移动床煤气化炉的设计和计算共21页
- 格式:ppt
- 大小:1.90 MB
- 文档页数:21
流化床气化煤气设计
煤炭一直以来都是世界上最主要的能源资源之一,但随着环保
意识的增强,人们对于煤炭的利用方式也在不断地进行改进和创新。
流化床气化煤气设计就是其中的一种新型技术,它被广泛应用于煤
气化领域,可以高效地将煤炭转化为可再生能源。
流化床气化技术是一种将固体燃料在高温下转化为气体燃料的
过程。
在流化床气化煤气设计中,煤炭首先被粉碎成细粉,然后通
过气化剂(通常是空气或蒸汽)在高温下进行气化反应,产生可燃
气体。
这种气体可以用于发电、供热或其他工业用途。
流化床气化煤气设计的关键在于气化反应的控制和高效利用。
通过优化气化反应的温度、压力和气化剂的流速,可以最大限度地
提高气化效率,减少能源损失。
此外,流化床气化技术还可以减少
煤炭燃烧产生的污染物排放,对于保护环境具有重要意义。
除了煤炭,流化床气化技术还可以应用于其他固体废弃物的气
化转化,比如生物质、城市垃圾等。
这为资源再利用和能源转化提
供了新的途径,有助于实现清洁能源的可持续发展。
总的来说,流化床气化煤气设计是一种高效、环保的能源转化技术,可以有效地提高煤炭等固体燃料的利用率,减少环境污染。
随着技术的不断进步,相信流化床气化技术将在能源领域发挥越来越重要的作用。
流化床气化煤气设计
流化床气化是一种高效的煤气化技术,通过将煤粒在高温下与氧气和蒸汽进行反应,产生可燃性气体。
这种气化技术被广泛应用于工业生产和能源开发领域,其设计和操作对于提高煤气化效率和降低环境污染具有重要意义。
首先,流化床气化煤气设计需要考虑气化反应的温度和压力。
适当的温度和压力可以促进气化反应的进行,并提高气化效率。
同时,设计中需要考虑煤气化产生的气体成分和热值,以满足不同工业生产和能源利用的需求。
其次,设计中需要考虑流化床的材料和结构。
流化床的材料应具有良好的耐高温和耐腐蚀性能,以保证设备长期稳定运行。
流化床的结构设计也需要考虑气体和固体颗粒的流动特性,以确保气化反应能够充分进行。
另外,流化床气化煤气设计还需要考虑废气处理和余热回收。
废气处理可以减少气化过程中产生的污染物排放,保护环境。
余热回收可以提高能源利用效率,降低生产成本。
总的来说,流化床气化煤气设计是一个综合性的工程问题,需要考虑气化反应、设备材料和结构、废气处理和余热回收等多个方面。
通过合理的设计和优化,可以实现高效、清洁的煤气化生产,为工业生产和能源开发提供可靠的技术支持。
摘要本设计以常压固定床煤气化的设计过程为内容,包括对工艺流程的确定和说明、生产条件的确定和说明以及附属设备的选型等内容。
进而深入了一层了解煤气化工艺,并得到化工工程设计的初步训练。
本文从一定的层面上对常压固定床煤气化发生炉内部的传热、传质过程进行了简要综述。
关键词:常压固定床,煤气化发生炉,床层,炉壁,传热一、煤气化原理(一)煤气化的基本过程煤的气化过程是一个有热效应的化学反应过程,反应物是煤和气化剂。
气化剂一般为空气、氧气、水蒸气或氢气。
煤和气化剂按照一定的比例,在一定温度和压力条件下发生化学反应,煤中的可燃成分转化为气体燃料,即产品煤气,灰分则以灰渣的形式出。
煤的气化分为完全气化和不完全气化,不完全气化即通常说的煤的干馏,其产品包括煤气、焦油和半焦;完全气化的产品是煤气或水煤气,本章所讲的煤的气化技术只讨论煤的完全气化技术【11。
下图所示为典型的煤气化工艺流程。
图1煤的气化过程图2典型的煤气化工艺流程从包含的物理化学过程来看,煤的气化过程包括以下几个阶段:干燥脱水,热解,挥发分和残余固定碳的气化反应。
煤的干燥脱水过程去除了原煤中所含的全部水分,在温度达到350C以上时,开始发生煤颗粒的热解反应,析出气体中间产物和焦油,统称为挥发分。
剩余的是固体焦炭或半焦,煤的热解过程可以用下面的总体表达式表示:热解煤 --- CH4+其他气态烃+焦油+CO+CO2+H2+H2O+焦炭或半焦(S)式中,除了焦炭或半焦为固体产物,其余全部是气态产物,除此之外,还有少量含有机氮、硫等元素的气态中间产物。
(二)固定床反应器固定床反应器又称填充床反应器,装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。
固体物通常呈颗粒状,粒径2〜15mm左右,堆积成一定高度(或厚度)的床层。
床层静止不动,流体通过床层进行反应。
它与流化床反应器及移动床反应器的区别在于固体颗粒处于静止状态。
固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。