2018年高考试题——数学文(辽宁卷)(3) 精品
- 格式:doc
- 大小:1.08 MB
- 文档页数:11
2018年普通高等学校招生全国统一考试(辽宁卷)数学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
(1)已知向量a = (1,—1),b = (2,x ).若a b ∙= 1,则x =(A) —1 (B) —12 (C) 12(D)1 【命题意图】本题主要考查向量的数量积,属于容易题。
【解析】21,1a b x x ⋅=-=∴=,故选D(2)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则 ()()U U C A C B ⋂=(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U {7,9}。
故选B 【解析二】 集合)()(B C A C U U 即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题。
采用解析二能够更快地得到答案。
(3)复数11i=+(A)1122i - (B)1122i + (C) 1i - (D) 1i + 【答案】A 【解析】11111(1)(1)222i i ii i i --===-++-,故选A 【点评】本题主要考查复数代数形式的运算,属于容易题。
绝密★启用前2018年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}1,2,3,4,|2,A B x x A B ==<=则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2(2)复数的11Z i =-模为(A )12 (B )2(C (D )2 (3)已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,- (B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭,(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100.若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50(C )55 (D )60(6)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B A b += ,a b B >∠=且则A .6πB .3π C .23π D .56π(7)已知函数())()1ln 31,.lg 2lg 2f x x f f ⎛⎫=++= ⎪⎝⎭则 A .1- B .0 C .1 D .2(8)执行如图所示的程序框图,若输入8,n S ==则输出的A .49 B .67 C .89 D .1011(9)已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有 A .3b a = B .31b a a=+ C .()3310b a b a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a-+--=(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为A B . C .132 D .(11)已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,F C 与过原点的直线相交于 ,A B 两点,4,.10,8,cos ABF ,5AF BF AB B F C ==∠=连接若则的离心率为 (A )35 (B )57 (C )45 (D )67(12)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则 A B -=(A )2216a a -- (B )2216a a +-(C )16- (D )16第II 卷本卷包括必考题和选考题两部分。
2018年第一次全国大联考【新课标Ⅱ卷】文科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合|{x y A ==∈Z,{|}B y y x A ==∈,则A B =I A .{1,2}B .2,12{},1,--C .{2,1,0,1}--D .{0,1} 2.若复数2i 2a z -=在复平面内对应的点在直线y x =-上,则z z ⋅= A .1 B .2 C .1- D .2- 3.已知向量,a b ,若(1,0)=a 且||||=a b ,则下列结论错误的是A .||-a b 的最大值为2B .||+a b 的最大值为2C .当||-a b 最大时1⋅=a bD .当||+a b 最大时1⋅=a b4.已知n S 是数列{}n a 的前n 项和,且数列{}n a 满足21123122221()n nn n a a a a -++++=-∈*N L ,则10S =A .1023B .1024C .512D .5115.如图,网格纸上小正方形的边长为1,一个长方体被截去一个四棱锥后,剩余部分的三视图如图所示,则该长方体截去部分与剩余部分的体积的比值为A .13B .12C .33D .4396.已知,x y 满足约束条件10210230x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩,则34z x y =--的最小值为A .373-B .9-C .4-D .113- 7.甲、乙、丙三位大学生毕业后选择自主创业,三人分别做淘宝店、微商、实体店.某次同学聚会时,甲说:我做淘宝店、乙做微商;乙说:甲做微商、丙做淘宝店;丙说:甲做实体店、乙做淘宝店.事实上,甲、乙、丙三人的陈述都只对了一半.其他同学根据如上信息,可判断下列结论正确的是A .甲做微商B .乙做淘宝店C .丙做微商D .甲做实体店 8.执行如下图所示的程序框图,则输出的S 的值为A .20182019 B .12018 C .20172018 D .120199.已知函数()sin()f A x x ωϕ=+(0,0,||)2A ωϕπ>><的部分图象如下图所示,将函数()y f x =的图象上所有点的横坐标缩短为原来的14,纵坐标不变,再将所得图象上所有点向右平移(0)θθ>个单位长度,得到的函数图象关于点2(,0)3π对称,则θ的最小值为A .6πB .12πC .4πD .23π 10.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率的取值范围为(2,3),则该双曲线的渐近线与圆22:(2)3P x y -+=的公共点的个数为A .1B .2C .0D .411.在三棱柱111ABC A B C -中,已知1AA ⊥底面ABC ,AB BC ⊥,且1AA AB BC ==,若D ,M 分别是11A B ,1BB 的中点,则异面直线AD 与MC 所成角的余弦值为A .25B .23C .34D .5612.已知定义在[e,)+∞上的函数()f x 满足()()ln 0f x xf x x '+<且(4)0f =,其中()f 'x 是函数()f x 的导函数,e 是自然对数的底数,则不等式()0f x >的解集为A .[e,4)B .(4,)+∞C .(e,4)D .[e,e 1)+第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.如图,半径为4的圆内有一阴影区域,在圆内随机撒入n 个豆子,其中落在阴影区域内的豆子共有m 个,则阴影区域的面积约为________________.14.已知函数cos,5 ()6(4),5x xff x xxπ⎧≤⎪=⎨⎪->⎩,则(2018)f=________________.15.已知抛物线2:4C y x=的焦点为F,M是抛物线C上一点,若FM的延长线交y轴的正半轴于点N,交抛物线C的准线l于点T,且2FM MN=u u u u r u u u u r,则||NT=________________.16.已知数列}{na满足11a=,且点1(,2)()n na a n+∈*N在直线0121=+-yx上.若对任意的n∈*N,1231111nn a n a n a n aλ++++≥++++L恒成立,则实数λ的取值范围为________________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在ABC△中,角A,B,C的对边分别为a,b,c,已知sin sin1cos21sin sin2sin sinB C AC B B C-+=+.(Ⅰ)求cos()12Aπ+的值;(Ⅱ)若2a=,2CA BA⋅=u u u r u u u r,求1sin sin sinA B C++的最大值.18.(本小题满分12分)某学校为调查该校学生每周使用手机上网的时间,随机收集了若干位学生每周使用手机上网的时间的样本数据(单位:小时),将样本数据分组为[0,2),[2,4),[4,6),[6,8),[8,10),[10,12],绘制了如下图所示的频率分布直方图,已知[0,2)内的学生有5人.(Ⅰ)求样本容量n,并估计该校学生每周平均使用手机上网的时间(同一组中的数据用该组区间的中点值代替);(Ⅱ)将使用手机上网的时间在[4,12]内定义为“长时间看手机”,使用手机上网的时间在[0,4)内定义为“不长时间看手机”.已知在样本中有25位学生不近视,其中“不长时间看手机”的有15位学生.请将下面的22⨯列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为该校学生长时间看手机与近视有关. 近视 不近视 合计 长时间看手机不长时间看手机15 合计25 参考公式和数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++. 20()P K k ≥ 0.10 0.05 0.010 0.005 0.0010k2.7063.841 6.635 7.879 10.82819.(本小题满分12分) 如图,在长方体1111ABCD A B C D -中,12DD AD ==,4DC =,过D 作1DF D B ⊥交1D B 于点F ,E 是1CD 上一点.(Ⅰ)若BC ∥平面DEF ,求证:15EC D E =;(Ⅱ)在(Ⅰ)的条件下,求三棱锥1D DEF -的体积.20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,其右焦点F 到直线10x y -+=的距离为2(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若过点F 且斜率不为0的直线1l 与椭圆C 交于M ,N 两点,过坐标原点的直线2l 与椭圆C 交于A ,B 两点,且(0)AB MN λλ=≠u u u r u u u u r ,试判断2||||MN AB 是否为定值?若是,请求出该定值;若不是,请说明理由.21.(本小题满分12分) 已知函数221()e 2x f x a x =-,其中e 为自然对数的底数. (Ⅰ)讨论函数()f x 的单调性; (Ⅱ)若1[,e]e a ∈,设函数2()()2g f x x a =+的最小值为()h a ,求()h a 的最大值. 请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线1C 的参数方程为22x t y t⎧=⎨=⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为cos sin 1ρθρθ+=.(Ⅰ)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(Ⅱ)设(1,0)F ,曲线2C 与曲线1C 交于不同的两点A ,B ,求||||AF BF ⋅的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数()|2|||,f x x a x a =+--∈R .(Ⅰ)当3a =时,求不等式()30f x ->的解集;(Ⅱ)若不等式()1f x ≤恒成立,求关于x 的不等式212x ax a x ++>+的解集.。
2018年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B )如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,选择一个符合题目要求的选项. (1)函数)321sin(+=x y 的最小正周期是 (A )2π (B )π(C )2π(D )4π (2)设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是(A )1(B )3(C )4(D )8(3)设)(x f 是R 上的任意函数,则下列叙述正确的是 (A ))(x f )(x f -是奇函数 (B ))(x f |)(x f -| 是奇函数(C ))(x f -)(x f -是偶函数 (D ))(x f +)(x f -是偶函数(4)5646362616C C C C C ++++的值为 (A )61 (B )62 (C )63 (D )64球的表面积公式24R S π=球的体积公式334R V π=球其中R 表示球的半径(5)方程02522=+-x x 的两个根可分别作为(A )一椭圆和一双曲线的离心率 (B )两抛物线的离心率(C )一椭圆和一抛物线的离心率 (D )两椭圆的离心率(6)给出下列四个命题: ①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线21,l l 与同一平面所成的角相等,则21,l l 互相平行. ④若直线21,l l 是异面直线,则与21,l l 都相交的两条直线是异面直线. 其中假.命题的个数是(A )1 (B )2(C )3 (D )4(7)双曲线422=-y x 的两条渐近线与直线3=x 围成一个三角形区域,表示该区域的不等式 组是(A )⎪⎩⎪⎨⎧≤≤≥+≥-3000x y x y x (B )⎪⎩⎪⎨⎧≤≤≤+≥-3000x y x y x (C )⎪⎩⎪⎨⎧≤≤≤+≤-3000x y x y x (D )⎪⎩⎪⎨⎧≤≤≥+≤-3030x y x y x(8)设○+是R 上的一个运算,A 是R 的非空子集. 若对任意A b a A b a ∈⊕∈有,,,则称A 对运 算○+封闭. 下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是 (A )自然数集 (B )整数集 (C )有理数集 (D )无理数集(9)△ABC 的三内角A ,B ,C ,所对边的长分别为c b a ,,,设向量p ),(b c a +、q =).,(a c a b -- 若p ∥q ,,则角C 的大小为(A )6π (B )3π (C )2π (D )32π (10)已知等腰△ABC 的腰为底的2倍,顶角的正切值是(A )23 (B )3(C )815 (D )715 (11)与方程)0(22≥+-=x e e y x x的曲线关于直线x y =对称的曲线的方程为(A ))1ln(x y += (B ))1ln(x y -=(C ))1ln(x y +-= (D ))1ln(x y --=(12)曲线)6(161022<=-+-m m y m x 与曲线)95(19522<<=-+-n ny n x 的 (A )离心率相等(B )焦距相等(C )焦点相同(D )准线相同绝密★启用前2018年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)第II 卷(非选择题 共90分)二.填空题:本大题共4小题,每小题4分,共16分.(13)方程)1(log 2)1(log 22--=-x x 的解为 .(14)设⎩⎨⎧>≤=,0,ln ,0,)(x x x e x g x 则=))21((g g .(15)如图,半径为2的半球内有一内接正六棱锥P —ABCDEF , 则此正六棱锥的侧面积是 .(16)5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有 种.(以数作答)三.解答题:本大题共小题,共74分,解答应写出文字说明、证明过程或演算步骤。
2018年普通高等学校招生全国统一考试文科数学3卷 答案详解一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则A .B .C .D .【解析】∵}1|{≥=x x A ,}2,1{=B A . 【答案】C 2. A .B .C .D .【解析】i i i +=-+3)2)(1(. 【答案】D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】看不见的线应该用虚线表示. 【答案】A 4.若,则cos2α= {|10}A x x =-≥{0,1,2}B =A B ={0}{1}{1,2}{0,1,2}(1i)(2i)+-=3i --3i -+3i -3i+1sin 3α=A .B .C .D . 【解析】227cos212sin 199αα=-=-=. 【答案】B5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A .0.3B .0.4C .0.6D .0.7【解析】只用现金支付、既用现金支付也用非现金支付、不用现金支付,三者是互斥事件,所以不用现金支付的概率为10.450.15=0.4--.【答案】B 6.函数2tan ()1tan xf x x=+的最小正周期为A .B .C .D .【解析】∵222222tan tan cos sin cos 1()sin cos sin 21tan (1tan )cos cos sin 2x x x x x f x x x x x x x x x ⋅=====++⋅+, ∴()f x 的最小正周期为 π .【答案】C7.下列函数中,其图像与函数的图像关于直线对称的是 A .B .C .D .【解析】解法一:从图A7中可以看出,函数)In(x y -=向右平移2个单位得到的图像,就是函数的图像关于直线对称的图像,其函数表达式为)2In(+-=x y .897979-89-4π2ππ2πln y x =1x =ln(1)y x =-ln(2)y x =-ln(1)y x =+ln(2)y x =+ln y x =1x =图A7解法一:(特殊值法)由题意可知,所求函数与函数的图像上的对应点关于对称. 在函数的图像任取一点(1,0),其关于对称的点为(1,0),即点(1,0)一定在所求的函数图像上,只有选项B 符合.【答案】B8.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是 A .B .C .D .【解析】如图所示,由题意可知)0,2(-A 、)0,2(-B ,∴22||=AB .过点P 作△ABP 的高PH ,由图可以看出,当高PH 所在的直线过圆心)0,2(时,高PH 取最小值或最大值. 此时高PH 所在的直线的方程为02=-+y x .将02=-+y x 代入,得到与圆的两个交点:)1,1(-N 、)1,3(M ,因此22|211|min =+-=|PM|,232|213|max =++=|PM|. 所以222221min=⨯⨯=S ,6232221max =⨯⨯=S. ln y x =1x =ln y x =1x =20x y ++=x y A B P 22(2)2x y -+=ABP △[2,6][4,8]22(2)2x y -+=图A8【答案】A9.函数的图像大致为【解析】设2)(24++-==x x y x f ,∵02)0(>=f ,因此排除A 、B ;)12(224)(23--=+-='x x x x x f ,由0)(>'x f 得22-<x 或220<<x ,由此可知函数)(xf 422y x x =-++在),(220内为增函数,因此排除C.【答案】D10.已知双曲线C :22221(0,0)x y a b a b-=>>(4,0)到C 的渐近线的距离为AB.C .D .【解析】由题意可知c =,∴b a ==,渐近线方程为y x =±,即0x y ±=.∴ 点(4,0)到C 的渐近线的距离为222|4|=. 【答案】D11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为4222c b a -+,则C =A .B .C .D .【解析】由已知和△ABC 的面积公式有,4sin 21222c b a C ab -+=,解得C ab c b a sin 2222=-+.∴ C abCab ab c b a C sin 2sin 22cos 222==-+=,又∵1cos sin 22=+C C ,∴22sin cos ==C C ,4π=C . 【答案】C12.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为39,则三棱锥D -ABC 体积的最大值为 A .312B .318C .324D .354【解析】如图A12所示,球心为O ,△ABC 的外心为O ′,显然三棱锥D -ABC 体积最大时D 在O′O 的延长线与球的交点.△ABC 为为等边三角形且其面积为39,因此有39432=⨯AB ,解得AB =6. 222π3π4π6π∴3260sin 32=⋅⨯=' AB C O ,2)32(42222=-='-='O O OC O O , ∴642=+='D O .∴ 三棱锥D -ABC 体积的最大值为31863931=⨯⨯=V .图A12【答案】B二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出の四个选项中,只有一项是符合题目要求の。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。
2018年辽宁省高考文科数学试题与答案2018年辽宁省高考文科数学试题与答案考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.计算 i(2+3i) 的值。
A。
3-2i B。
3+2i C。
-3-2i D。
-3+2i2.已知集合 A={1,3,5,7},B={2,3,4,5},则A∩B 的值为?A。
{3} B。
{5} C。
{3,5} D。
{1,2,3,4,5,7}3.函数 f(x)=ex-e-x 的图像大致为?4.已知向量 a,b 满足 |a|=1,a·b=-1,则 a·(2a-b) 的值为?A。
4 B。
3 C。
2 D。
-15.从 2 名男同学和 3 名女同学中任选 2 人参加社区服务,则选中的 2 人都是女同学的概率为?A。
0.6 B。
0.5 C。
0.4 D。
0.36.双曲线 x2/a2-y2/b2=1(a>0,b>0) 的离心率为 3,则其渐近线方程为?A。
y=±2x B。
y=±3x C。
y=±2x/3 D。
y=±3x/27.在△ABC 中,cosA=5/13,BC=1,AC=5,则 AB 的值为?A。
42 B。
25+√111 C。
29 D。
30-√1118.为计算 S=1-1/2+1/3-。
+(-1)99/100,设计了如图的程序框图,则在空白框中应填入?1.开始2.N=0.T=13.i=14.如果 i<100,则执行步骤 5,否则执行步骤 75.N=N+(-1)i+1/i,T=T+(-1)i/i6.i=i+1,返回步骤 47.S=N-T,输出 S8.结束A。
i=i+1 B。
i=i+2 C。
i=i+3 D。
i=i+49.在正方体 ABCD-A1B1C1D1 中,E 为棱 CC1 的中点,则异面直线 AE 与 CD 所成角的正切值为?A。
2018年普通高等学校招生全国统一考试(辽宁)真题理科试题全套及答案汇总目录2018年普通高等学校招生全国统一考试辽宁语文试题................ 2018年普通高等学校招生全国统一考试辽宁语文试题答案............ 2018年普通高等学校招生全国统一考试辽宁理科数学................ 2018年普通高等学校招生全国统一考试辽宁理科数学答案............ 2018年普通高等学校招生全国统一考试辽宁英语试题................ 2018年普通高等学校招生全国统一考试辽宁英语试题答案............ 2018年普通高等学校招生全国统一考试辽宁理科综合试题............ 2018年普通高等学校招生全国统一考试辽宁理科综合试题答案........绝密★启用前2018年普通高等学校招生全国统一考试(全国二卷)语文本试卷共22题,共150分,共10页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷阅读题一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)所谓“被遗忘权”,即数据主体有权要求数据控制者永久删除有关数据主体的个人数据,有权被互联网遗忘,除非数据的保留有合法的理由,在大数据时代,数字化,廉价的存储器,易于提取、全球覆盖作为数字化记忆发展的四大驱动力,改变了记忆的经济学,使得海量的数字化记忆不仅唾手可得,甚至比选择性删除所耗费的成本更低,记忆和遗忘的平衡反转,往事正像刺青一样刻在我们的数字肌肤上;遗忘变得困难,而记忆却成了常态,“被遗忘权”的出现,意在改变数据主体难以“被遗忘”的格局,对于数据主体对信息进行自决控制的权利,并且有着更深的调节、修复大数据时代数字化记忆伦理的意义。
2018年普通高等学校招生全国统一考试新课标1卷文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={0,2},B={-2,-1,0,1,2},则A ∩B=A .{0,2}B .{1,2}C .{0}D .{-2,-1,0,1,2} 解析:选A2.设z=1-i1+i+2i ,则|z|=A .0B .12 C .1 D . 2解析:选C z=1-i1+i+2i=-i+2i=i3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 解析:选A4.已知椭圆C :x 2a 2+y24=1的一个焦点为(2,0),则C 的离心率为A .13B .12C .22D .223解析:选C ∵ c=2,4=a 2-4 ∴a=2 2 ∴e=225.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π解析:选B 设底面半径为R,则(2R)2=8 ∴R=2,圆柱表面积=2πR ×2R+2πR 2=12π6.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2x B .y=-x C .y=2x D .y=x解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D 7.在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →= A .34AB → - 14AC →B . 14AB → - 34AC →C .34AB → + 14AC →D . 14AB → + 34AC →解析:选A 结合图形,EB →=- 12(BA →+BD →)=- 12BA →-14BC →=- 12BA →-14(AC →-AB →)=34AB → - 14AC →8.已知函数f(x)=2cos 2x-sin 2x+2,则A .f(x)的最小正周期为π,最大值为3B .f(x) 的最小正周期为π,最大值为4C .f(x) 的最小正周期为2π,最大值为3D .f(x)的最小正周期为2π,最大值为4 解析:选B f(x)= 32cos2x+52故选B9.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D .2 解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长10.在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为300,则该长方体的体积为 A .8 B .6 2 C .8 2 D .8 3解析:选C ∵AC 1与平面BB 1C 1C 所成的角为300,AB=2 ∴AC 1=4 BC 1=2 3 BC=2 ∴CC 1=2 2 V=2×2×22=8 2 11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=23,则|a-b|= A .15B .55C .255D .1解析:选B ∵cos2α=23 2cos 2α-1=23 cos 2α=56 ∴sin 2α=16 ∴tan 2α=15又|tan α|=|a-b| ∴|a-b|=5512.设函数f(x)= ⎩⎪⎨⎪⎧2-x,x ≤01,x>0,则满足f(x+1)< f(2x)的x 的取值范围是A .(-∞,-1]B .(0,+ ∞)C .(-1,0)D .(-∞,0)解析:选D x ≤-1时,不等式等价于2-x-1<2-2x,解得x<1,此时x ≤-1满足条件-1<x ≤0时,不等式等价于1<2-2x, 解得x<0, 此时-1<x<0满足条件 x>0时,1<1不成立 故选D二、填空题(本题共4小题,每小题5分,共20分)13.已知函数f(x)=log 2(x 2+a),若f(3)=1,则a=________. 解析:log 2(9+a)=1,即9+a=2,故a=-714.若x ,y 满足约束条件⎩⎪⎨⎪⎧x-2y-2≤0x-y+1≥0 y ≤0 ,则z=3z+2y 的最大值为_____________.解析:答案为615.直线y=x+1与圆x 2+y 2+2y-3=0交于A,B 两点,则|AB|=________.解析:圆心为(0,-1),半径R=2,线心距d=2,|AB|=2R 2-d 2=2 216.△ABC 的内角A,B,C 的对边分别为a,b,c ,已知bsinC+csinB=4asinBsinC ,b 2+c 2-a 2=8,则△ABC 的面积为________.解析:由正弦定理及bsinC+csinB=4asinBsinC 得2sinBsinC=4sinAsinBsinC ∴sinA=12由余弦定理及b 2+c 2-a 2=8得2bccosA=8,则A 为锐角,cosA=32, ∴bc=833∴S=12bcsinA=233三、解答题:共70分。
2018年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第Ⅰ卷(选择题 共60分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A ·B)=P(A) ·P(B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V=43πR 3n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k (1-p )n-k (k =0,1,2,…,n )一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合M ={x |-3<x <1|,N={x |x ≤-3},则M =⋃N (A)∅ (B) {x|x ≥-3} (C){x|x ≥1}(D){x |x <1|(2)若函数()()1y x x a =+-为偶函数,则a = (A)2-(B) 1-(C)1(D)2(3)圆221x y +=与直线2y kx =+没有公共点的充要条件是 (A)2,2(-∈k )(B) 3,3(-∈k ) (C)k ),2()2,(+∞⋃--∞∈(D) k ),3()3,(+∞⋃--∞∈(4)已知0<a <1,log 2log 3a a x =+,1log 5,log 21log 32a a a y z ==-,则(A)x >y >z(B)z >y >x(C)y >x >z(D)z >x >y(5)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且AD BC 2=,则顶点D 的坐标为 (A)(2,27) (B)(2,-21) (C)(3,2) (D)(1,3)(6)设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 (A)⎥⎦⎤⎢⎣⎡--21,1(B)[-1,0] (C)[0,1](D)⎥⎦⎤⎢⎣⎡1,21(7)4张卡片上分别写有数字1,2,3,4从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为 (A)31 (B)21 (C)32 (D)43 (8)将函数y=2x +1的图象按向量a 平移得到函数y =2x +1的图象,则 (A)a =(-1,-1) (B)a =(1,-1) (C)a =(1,1) (D)a=(-1,1)(9)已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+,01,013,01x y x y x y 则2z x y =+的最大值为(A )4 (B )2 (C )1 (D )4-(10)一生产过程有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有(A )24种 (B )36种 (C )48种 (D )72种 (11)已知双曲线()222910y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m = (A )1 (B )2 (C )3 (D )4(12)在正方体1111ABCD A BC D -中,E F 、分别为棱11,AA CC 的中点,则在空间中与三条直线A 1D 1、EF 、CD 都相交的直线()A 不存在 (B )有且只有两条 (C )有且只有三条 (D )有无数条第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)函数23()x y ex +=-∞<<+∞的反函数是 .(14)在体积为43π的球的表面上有A 、B 、C 三点,AB =1,BC =2,A 、C 两点的球面距离为33π,则球心到平面ABC 的距离为 . (15)3621(1)()x x x ++展开式中的常数项为 . (16)设(0,)2x π∈,则函数22sin 1sin 2x y x+=的最小值为 .(17)(本小题满分12分)在△ABC 中,内角,,A B C ,对边的边长分别是,,a b c .已知2,3c C π==. (Ⅰ)若△ABC 的面积等于3,求,a b ;(Ⅱ)若sin 2sin B A =,求△ABC 的面积.(18)(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量 2 3 4 频数205030(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求 (i )4周中该种商品至少有一周的销售量为4吨的概率; (ii )该种商品4周的销售量总和至少为15吨的概率. (19)(本小题满分12分)如图,在棱长为1的正方体ABCD A B C D ''''-中,AP =BQ =b (0<b <1),截面PQEF ∥A ′D ,截面PQGH ∥AD ′.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直;(Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值; (Ⅲ)若12b =,求D ′E 与平面PQEF 所成角的正弦值.(20)(本小题满分12分)已知数列{a n },{b n }是各项均为正数的等比数列,设(N*)nn nb c n a =∈. (Ⅰ)数列{c n }是否为等比数列?证明你的结论;(Ⅱ)设数列{}{}ln ,ln n n a b 的前n 项和分别为,n n S T .若12,,21n n S n a T n ==+求数列{c n }的前n 项和.(21)(本小题满分12分)在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4.设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线y =kx +1与C 交于A 、B 两点.k 为何值时?OB OA ⊥此时|AB |的值是多少?(22)(本小题满分14分)设函数()322()31f x ax bx a x a b R =+-+∈、在12,x x x x ==处取得极值,且122x x -=. (Ⅰ)若a =1,求b 的值,并求f (x )的单调区间; (Ⅱ)若a >0,求b 的取值范围.答案1. 答案:D解析:本小题主要考查集合的相关运算知识。
依题意{}31,M x x =-<<{}3N x x =-…,∴{|1}M N x x ⋃=<.2. 答案:C解析:本小题主要考查函数的奇偶性。
(1)2(1),f a =-(1)0(1),f f -== 1.a ∴= 3. 答案:B解析:本小题主要考查直线和圆的位置关系。
依题圆221x y +=与直线2y kx =+没有公共点2211d k⇔=>⇔+(33).k ∈-,4. 答案:C解析:本小题主要考查对数的运算。
log 6,a x =log 5,a y =log 7,a z =由01a <<知其为减函数, y x z ∴>> 5. 答案:A解析:本小题主要考查平面向量的基本知识。
(4,3),BC =(,2),AD x y =-且2BC AD =,22472432x x y y =⎧=⎧⎪∴⇒⎨⎨-==⎩⎪⎩6. 答案:A解析:本小题主要考查利用导数的几何意义求切线斜率问题。
依题设切点P 的横坐标为0x , 且0'22tan y x α=+=(α为点P 处切线的倾斜角),又∵[0,]4πα∈,∴00221x ≤+≤,∴01[1,].2x ∈--7. 答案:C解析:本小题主要考查等可能事件概率求解问题。
依题要使取出的2张卡片上的数字之和为奇数,则取出的2张卡片上的数字必须一奇一偶,∴取出的2张卡片上的数字之和为奇数的概率11222342.63C C P C ⋅=== 8. 答案:A解析:本小题主要考查函数图像的平移与向量的关系问题。
依题由函数21xy =+的图象得到函数12x y +=的图象,需将函数21xy =+的图象向左平移1个单位,向下平移1个单位;故(11).=--,a解析:本小题主要考查线性规划问题。
作图(略)易知可行域为一个三角形,其三个顶点为 (01),,(10),,(12),--,验证知在点(10),时取得最大值2.10. 答案:B解析:本小题主要考查排列组合知识。
依题若第一道工序由甲来完成,则第四道工序必由丙来完成,故完成方案共有2412A =种;若第一道工序由乙来完成,则第四道工序必由甲、丙二人之一来完成,故完成方案共有12A ⋅2424A =种;∴则不同的安排方案共有 21242436A A A +⋅=种。
11. 答案:D解析:本小题主要考查双曲线的知识。
2221191(0),,3y m x m a b m-=>⇒==取 顶点1(0,)3,一条渐近线为30,mx y -=221|3|13925 4.59m m m -⨯=⇒+=∴=+ 12. 答案:D解析:本小题主要考查立体几何中空间直线相交问题,考查学生的空间想象能力。
在EF 上任意取一点M,直线11A D 与M 确定一个平面,这个平面与CD 有且仅有1个交点N, 当 M 取不同的位置就确定不同的平面,从而与CD 有不同的 交点N,而直线MN 与这3条异面直线都有交点的.如右图: 二、填空题 13. 答案:1(ln 1)(0)2y x x =-> 解析:本小题主要考查反函数问题。
21121ln (ln 1),2x y e x y x y +=⇒+=⇒=- 所以反函数是1(ln 1)(0).2y x x =-> 14. 答案:32解析:本小题主要考查立体几何球面距离及点到面的距离。
设球的半径为R ,则34433V R π==π,∴ 3.R =设A 、C 两点对球心张角为θ,则333AC R θθ===π,∴3πθ=,∴3AC =,∴AC 为ABC 所在平面的小圆的直径,∴90ABC ∠=,设ABC 所在平面的小圆圆心为'O ,则球心到平面ABC 的距离为'd OO =2'22333().22R BO =-=-=解析:本小题主要考查二项式定理中求特定项问题。
考查621x x ⎛⎫+ ⎪⎝⎭的通项公式,66316621(),r rr r rr T C xC x x--+==所以展开式中的常数项共有两种来源: ①630,2,r r -=⇒=2615;C =②633,3,r r -=-⇒=3620;C =相加得15+20=35. 16. 答案:3解析:本小题主要考查三角函数的最值问题。