是⊙O 的圆周角,∠A =40°,则∠OBC 的度数为_______.16.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.17.已知圆锥的底面半径为4cm ,高为3cm ,则这个圆锥的侧面积为__________cm 2. 18.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB=,则下底BC 的长为 __________.三、本大题共2个小题,每个小题6分,共12分.19.计算:1021()2)(2)3---DCBAOE20.解方程:2111x x x x++=+四、本大题共3个小题,每个小题8分,共24分.21.如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.22.有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.23.如图,在一次数学课外实践活动中,要求测教学楼的高度AB.小刚在D处用高1.5m的测角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达E,又测得教学楼顶端A的仰角为60°.求这幢教学楼的高度AB.B卷(共30分)一、本大题共2个小题,每小题9分,共18分.24.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?FEC BB'C'25.如图,Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的,连结CC ' 交斜边于点E ,CC ' 的延长线交BB ' 于点F . (1)证明:△ACE ∽△FBE ;(2)设∠ABC =α,∠CAC ' =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.二、本大题共1个小题,共12分.26.如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c =++经过B 点,且顶点在直线52x =上. (1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.DCB AO E眉山市2010年初中学业暨高中阶段教育学校招生考试A 卷一、选择题:本大题共12小题,每小题3分,共36分.1.D 2.A 3.B 4.C 5.D 6.C 7.C 8.A 9.B 10.D 11.D 12.B 二、填空题:本大题共6个小题,每小题3分,共18分.13.30 14.x = 15.50° 16.17 17.20π 18.10 三、本大题共2个小题,每小题6分,共12分.19.解:原式=31-+ ……………………(4分)=2- ………………………………(6分) 20.解:2(1)(21)(1)x x x x x ++=++ ………………(2分) 解这个整式方程得:12x =- ………………(4分)经检验:12x =-是原方程的解.∴原方程的解为12x =-.……………………(6分)四、本大题共3个小题,每小题8分,共24分.21.解:(1)四边形OCED 是菱形.…………(2分)∵DE ∥AC ,CE ∥BD , ∴四边形OCED 是平行四边形,…………(3分) 又 在矩形ABCD 中,OC =OD , ∴四边形OCED 是菱形.…………………(4分)(2)连结OE .由菱形OCED 得:CD ⊥OE , …………(5分) ∴OE ∥BC 又 CE ∥BD∴四边形BCEO 是平行四边形∴OE =BC =8……………………………………………(7分)∴S 四边形OCED =11862422OE CD ⋅=⨯⨯=……………(8分) 22.解:(总结果有12种,其中积为6的有2种, ∴P (积为6)=21126=. ………………………………………(4分) (2)游戏不公平,因为积为偶数的有8种情况,而积为奇数的有4种情况.(6分) 游戏规则可改为:若积为3的倍数,小敏赢,否则,小颖赢. ………(8分) 注:修改游戏规则,应不改变已知数字和小球、卡片数量.其他规则,凡正确均给分. 23.解:在Rt △AFG 中,tanAGAFG FG∠=∴tan AG FG AFG ==∠……………(2分)在Rt△ACG 中,tan AGACG CG ∠=∴tan AGCG ACG=∠…………(4分)又 40CG FG -=即40= ∴AG =(7分) ∴ 1.5AB =(米)答:这幢教学楼的高度AB 为 1.5)米.(8分)B 卷一、本大题共2个小题,每小题9分,共18分. 24.解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000)x -尾,由题意得:0.50.8(6000)3600x x +-= ………………………………………(1分)解这个方程,得:4000x = ∴60002000x -=答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. …………………(2分) (2)由题意得:0.50.8(6000)4200x x +-≤ ……………………………(3分) 解这个不等式,得: 2000x ≥即购买甲种鱼苗应不少于2000尾. ………………………………(4分) (3)设购买鱼苗的总费用为y ,则0.50.8(6000)0.34800y x x x =+-=-+ (5分)FEC BAB'C' 由题意,有909593(6000)6000100100100x x +-≥⨯………………………(6分) 解得: 2400x ≤…………………………………………………………(7分)在0.34800y x =-+中∵0.30-<,∴y 随x 的增大而减少 ∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.………(9分)25.(1)证明:∵Rt △AB 'C ' 是由Rt △ABC 绕点A 顺时针旋转得到的, ∴AC =AC ',AB =AB ',∠CAB =∠C 'AB ' ………………(1分) ∴∠CAC '=∠BAB '∴∠ACC '=∠ABB ' ……………………………………(3分) 又∠AEC =∠FEB∴△ACE ∽△FBE ……………………………………(4分)(2)解:当2βα=时,△ACE ≌△FBE . …………………(5分) 在△ACC '中,∵AC =AC ', ∴180'180'9022CAC ACC βα︒-∠︒-∠===︒- ………(6分)在Rt △ABC 中,∠ACC '+∠BCE =90°,即9090BCE α︒-+∠=︒, ∴∠BCE =α. ∵∠ABC =α,∴∠ABC =∠BCE ……………………(8分) ∴CE =BE由(1)知:△ACE ∽△FBE ,∴△ACE ≌△FBE .………………………(9分)二、本大题共1个小题,共12分.26.解:(1)由题意,可设所求抛物线对应的函数关系式为225()32y x m =-+ …(1分) ∴2254()32m =⨯-+∴16m =- ……………………………………………………………(3分) ∴所求函数关系式为:22251210()432633y x x x =--=-+ …………(4分) (2)在Rt △ABO 中,OA =3,OB =4,∴5AB∵四边形ABCD 是菱形∴BC =CD =DA =AB =5 ……………………………………(5分) ∴C 、D 两点的坐标分别是(5,4)、(2,0). …………(6分)当5x =时,2210554433y =⨯-⨯+=当2x =时,2210224033y =⨯-⨯+=∴点C 和点D 在所求抛物线上. …………………………(7分)(3)设直线CD 对应的函数关系式为y kx b =+,则5420k b k b +=⎧⎨+=⎩解得:48,33k b ==-.∴4833y x =- ………(9分)∵MN ∥y 轴,M 点的横坐标为t , ∴N 点的横坐标也为t . 则2210433M y t t =-+, 4833N y t =-,……………………(10分) ∴22248210214202734()3333333322N M l y y t t t t t t ⎛⎫=-=---+=-+-=--+ ⎪⎝⎭∵203-<, ∴当72t =时,32l =最大, 此时点M 的坐标为(72,12). ………………………………(12分)。
2012年四川省眉山市中考数学试卷一.选择题(共12小题)1.(2012眉山)若5x =,则x 的值是( )A .5B .﹣5C .5±D .51考点:绝对值。
解答:解:∵|x|=5,∴x=±5.故选C .2.(2012眉山)下列运算正确的是( )A .5510a a a +=B .339a a a ⋅=C .()33939a a =D .1239a a a ÷=考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
解答:解:A .a 5+a 5=2a 5,故本选项错误;B .a 3a 3=a 6,故本选项错误;C .(3a 3)3=27a 9,故本选项错误;D .a 12÷a 3=a 9,故本选项正确.故选D .3.(2012眉山)函数y =中,自变量x 的取值范围是( )A .2x >B .2x ≥C .2x ≤D .2x <考点:函数自变量的取值范围;二次根式有意义的条件。
解答:解:根据题意得:x ﹣2≥0,解得x ≥2.故选B .4.(2012眉山)某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字)应为( )A .56.7510⨯- 克B .56.7410-⨯ 克C .66.7410-⨯ 克D . 66.7510-⨯克考点:科学记数法—表示较小的数。
解答:解:0.00006746=6.746×10﹣5≈6.75×10﹣5,故选:A .5.(2012眉山)若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则m 的取值范围是( ) 1m < B .1m <- C .1m > D . 1m >-考点:根的判别式。
解答:解:∵关于x 的一元二次方程x 2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×m >0,∴4﹣4m >0,解得m <1.故选A .6.(2012眉山)下列命题中,真命题是( )A .有两条对角线相等的四边形是等腰梯形B .两条对角线互相垂直且平分的四边形是正方形C .等边三角形既是轴对称图形又是中心对称图形D .有一个角是60°的等腰三角形是等边三角形考点:命题与定理。
2010年-2014年眉山中考数学试题及答案2.有些人错错了~永错无法在回到前从;有些人使遇到了~永错都无法在一起~错些都是一错刻骨错心的痛即!3.每一人都有春~每一春都有一故事~每故事都有一错憾~每错憾都有的春美。
个青个青个个个个它青4.方茴错,"可能人错有点什错事~是想忘也忘不了的。
"5.方茴错,"那错候我错不错错~错是多错错、多错重的字眼。
我错只错喜错~就算喜错也是错错摸摸的。
遥沉啊"6.方茴错,"我错得之所以错相错不如错念~是因错相错只能错人在错错面前无奈地哀悼错痛~而错念却可以把已错注定的错言错成童错。
"7.在村错有一截巨大的雷错木~直十米~此错主干上唯一的柳已错在朝霞中掩去了错光~错得普普通通了。
径几条年眉山中考错错及答案数学2010注意事错,,本错卷分错卷和卷,卷分第?卷和第?卷部分~第?卷共两个小错~共分~第1ABA1236错至第错~第?卷共个小错~共分~第错至第错~卷共个小错~共分~第错至第12115435B3306错,全卷错分分~考错错错分错,8120120,答第?卷前~考生错必姓名、准考错、考错科目用错在答错上相错的位置~错错密将号笔涂写卡并将2封错的容楚,第?卷不能答在错卷上~第?和内内填写清卷答在错卷上,B,不允错使用错算器错行算~凡无精度要求的错目~错果均保留准错~解答错错出演算错程、运确确写3推理步错或文字错明,A卷错号一二三四错分全卷错分人错分得分B卷错号一二错分得分卷;共分,A90第?卷;错错错共分,36一、错错错,本大错共个个小错~每小错分~共分,在每小错错出的四错错中只有一错是正的个个确~12336错把正错错的字母用错在答错上相错的位置,确笔填涂卡,的倒是数1?511,, , ,A5????????BC?5D?552的错果是,错算2(3)?,, , , A3????????BCD9?3 3,下列算中正的是运确3222, , AB(2)(2)4ababab+?=?325aaa+=222236, ,DC(2)4abab+=+22aaa =的半错径~?的半错径~错心距,?~错错的位置错系是两3cm5cm4=2cmOOOO1212 ,外切 ,相交 ,切内,含内ABCD2,把代式数分解因式~下列错果中正的是确5mxmxm?+691."噢~居然有土错肉~错我一错,"2.老人错都笑了~自巨石上起身。
眉山市2012年初中学业水平暨高中阶段教育学校招生考试数 学 试 卷注意事顶:1.本试卷分为A 卷和B 卷.A 卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共12个小题,共36分,第1页至第2页;第Ⅱ卷共12个小题,共64分,第3页至第6页;B 卷共2个小题,共20分,第7页至第8页.全卷满分120分,考试时间120分钟.2.答第Ⅰ卷前,考生务必将姓名、准考证号、考试科目用铅笔涂写在答题卡上相应的位置,并请将密封线内的内容填写清楚.第Ⅰ卷不能答在试卷上,第Ⅱ和B 卷答在试卷上.3.不允许使用计算器进行运算,凡无精确度要求的题目,结果均保留准确值,解答题A 卷(共100分) 第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置. 1.若5=x ,则x 的值是A .5B .-5C .5±D .51 2.下列运算正确的是A .1055a a a =+B .933a a a =⋅ C .()93393a a= D .9312a a a =÷3.函数2-=x y 中自变量x 的取值范围是A .2>xB .2≥xC .2≤xD .2<x4.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字应为 A .51075.6—⨯ 克 B .51074.6—⨯ 克 C .61074.6—⨯ 克 D . 61075.6—⨯克5.若关于x 的一元二次方程022=+-m x x 有两个不相等的实数根,则m 的取值范围是 A .1<m B .1-<m C .1>m D . 1->m6.下列命题中,真命题是A .有两条对角线相等的四边形是等腰梯形B .两条对角线互相垂直且平分的四边形是正方形C .等边三角形既是轴对称图形又是中心对称图形D AB D .有一个角是60°的等腰三角形是等边三角形7.如图,在△ABC 中,∠ACB =90°,∠A =20°,若将△ABC 沿CD 折叠,使B 点落在AC 边上的E 处,则∠ADE 的度数是A .30°B .40°C .50°D .55°8.一组数据为2、3、5、7、3、4,对于这组数据,下列说法错误的是A .平均数是4B .极差是5C .众数是3D . 中位数是69.用一些大小相同的小正方体组成的几何体的左视图和俯视图如图所示,则组成这个几何体的小正方体的块数,最多..可能是A .17B .18C .19D . 20 10.若m 、n 是一元二次方程0252=--x x 的两个实数根,则mn n m -+的值是 A .-7 B .7 C .3 D . -3 11.圆锥底面圆的半径为1㎝,母线长为6㎝,则圆锥侧面展开图的圆心角是 A .30° B .60° C .90° D . 120° 12.已知:如图,在直角坐标系中,有菱形OABC ,A 点的坐标为(10 ,0),对角线OB 、AC 相交于D 点,双曲线xky =(0>x )经过D 点,交BC 的延长线于E 点,且OB ·AC =160,有下列四个结论 ①双曲线的解析式为xy 20=(0>x ) ②E 点的坐标是(4,8)③sin ∠COA=54 ④AC+OB=512,其中正确的结论有 A .1个 B .2个 C .3个 D . 4个俯视图左视图第Ⅱ卷(非选择题 共64分)二、填空题:本大题共6个小题,每小题3分,共18分.将正确答案直接填在题中横线上. 13.因式分解:=+-a ax ax 22.14.如图,□ABCD 中,AB =5,AD =3,AE 平分∠DAB 交BC 的延长线于F 点,则CF= .15.已知:PA 、PB 与⊙O 相切于A 点、B 点,OA =1,PA =3,则图中阴影部分的面积是 (结果保留π).16.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加优育小组,35%的人参加美术小组,则参加音乐小组的 有 人. 17.直线2)3(-+-=b x a y 在直角坐标系中的图象如图所示, 化简:=--+---b a a a b 2962. 18.在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 .三、计算题:本大题共2个小题,每小题6分,共12分.19.计算:()1-122130cos 42-⎪⎭⎫⎝⎛+-20.解方程:xxx --=+-2132114小题图A15小题图P21.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为A(-3 ,0),B(-1 ,-2),C(-2 ,2).(1)请在图中画出△ABC绕B点顺时针旋转180°后的图形;(2)请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.22.如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A 点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C 点在北偏东30°方向,求河宽CD.23.有质地均匀的A.B.C.D四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢。
问这个游戏公平吗?为什么?如果不公平,请你设计一个公平的游戏规则.24.青神竹编,工艺精美,受到人们的喜爱,有一客商到青神采购A、B两种竹编工艺品回去销售,其进价和回去的售价如右表所示.若该客商计划采购A、B两种竹编工艺品共60件,所需总费用为y元,其中A型工艺品x件.(1)请写出y与x之间的函数关系式;(2)若该客商采购的B型工艺品不少于14件,且所获总利润要求不低于2500元,那么他有几种采购方案?写出每种采购方案,并求出最大利润.B 卷(共20分)一、本大题共1个小题,共9分.25.已知:如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于E 点,交DF 于M ,F 是BC 延长线上一点,且CE =CF . (1)求证:BM ⊥DF ;(2)若正方形ABCD 的边长为2,求ME ·MB .二、本大题共1个小题,共11分.26. 已知:如图,直线33+=x y 与x 轴交于C 点, 与y 轴交于A 点,B 点在x 轴上,△OAB 是等腰直角三角形.(1)求过A 、B 、C 三点的抛物线的解析式;(2)若直线CD ∥AB 交抛物线于D 点,求D 点的坐标;(3)若P 点是抛物线上的动点,且在第一象限,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标和△PAB 的最大面积;若没有,请说明理由.FAC眉山市2012年高中阶段教育学校招生考试数学试卷参考答案A 卷一、选择题:1~6,CDBAAD ,7~12,CDCBBC 二、填空题:13、2)1(-x a ;14、2;15、π313-;16、20;17、1;18、1<AD <4; 三、计算题: 19、解:原式=()51324321324234=+-+=--+⋅. 20、解:去分母,得 )1()2(31x x --=-+,x x +-=-+1631,42=x ,∴2=x ,经检验,2=x 是原方程的增根。
∴原方程无解。
四、21、解:(1)画图如下(△A 1BC 1即为所求):(2)点D 的坐标为(0,0)或(-4,4)或(-2,-4)。
22、解:如图,过点BE ⊥AB 交AC 于点E ,∵在A 点处测得河对岸C 点在北偏东60°方向, ∴∠EAB=300。
∴∠BEC=1200。
∵在B 点处测得河对岸C 点在北偏东30°方向,∴∠BCE=1800-1200-300=300。
∴∠EAB=∠BCE 。
∴BC=AB=200米。
在Rt △BCD 中,BC= 200米,∠CBD=600, ∴310023200sin =⋅=∠=CBD BC CD 。
∴河宽CD 为3100米。
五、23、解:(1)画树状图如下:∵共有12种等可能结果,既有圆又有三角形有两种情况:AC ,CA , ∴抽出的两张卡片上的图形,既有圆又有三角形的概率为61122==P 。
(2)不公平。
∵共有12种等可能结果,既是中心对称图形,又是轴对称图形有两种情况:AB ,BA ,∴抽出的两张卡片上的图形,既是中心对称图形,又是轴对称图形的概率为61122==P 。
即小明赢的概率是61,小东赢的概率是65611=-。
∵小明赢的概率≠小东赢的概率,∴这个游戏不公平。
规则是:将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(放回),再随机抽出第二张,如果抽出的两个图形,“既是中心对称图形又是轴对称图形”或者不是“既是中心对称图形又是轴对称图形”,则小明赢;否则,小东赢。
24、解:(1)∵购A 型工艺品x 件,需费用x 150元;购B 型工艺品(x -60)件,需费用)60(80x -元,∴总费用为480070)60(80150+=-+=x x x y 。
(2)总利润为120030)60)(80100()150250(+=--+-=x x x w ,根据题意,得⎩⎨⎧≥+≥-25001200301460x x ,解得463143≤≤x 。
∵x 为整数,∴x =44,45,46。
∴他有三种采购方案:方案1:购A 型工艺品44件,B 型工艺品16件; 方案2:购A 型工艺品45件,B 型工艺品15件;方案3:购A 型工艺品46件,B 型工艺品14件。
∵120030+=x w 随x 的增大而增大,∴当x =46时,利润最大,最大利润为(元)=最大258012004630+⨯=w 。
B 卷一、25、解:(1)证明:∵ABCD 是正方形,∴BC=CD ,∠BCD=∠DCF=90°。
又∵CF=CE ,∴△BCE ≌△DCF (SAS )。
∴∠EBC=∠FDC 。
∴∠BMF=∠BCD=900。
∴BM ⊥DF 。
(2)∵设正方形ABCD 的边长为2,即BC= DC=2,则BD=22。