2019成人高考专升本《高等数学》必背资料(7)
- 格式:docx
- 大小:36.99 KB
- 文档页数:3
专升本高数知识点汇总高等数学在专升本考试中占据着重要的地位,对于许多考生来说,掌握好高数的知识点是成功升本的关键之一。
以下是为大家汇总的专升本高数知识点,希望能对大家的学习有所帮助。
一、函数与极限1、函数的概念函数是一种从一个集合(定义域)到另一个集合(值域)的对应关系。
对于定义域内的每一个输入值,都有唯一的输出值与之对应。
2、函数的性质包括奇偶性、单调性、周期性和有界性。
奇函数满足 f(x) = f(x),偶函数满足 f(x) = f(x)。
单调性是指函数在某个区间内是递增或递减的。
周期性函数是指存在一个非零常数 T,使得 f(x + T) = f(x)。
有界性则是指函数的值域在某个范围内。
3、极限的定义极限是指当自变量趋近于某个值时,函数值趋近于的一个确定的值。
4、极限的计算包括利用极限的四则运算法则、两个重要极限(\(\lim_{x \to 0} \frac{\sin x}{x} = 1\),\(\lim_{x \to \infty} (1 +\frac{1}{x})^x = e\))以及等价无穷小代换来计算极限。
5、无穷小与无穷大无穷小是以零为极限的变量,无穷大是绝对值无限增大的变量。
无穷小的性质在极限计算中经常用到。
二、导数与微分1、导数的定义函数在某一点的导数是函数在该点的切线斜率。
2、导数的几何意义导数表示函数在某一点处的变化率,反映了函数图像的斜率。
3、基本导数公式包括常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
4、导数的四则运算法则加法法则、减法法则、乘法法则和除法法则。
5、复合函数求导通过链式法则进行求导。
6、隐函数求导通过方程两边同时对自变量求导来求解。
7、微分的定义函数的微分等于函数的导数乘以自变量的微分。
8、微分的几何意义微分表示函数在某一点处切线的增量。
三、中值定理与导数的应用1、罗尔定理如果函数 f(x) 满足在闭区间 a,b 上连续,在开区间(a,b) 内可导,且 f(a) = f(b),那么在(a,b) 内至少存在一点ξ,使得 f'(ξ) = 0 。
成人高考高升专数学常用知识点及公式第1章集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A与集合B的交集记作A∩B,取A、B两集合的公共元素2、并集:集合A与集合B的并集记作A∪B,取A、B两集合的全部元素,取U中所有不属于A的元素3、补集:已知全集U,集合A的补集记作ACu解析:集合的交集或并集主要以列举法或不等式的形式出现知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。
若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。
题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙②必要条件看乙是否能推出甲A、若甲=乙但乙=甲,则甲是乙的充分必要条件(充要条件)B、若甲=乙但乙≠甲,则甲是乙的充分不必要条件C、若甲≠乙但乙=甲,则甲是乙的必要不充分条件D、若甲≠乙但乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章不等式和不等式组知识点1:不等式的性质1.不等式两边同加或减一个数,不等号方向不变2.不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”) 解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
完整版)专升本高等数学知识点汇总常用的高等数学知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。
2) y=1/x,分式形式的定义域为x≠0.3) y=sqrt(x),x根式的形式定义域为x≥0.4) y=log_a(x),对数形式的定义域为x>0.二、函数的性质1、函数的单调性:当x1<x2时,恒有f(x1)<f(x2),f(x)在x1,x2所在的区间上是增加的。
当x1<x2时,恒有f(x1)>f(x2),f(x)在x1,x2所在的区间上是减少的。
2、函数的奇偶性:定义函数y=f(x)的定义区间D关于坐标原点对称,若x∈D,则有- x∈D:1) 偶函数f(x)——对于任意x∈D,恒有f(-x)=f(x)。
2) 奇函数f(x)——对于任意x∈D,恒有f(-x)=-f(x)。
三、基本初等函数1、常数函数:y=c,定义域为(-∞,+∞),图形是一条平行于x轴的直线。
2、幂函数:y=x^u,(u是常数)。
它的定义域随着u的不同而不同。
图形过原点。
3、指数函数:定义y=f(x)=a^x,(a是常数且a>0,a≠1)。
图形过(0,1)点。
4、对数函数:定义y=f(x)=log_a(x),(a是常数且a>0,a≠1)。
图形过(1,0)点。
5、三角函数:1) 正弦函数:y=sin(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。
2) 余弦函数:y=cos(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。
3) 正切函数:y=tan(x),T=π,D(f)={x|x∈R,x≠(2k+1)π/2,k∈Z},f(D)=(-∞,+∞)。
4) 余切函数:y=cot(x),T=π,D(f)={x|x∈R,x≠kπ,k∈Z},f(D)=(-∞,+∞)。
四、极限一、求极限的方法:1、代入法:将x的值代入函数中求得对应的y值。
改写后的文章:高等数学中常用的知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。
专升本高等数学科目题型及考情分析一、高等数学科目题型分析高等数学作为成人高考专升本经管类(高数二)、理工类(高数一)专业考察科目,二者考试的题型都相同,包括如下表所示:题型题数每题分值总共分值一、选择题共10小题4分40分二、填空题共10小题4分40分三、解答题共8小题8-10分70分二、高等数学科目考情分析(一)、考试比重分析数学科目总分为150分,其中单选题共10小题,每小题4分,共40分.填空题共10小题,每小题4分,共40分。
简答题共8小题,每小题8-10分,共70分。
不管是从年份,还是从省份来看,专升本经管类、理工科的录取分数线一般都是维持在100-130分左右,所以我们参考的学生只要三科总分达到150分以上,平均到每门科目上只需要50分,考过是没有问题的。
高等数学这门科目,对于很多参考的学员来说是一座大山,很多学员数学基础都相对比较差,考试基本考蒙,甚至是不写,直接填完选择题就交卷,战略上完全放弃了这门科目,其实这种方法是不可取的,高等数学这门科目实际在学习的过程中你会发现,完全是可以拿到高分的,最怕的是还没开始就打退堂的学员,因为成人高考作为一种基本的水平性的测试,试卷考察的内容都比较浅显和简单。
只要用心、静心、耐心去学,不愁拿不到高分。
通过高等数学的直播课会教大家,常考的题型和对应的解题思路,直播课下来,你会发现有不一样的收获。
(二)、考点分析由于高数一和高数二在大体知识点上差异不大,所以我们会放在一起去讲,只有个别细微的知识点我们会单独标出,比如概率分布就是高数二的学员要考察,而高数一的学员不需要考察,大家只要对考点熟悉,常用的定理、公式记住,那么做题就很轻松,因为每年基本的题目分值就占到了110-120分,所以基础的题目把握了,考试就很轻松了。
那么我们一起来看下考试的知识点。
137138三、高等数学各部分考情分析(一)单项选择题本部分共计10小题,每小题4分,共40分,下面我们一起梳理单项选择题的考试知识点和真题解析。
专升本高数必修知识点总结一、极限和导数1.1 极限极限是微积分中的一个重要概念,它描述了函数在某一点或在无穷远处的值,是微积分的基础和核心概念。
极限的概念是指:当自变量趋于某个确定的数时,函数的值逐渐地接近于一个确定的常数。
常见的极限有以下几种类型:常数极限、无穷大极限、无穷小极限、复合函数的极限。
常数极限:当x趋于a时,常数函数f(x)=c常数c称为极限。
无穷大极限:当x趋于无穷大时,函数f(x)趋于无穷大。
无穷小极限:当x趋于a时,函数f(x)趋于0。
复合函数的极限:由复合函数的连续性推论而来。
1.2 导数导数是微积分中的另一个重要概念,它描述了函数在某一点的变化率,是描述函数变化的一种重要工具。
导数的概念是指:在数学上,对于给定的函数f(x),如果它在某一点x处有导数f'(x),那么函数f(x)在这一点x处一定是可导的,而且这一点导数f'(x)就是函数f(x)在这一点的切线的斜率。
导数的性质包括了常数函数的导数、求和函数的导数、乘积函数的导数、商函数的导数、复合函数的导数和反函数的导数等。
那么如何求导数呢?求导数的方法主要有以下几种:利用极限定义、利用基本导数公式、利用导数的四则运算法则、利用导数的公式、利用导数的运算法则、利用导函数或利用微分等。
1.3 高数应用极限和导数的概念在高数中有着广泛的应用,比如在求解极限问题时,常使用洛必达法则、夹逼定理等方法;在求导数中,常使用链式法则、隐函数求导、参数方程求导等方法。
极限和导数也广泛应用于自然科学、工程技术、经济管理和社会科学等领域,是高数中一个非常重要的知识点。
二、积分2.1 定积分定积分是微积分中的一个重要概念,它描述了函数在某一区间上的总体量,是微积分的另一个核心概念。
定积分的概念是指:它是由无限小矩形面积的极限求和而得到的,用来描述曲线与x轴之间的面积,表示了曲线在某一区间上的总体量。
定积分的性质包括了常数函数的定积分、基本初等函数的定积分、积分中值定理、负积分、定积分的加法性、定积分的乘法性等。
专升本成人高考数学知识点数学作为一门基础学科,在我们的日常生活中随处可见。
对于成人高考的学子而言,数学是一门必须要掌握的科目。
下面,我将针对进行详细讨论。
一、高等数学高等数学是一门较为抽象的学科,涉及到微积分、概率论、数学分析等课程内容。
在成人高考中,高等数学占据着一定的比重。
以下是高等数学的主要知识点:1. 导数和微分导数和微分是高等数学中的重要概念。
导数表示函数在某一点的变化率,微分则是导数的几何意义。
在研究函数的变化趋势、最值等问题时,导数和微分起着至关重要的作用。
2. 积分与不定积分积分与不定积分是导数的逆运算,用于计算函数的面积、曲线长度以及解决差分方程的问题。
在实际应用中,积分经常被用于求解面积、体积、质量、重心等问题。
3. 一元函数的极限与连续极限是高等数学中最为核心的概念之一,他是数列、函数的重要工具。
通过研究极限,我们可以了解数列和函数的发展趋势及特性。
4. 多元函数及其极限多元函数是指含多个自变量的函数。
多元函数与一元函数相比,其变化更加复杂,需要通过极限的方法进行研究。
多元函数的极限主要关注函数自变量的取值趋近某一值时,函数值的变化情况。
二、线性代数线性代数是一门运用向量和矩阵的代数学科,被广泛应用于自然科学和社会科学领域。
线性代数在成人高考中也占有一定的比重。
以下是线性代数的主要知识点:1. 线性空间及其基底线性空间是线性代数中最核心的概念之一,指由若干个向量线性组合所得的集合。
基底则是线性空间中最基础的向量组,通过线性组合可以表示该线性空间中的任意向量。
2. 矩阵及其运算矩阵是线性代数中的重要工具,具有方便计算和分析的特点。
矩阵的加法、减法、数乘等运算规则是矩阵运算的基础。
3. 行列式行列式是矩阵运算中的重要概念,用于计算矩阵的性质和运算结果。
通过行列式的计算,可以判断矩阵是否可逆、求解线性方程组等问题。
4. 特征值和特征向量特征值和特征向量是矩阵运算中的重要内容。
特征值表示矩阵对特定向量的伸缩因子,特征向量则是该伸缩因子对应的向量。
成人高考数学必背知识点1.一元一次方程和一元一次不等式:-一元一次方程的解法:平移法、消元法、代入法、图解法等;-一元一次不等式的解法:整式不等式的解集、绝对值不等式的解集、有理不等式的解集等;2.二元一次方程和二元一次不等式:-二元一次方程的解法:代入法、消元法等;-二元一次不等式的解法:图解法、代入法等;3.函数与方程:-一次函数:定义、图像、性质等;-二次函数:定义、图像、性质、解析式等;-指数函数:定义、图像、性质、等比数列等;-对数函数:定义、图像、性质、换底公式等;-三角函数:定义、图像、性质、和差化积等;-幂函数、双曲函数、反三角函数等;4.平面向量:-向量的定义、坐标表示、向量的加减等;-向量的数量积和向量积的定义和运算规则;-向量的模长、方向角、垂直、共线、重合等;5.数列与数学归纳法:-等差数列和等比数列的概念和性质;-通项公式、前n项和、公差、首项等;-数列极限的定义、性质和求解方法;-数学归纳法的原理和应用;6.概率与统计:-随机事件、样本空间、概率的定义和性质;-条件概率、相互独立事件、贝叶斯定理等;-离散型随机变量和连续型随机变量的概念;-随机变量的数学期望、方差、标准差等;-统计图表的绘制和分析、频数和频率等;7.三角函数和立体几何:-三角函数的基本关系、诱导公式、和差化积等;-三角函数图像、周期、对称性、奇偶性等;-向量数量积和向量积在几何中的应用;-立体几何的基本概念和定理,如欧几里德空间中的点、直线、平面、多面体等;以上是成人高考数学的一些必备知识点,重点掌握这些知识可以在考试中取得好的成绩。
当然,这只是一个概述,具体的知识点还要结合教材和教师的要求来进行进一步学习和备考。
成人高考专升本《高等数学》重点知识
(1)了解多元函数的概念、二元函数的几何意义。
会求二次函数的表达式及定义域。
了解二元函数的极限与连续概念(对计算不作要求)。
(2)理解偏导数概念,了解偏导数的几何意义,了解全微分概念,了解全微分存在的必要条件与充分条件。
(3)掌握二元函数的一、二阶偏导数计算方法。
(4)掌握复合函数一阶偏导数的求法。
(5)会求二元函数的全微分。
(6)掌握由方程所确定的隐函数的一阶偏导数的计算方法。
(7)会求二元函数的无条件极值。
会用拉格朗日乘数法求二元函数的条件极值。
二重积分的定义二重积分的几何意义
(2)二重积分的性质
(3)二重积分的计算
(4)二重积分的应用
(1)理解二重积分的概念及其性质。
(2)掌握二重积分在直角坐标系及极坐标系下的计算方法。
(3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板质量)。
(1)数项级数
数项级数的概念、级数的收敛与发散、级数的根本性质级数收敛的必要条件
(2)正项级数收敛性的判别法
比拟判别法、比值判别法
(3)任意项级数
交织级数、绝对收敛、条件收敛、莱布尼茨判别法
(1)理解级数收敛、发散的概念。
掌握级数收敛的必要条件,了解级数的根本性质。
(2)掌握正项级数的比值判别法。
会用正项级数的比拟判别法。
(3)掌握几何级数、调和级数与级数的收敛性。
(4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。
成考专升本高数公式大全在成考专升本的高等数学学习中,公式是解决问题的关键工具。
掌握这些公式,不仅能提高解题的效率,还能加深对数学概念的理解。
下面为大家整理了一份较为全面的成考专升本高数公式,希望能对大家的学习有所帮助。
一、函数、极限与连续1、函数的概念设 x 和 y 是两个变量,D 是给定的数集,如果对于每个 x ∈ D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,则称 y 是 x 的函数,记作 y = f(x),x ∈ D。
2、基本初等函数(1)常数函数:y = C(C 为常数)(2)幂函数:y =x^α(α 为常数)(3)指数函数:y = a^x(a > 0 且a ≠ 1)(4)对数函数:y =logₐx(a > 0 且a ≠ 1)(5)三角函数:正弦函数 y = sin x,余弦函数 y = cos x,正切函数 y = tan x 等(6)反三角函数:反正弦函数 y = arcsin x,反余弦函数 y =arccos x 等3、极限的定义(1)数列极限:对于数列{xn},如果当 n 无限增大时,数列的通项 xn 无限趋近于一个常数 A,则称 A 为数列{xn} 的极限,记作lim(n→∞) xn = A。
(2)函数极限:当自变量 x 无限趋近于某个值 x₀(或趋于无穷大)时,函数 f(x) 的值无限趋近于一个常数 A,则称 A 为函数 f(x) 当 x 趋近于 x₀(或趋于无穷大)时的极限,记作lim(x→x₀) f(x) = A 或lim(x→∞) f(x) = A。
4、极限的运算(1)lim(x→x₀) f(x) ± g(x) =lim(x→x₀) f(x) ± lim(x→x₀) g(x)(2)lim(x→x₀) f(x) · g(x) =lim(x→x₀) f(x) · lim(x→x₀) g(x)(3)lim(x→x₀) f(x) / g(x) =lim(x→x₀) f(x) /lim(x→x₀) g(x) (lim(x→x₀) g(x) ≠ 0)5、两个重要极限(1)lim(x→0) (sin x / x) = 1(2)lim(x→∞)(1 + 1 / x)^x = e6、函数的连续性(1)连续的定义:如果函数 f(x) 在点 x₀处的极限等于函数在该点的函数值,即 lim(x→x₀) f(x) = f(x₀),则称函数 f(x) 在点 x₀处连续。
2019成人高考专升本《高等数学》必背资料(7)幂级数
1、知识范围
(1)幂级数的概念
收敛半径、收敛区间
(2)幂级数的基本性质
(3)将简单的初等函数展开为幂级数
2、要求
(1)了解幂级数的概念。
(2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。
(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。
(4)会使用麦克劳林(Maclaurin)公式,将一些简单的初等函数展开为幂级数。
常微分方程
(一)一阶微分方程
1、知识范围
(1)微分方程的概念
微分方程的定义、阶、解、通解、初始条件特解
(2)可分离变量的方程
(3)一阶线性方程
2、要求
(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。
(2)掌握可分离变量方程的解法。
(3)掌握一阶线性方程的解法。
(二)可降价方程
1、知识范围
(1)型方程
(2)型方程
2、要求
(1)会用降阶法解型方程。
(2)会用降阶法解型方程。
(三)二阶线性微分方程
1、知识范围
(1)二阶线性微分方程解的结构。
(2)二阶常系数齐次线性微分方程。
(3)二阶常系数非齐次线性微分方程。
2、要求
(1)了解二阶线性微分方程解的结构。
(2)掌握二阶常系数齐次线性微分方程的解法。
(3)掌握二阶常系数非齐次线性微分方程的解法。