最新版初三中考数学模拟试卷易错题及答案4720143
- 格式:doc
- 大小:775.00 KB
- 文档页数:16
2024年重庆一中中考数学三模试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的绝对值是()A.8B.C.D.2.下列图形是中心对称图形的是()A. B.C. D.3.如图,已知直线,,,则的度数为()A.B.C.D.4.若反比例函数的图象经过第一、三象限,则k的取值范围是()A. B. C. D.5.如图,与是以点O为位似中心的位似图形,若,的面积为1,则的面积为()A.1B.2C.4D.86.的值在()A.和0之间B.0和1之间C.1和2之在D.2和3之间7.如图,用同样大小的棋子按以下规律摆放,第1个图有6颗棋子,第2个图有9颗棋子…那么,第9个图中的棋子数是()A.27B.30C.35D.388.如图,AB、AC是的切线,B、C为切点,D是上一点,连接BD、CD,若,,则的半径长为()A.B.C.3D.9.如图,在正方形ABCD中,点E在对角线BD上,过点D作且,连接EF,点G是EF的中点,连接AG、若,则一定等于()A.B.C.D.10.将所有字母均不为中的任意两个字母对调位置,称为“对调操作”.例如:“x、y对调操作”的结果为,且“x、y对调操作”和“y、x对调操作”是同一种“对调操作”.下列说法:①只有“x、n对调操作”的结果与原式相等;②若“x、y对调操作”与“n、y对调操作”的结果相等,则或;③若,则所有的“对调操作”共有5种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:本题共8小题,每小题4分,共32分。
11.计算:______.12.如图,正六边形ABCDEF中,连接CF,那么的度数为______.13.一个口袋中有2个红球,1个黄球,1个白球,这些球除颜色外都相同,从中随机摸出一个球.记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率为______.14.电视剧《与凤行》播出第一天网上播放量达到亿次,以后每天的播放量按照相同的增长率增长,第三天播放量当日达到亿次,设平均每天的增长率是x,根据题意,可列方程为______.15.如图,在菱形ABCD中,连接AC,以点A为圆心,AB为半径的圆交AC于点E,以点C为圆心,CD为半径的圆交AC于点F,如果,,那么图中阴影部分的面积为______结果保留16.如图,将线段AB绕点A顺时针旋转一定的角度到AC,点D为线段AB上一点,连接CD并延长到点E,连接AE、BE,过点A作交BE的延长线于点F,如果,,,那么的面积是______.17.若关于x的一元一次不等式组有且只有两个偶数解,且关于y的分式方程有整数解,则所有满足条件的整数a的值之和是______.18.如果一个四位数的各数位上的数字互不相等且均不为0,满足,那么称这个四位数S为“胜利数”.将“胜利数”S的千位数字与十位数字对调后,再将这个四位数的百位去掉,这样得到的三位数记为,记,例如:四位数1729,,不是“胜利数”,又如:四位数5432,,是“胜利数”,若能被7整除,令,则所有满足条件的t之和是______;若对于“胜利数”S,在能被7整除的情况下,记,则当取得最大值时,“胜利数”S是______.三、解答题:本题共8小题,共78分。
2024年广东省初中数学中考模拟卷(解析卷)(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.单项式-35ab³d²的系数是()A.-3 B.-5C.- 35D.35【答案】C2.已知点A(2,b)与点B(a,4)关于原点对称,则a﹣b=( )A.﹣2 B.2 C.-4 D.6【答案】B3.下列运算正确的是()A.2﹣=√3B.(a2)3=a5C.2a2•a=a3D.(a+1)2=a2+a+1【答案】A4.若点A(-1,a),B(1,b),C(2,c)在反比例函数y=-2xx的图象上,则a,b,c的大小关系是( ) A. a<b<c B. b<a<c C. b<c<a D. a<c<b【答案】C5.若关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9 B.94C.D.-94【答案】B6.如图所示,水平放置的几何体的俯视图是()A. B. C. D.【答案】C7.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是()A.60 B.60πC.120 D.120π【答案】B8.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是()A.29B.C.79D.59【答案】A9.如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=3,则S△ABC=.A.12 B.6 C.9 D.10【答案】A10.如图,在菱形ABCD中,AB =4,BD=7.若M、N分别是边ADBC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为()A.3 B.√10 C.9√15D.√152【答案】D【详解】二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2xy2﹣2x=.【答案】2x(y+1)(y-1)12.如图,OA ,OB 是⊙O 的两条半径,点C 在⊙O 上,若∠C =30°,则的∠AOB 度数为 .【答案】60°13.2023年第四季度,某中小企业实现营业收入1.48百万元,将“1.48百万”用科学计数法表示为 .【答案】1.48×10714.如图,直线//,130,240a b °°∠=∠=,且AD AC =,则3∠的度数是 .【答案】40°15.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB ∥x 轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2024次旋转结束时,点A 的坐标为 .【答案】(1,)三、解答题(本大题共9小题,满分75分.)16.(4分)计算:-|√3-5|+2sin60°-(π-6)0-4【答案】2√317.(5分)解不等式组�2(3xx −1)≤−2xx +7 ①3xx+52≥53+2xx ② 【答案】x ≤98【分析】先分别求出每个不等式得解集,然后根据夹逼原则求出不等式组的解集即可.【详解】解∶�2(3xx−1)≤−2xx+7①3xx+52≥53+2xx②解不等式①,得x≤98,解不等式②,得x≤53,∴不等式组的解集为x≤9818. (8分)先化简,再求值:(1+)÷,其中a=+1.解:原式=÷=•=,当a=+1时,原式==.19.(8分)2021年3月29日,卫建委发布了《新冠疫苗接种指南》,某中学为了解九年级学生对新冠疫苗知识的了解情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解:B类--比较了解;C类--一般了解;D类--不了解,现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;补全条形统计图;(2)D类所对应扇形的圆心角的大小为 ;若该校九年级学生共有1000名,根据以上抽样结果估计该校九年级学生对新冠疫苗知识非常了解的约有名.(3)已知调查的该班第一组学生中有2名男生1名女生,老师随机从该组中选取2名学生进一步了解其家庭成员接种情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率。
2024年河南省模拟卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在﹣3,2,﹣2,0四个数中,最小的数是( )A .﹣3B .2C .﹣2D .02.(3分)“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的mate 60系列低调开售.据统计,截至2023年10月21日,华为mate 60系列手机共售出约160万台,将数据1600000用科学记数法表示应为( )A .0.16×107B .1.6×106C .1.6×107D .16×1063.(3分)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A .B .C .D .4.(3分)计算mm 2―1―11―m 2的结果为( )A .m ﹣1B .m +1C .1m +1D .1m ―15.(3分)如图,直线AB 、CD 相交于点O ,若∠1=30°,则∠2的度数是( )A .30°B .40°C .60°D .150°6.(3分)已知不等式组{3x -2<1―2x ≤4,其解集在数轴上表示正确的是( )A .B .C .D .7.(3分)一元二次方程(a ﹣2)x 2+ax +1=0(a ≠2)的实数根的情况是( )A .有两个不同实数根B .有两个相同实数根C .没有实数根D .不能确定8.(3分)如图所示的四个点分别描述甲、乙、丙、丁四个电阻在不同电路中通过该电阻的电流I 与该电阻阻值R 的情况,其中描述甲、丙两个电阻的情况的点恰好在同一个反比例函数的图象上,则这四个电阻两端的电压最小的是( )A .甲B .乙C .丙D .丁9.(3分)在同一平面直角坐标系中,二次函数y =ax 2与一次函数y =bx +c 的图象如图所示,则二次函数y =ax 2+bx ﹣c 的图象可能是( )A .B .C .D .10.(3分)如图,已知矩形纸片ABCD ,其中AB =3,BC =4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②;第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A .32B .85C .53D .95二.填空题(共5小题,满分15分,每小题3分)11.(3分)若a ,b 都是实数,b =1―2a +2a -1―2,则a b 的值为 .12.(3分)为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是 分.13.(3分)已知方程组{2x +y =3x ―2y =5,则2x +6y 的值是 .14.(3分)如图所示的是90° 的扇形纸片OAB ,半径为2.将这张扇形纸片沿CD 折叠,使点B 与点O 恰好重合,折痕为CD ,则阴影部分的面积为 .15.(3分)如图,在△ABC 中,∠BAC =120°,AB =AC =3,点D 为边AB 的中点,点E 是边BC 上的一个动点,连接DE ,将△BDE 沿DE 翻折得到△B ′DE ,线段B ′D 交边BC 于点F .当△DEF 为直角三角形时,BE 的长为 .三.解答题(共8小题,满分75分)16.(10分)(1)计算:38+|-32|+2﹣1﹣(﹣1)2022.(2)化简:(2a +1)(2a ﹣1)﹣a (4a ﹣2).17.(9分)为响应“带动三亿人参与冰雪运动”的号召,某校七、八年级举行了“冰雪运动知识竞赛”.为了解学生对冰雪运动知识的掌握情况,学校从两个年级分别随机抽取了20名学生的竞赛成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息:a .七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.b .八年级20名学生的测试成绩条形统计图如图所示:c .七、八年级抽取的学生的测试成绩的平均数、众数、中位数如下表所示:年级平均数众数中位数七年级7.5n 7八年级m8p请你根据以上提供的信息,解答下列问题:(1)上表中m = ,n = ,p = ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生对冰雪运动知识掌握较好?请说明理由(写出一条理由即可);(3)该校八年级共400名学生参加了此次测试活动,估计八年级参加此次测试活动成绩合格的学生人数.18.(9分)如图,在平面直角坐标系中,平行四边形OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,点B (12,4).若反比例函数y =kx (k ≠0,x >0)的图象经过A ,M 两点,求:(1)点M 的坐标及反比例函数的解析式;(2)△AOM的面积;(3)平行四边形OABC的周长.19.(9分)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,无人机的高度为(30+153)米.(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+3,tan15°=2-3.计算结果保留根号)(1)求此时小区楼房BC的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向右匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?20.(9分)一名生物学家在研究两种不同的物种A和B在同一生态环境中的资源消耗时发现:50个物种A和100个物种B共消耗了200单位资源;100个物种A和50个物种B共消耗了250单位资源.(1)求1个物种A和1个物种B各消耗多少单位资源;(2)已知物种A,B共有200个且A的数量不少于100个.设物种A有a个,物种A,B共消耗的单位资源W.①求W与a的函数关系式;②当物种A的数量为何值时,物种A、B共消耗的单位资源最少,最小值是多少?21.(9分)如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,动点M从点A出发,以2cm/s 的速度沿AB向点B运动,同时动点N从点C出发,以3cm/s的速度沿CA向点A运动,当一点停止运动时,另一点也随即停止运动.以AM为直径作⊙O,连接MN,设运动时间为t(s)(t>0).(1)试用含t的代数式表示出AM及AN的长度,并直接写出t的取值范围;(2)当t为何值时,MN与⊙O相切?(3)若线段MN 与⊙O 有两个交点.求t 的取值范围.22.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴分别交于A ,B 两点,点A 的坐标是(﹣4,0),点B 的坐标是(1,0),与y 轴交于点C ,P 是抛物线上一动点,且位于第二象限,过点P 作PD ⊥x 轴,垂足为D ,线段PD 与直线AC 相交于点E .(1)求该抛物线的解析式;(2)连接OP ,是否存在点P ,使得∠OPD =2∠CAO ?若存在,求出点P 的横坐标;若不存在,请说明理由.23.(10分)(1)特殊发现如图1,正方形BEFG 与正方形ABCD 的顶点B 重合,BE 、BG 分别在BC 、BA 边上,连接DF ,则有:①DF AG= ; ②直线DF 与直线AG 所夹的锐角等于 度;(2)理解运用将图1中的正方形BEFG 绕点B 逆时针旋转,连接DF 、AG ,①如图2,(1)中的结论是否仍然成立?请说明理由;②如图3,若D 、F 、G 三点在同一直线上,且过AB 边的中点O ,BE =4,直接写出AB 的长 ;(3)拓展延伸如图4,点P 是正方形ABCD 的AB 边上一动点(不与A 、B 重合),连接PC ,沿PC 将△PBC 翻折到△PEC 位置,连接DE 并延长,与CP 的延长线交于点F ,连接AF ,若AB =4PB ,则DE EF的值是否是定值?请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.A.2.B.3.A.4.D.5.A.6.B.7.A.8.B.9.C.10.D.二.填空题(共5小题,满分15分,每小题3分)11.4.12.93.13.﹣4.143―π3.15.32或334.三.解答题(共8小题,满分75分)16.解:(138+|-32|+2﹣1﹣(﹣1)2022.=2+32+12―1=3.(2)(2a+1)(2a﹣1)﹣a(4a﹣2)=4a2﹣1﹣4a2+2a=2a﹣1.17.解:(1)m=5×2+6×4+7×4+8×5+9×2+10×320=7.5(分),七年级20名学生成绩中出现次数最多的是7分,共出现6次,因此众数是7分,即n=7,将八年级20名学生成绩从小到大排列,处在中间位置的两个数的平均数为7+82=7.5(分),因此中位数是7.5分,即p=7.5,故答案为:7.5,7,7.5;(2)八年级的成绩较好,理由:八年级学生成绩的中位数是7.5分,众数是8分,都比七年级高;(3)400×20―220=360(名),答:该校八年级共400名学生中成绩合格的大约有360名.18.解:(1)∵四边形OABC是平行四边形,对角线AC,OB交于点M,点B(12,4),∴点M(6,2).将点M(6,2)代入y=kx(x>0)中,得k=6×2=12.∴反比例函数解析式为y=12x.(2)如图,过点A作AD⊥x轴于点D,∵四边形OABC是平行四边形,点B(12,4),∴点A的纵坐标为4,即AD=4.将y=4代入y=12x中,得x=3,即点A(3,4).∴AB=OC=12﹣3=9.∴S△OAC=12OC⋅AD=12×9×4=18.∵四边形OABC是平行四边形,∴AM=CM,∴S△AOM=12S△OAC=9.(3)∵点A(3,4),AD⊥OC,∴OD=3,AD=4.在Rt△ODA中,OA=OD2+AD2=32+42=5.∵四边形OABC是平行四边形,OC=9,∴平行四边形OABC的周长为(9+5)×2=28.19.解:(1)过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:则四边形BCFE是矩形,由题意得:AB=45米,∠DAE=75°,∠DCF=∠FDC=45°,∵∠DCF=∠FDC=45°,∴CF=DF,∵四边形BCFE是矩形,∴BE=CF=DF,在Rt△ADE中,∠AED=90°,∴tan∠DAE=DEAE=BE45―BE=2+3,∴BE=30,经检验,BE=30是原方程的解,∴EF=DH﹣DF=30+153―30=153(米),答:此时小区楼房BC的高度为153米.(2)∵DE=15(2+3)米,∴AE=DE2+3=15(2+3)2+3=15(米),过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H,在Rt△ABC中,∠ABC=90°,AB=45米,BC=153米,∴tan∠BAC=BCAB=15345=33,在Rt△AGH中,GH=DE=15(2+3)米,AH=GHtan∠GAH=15(2+3)33=(303+45)米,∴DG=EH=AH﹣AE=(303+45)﹣15=(303+30)米,(303+30)÷5=(63+6)(秒),答:经过(63+6)秒时,无人机刚好离开了操控者的视线.20.解:(1)设1个物种A消耗x单位资源,1个物种B各消耗y单位资源,根据题意得{50x+100y=200100x+50y=250,解得{x=2y=1,答:1个物种A消耗2单位资源,1个物种B各消耗1单位资源;(2)①根据题意得W=2a+(200﹣a)=a+200(100≤a<200),答:W与a的函数关系式为W=a+200(100≤a<200);②∵W=a+200,∴W随a的增大而增大,∵100≤a<200,∴当a=100时,物种A、B共消耗的单位资源最少,最小值是300.21.解:(1)由题意得,AM=2t cm,CN=3t cm,在Rt△ABC中,AC=AB2+BC2=62+82=10cm,∴AN=AC﹣CN=(10﹣3t)cm,∵AB=6cm,动点M的速度为2cm/s,∴动点M的最长运动时间为62=3s,∵AC=10cm,动点N的速度为3cm/s,∴动点N的最长运动时间为103 s,∴t的取值范围为0<t≤3;(2)若MN与⊙O相切,则AB⊥MN,即∠AMN=90°,∵∠ABC=90°,∴∠AMN=∠ABC,∴△AMN∽△ABC,∴MAAB=ANAC,即2t6=10―3t10,解得t=30 19,∴当t=3019时,MN与⊙O相切;(3)由(2)得,当t>3019时,直线MN与⊙O有两个交点,如图,当点N恰好在⊙O上时,线段MN与⊙O的两个交点恰好为M,N,∵AM为⊙O的直径,∴∠ANM=90°=∠B,∵∠MAN=∠CAB,∴△AMN∽△ACB,∴AMAC=ANAB,即2t10=10―3t6,解得t=50 21,∴若线段MN与⊙O有两个交点,则t的取值范围为3019<t≤5021.22.解:(1)设抛物线的表达式为:y=a(x+4)(x﹣1)=a(x2+3x﹣4),则﹣4a=2,解得:a =-12,∴抛物线的解析式为y =-12x 2-32x +2;(2)设存在点P ,使得∠OPD =2∠CAO ,理由如下:延长DP 到H ,设PH =OP ,连接OH ,如图:∵PH =OP ,∴∠H =∠POH ,∴∠OPD =∠H +∠POH =2∠H ,∵∠OPD =2∠CAO ,∴∠H =∠CAO ,∴tan H =tan ∠CAO ,∴OD DH=CO OA=24=12,∴DH =2OD ,设P (t ,-12t 2-32t +2),则OD =﹣t ,PD =-12t 2-32t +2,∴DH =2OD =﹣2t ,∴PH =DH ﹣PD =﹣2t ﹣(-12t 2-32t +2)=12t 2-12t ﹣2,∵PH =OP ,∴12t 2-12t ﹣2=t 2+(12t 2+32t ―2)2,解得t =0(舍去)或―3―734或―3+734(舍去),∴点P 的横坐标为―3―734.23.解:(1)①连接BF ,BD ,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABF=∠ABD=45°,∴B,F,D三点在一条直线上.∵GF⊥AB,DA⊥AB,∴△BGF和△BAD为等腰直角三角形,∴BF=2BG,BD=2AB,∴DF=BD﹣BF=2(AB﹣BG)=2AG,∴DFAG=2;②∵B,F,D三点在一条直线上,∠ABF=∠ABD=45°,∴直线DF与直线AG所夹的锐角等于45°.故答案为:2;45;(2)①(1)中的结论仍然成立,理由:连接BF,BD,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABD=∠GBF=45°,∠BGF=∠BAD=90°,∴△BGF和△BAD为等腰直角三角形,∴∠ABG+∠ABF=∠ABF+∠FBD=45°,BF=2BG,BD=2AB,∴∠ABG=∠DBF,BFBG =BDAB=2,∴△ABG∽△DBF,∴DFAG=BDAB=2;延长DF,交AB于点N,交AG于点M,∵△ABG∽△DBF,∴∠GAB=∠BDF.∵∠ANM=∠DNB,∴∠BAG+∠AMN=∠BDF+∠ADB.∴∠AMN=∠ABD=45°,即直线DF与直线AG所夹的锐角等于45°,∴(1)中的结论仍然成立;②连接BF,BD,如图,∵四边形GBEF为正方形,∴∠BFG=45°.由①知:∠AGD=45°,∴∠AGD=∠BFG.∵AB边的中点为O,∴AO=BO.在△AGO和△BFO中,{∠AOG=∠BOF∠AGO=∠BFO=45°AO=BO,∴△AGO≌△BFO(AAS),∴GO=FO=12GF=2,∴OB=BG2+OG2=42+22=25,∴AB=2OB=45.故答案为:45;(3)DEEF的值是定值,定值为3,理由:过点C作CQ⊥DF于点Q,连接BD,BE,BF,BE与CF交于点H,如图,∵四边形ABCD为正方形,∴BC=CD,由折叠的性质可得:BC=CE,EF=BF,PB=PE,∠BCF=∠ECF.∴CE=CD,∵CQ⊥DF,∴∠ECQ=∠DCQ.∵∠BCD=90°,∴∠ECF+∠ECQ=12∠BCD=45°.∴∠QFC=90°﹣∠QCF=45°,∴∠BFC=45°,∴∠EFB=∠EFC+∠BFC=90°.∴△BEF为等腰直角三角形,∴FH⊥BE,BH=HE=12BE,BE=2EF,∴∠PHB=90°.在FC截取FM=BE,可知四边形EFBM为正方形,由(2)②的结论可得:DE=2AF,∠AFD=45°,∴∠AFB=∠AFD+∠EFC=90°,∴∠AFP=∠PHB.∵∠APF=∠BPH,∴△APF∽△BPH,∴APPB=AFBH,∵PA=3PB,∴AF=3BH=32BE322EF,∴DE=2AF=2×322EF=3EF.∴DEEF=3,∴DEEF的值是定值,定值为3.。
2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。
2024年重庆中考数学预测模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)实数的相反数是()A.﹣B.C.﹣6D.62.(4分)下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A.B.C.D.3.(4分)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃4.(4分)在平面直角坐标系xOy中,以原点O为位似中心,把△ABO缩小为原来的,得到△CDO,则点A(﹣4,2)的对应点C的坐标是()A.(﹣2,1)B.(﹣2,1)或(2,﹣1)C.(﹣8,4)D.(﹣8,4)或(8,﹣4)5.(4分)如图,直线AB∥CD,∠ABE=45°,∠E=20°,则∠D的度数为()A.20°B.25°C.30°D.35°6.(4分)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10个图形中●的个数为()A.50B.53C.64D.767.(4分)估算的值()A.在0与1之间B.在0与2之间C.在2与3之间D.在3与4之间8.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A =2∠D,且AB=2,则AC的长度是()A.1B.C.D.9.(4分)如图,正方形ABCD中,点E、F、G、H分别为边AB、BC、AB、CD上的点,连接DF、DG、E,若HB=DF,BE>CH,∠ADG=∠FDG.当∠BEH=α时,则∠AGD的度数为()A.αB.90°﹣αC.D.135°﹣α10.(4分)我们知道,两个奇数相加、相减的结果是偶数,两个偶数相加、相减的结果是偶数,一个奇数与一个偶数相加、相减的结果是奇数,现有由n(n≥2)个正整数排成的一组数,记为x1,x2,x3⋯x n,任意改变它们的顺序后记作y1,y2,y3…y n,若P=(x1﹣y1)(x2﹣y2)(x3﹣y3)…(x n﹣y n),下列说法①p可以为0;②当n是奇数时,P是偶数;③当n是偶数时,P是奇数.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算=.12.(4分)若一个多边形每个内角为160°,则这个多边形的边数是.13.(4分)一个不透明的口袋中有2个红球和1个白球,它们除了颜色其他完全相同,从中随机取出一个小球,记下颜色后放回,摇匀后再从中随机取出一个小球,记下颜色,则两次取出的小球颜色相同的概率为.14.(4分)如图,A是反比例函数y=图象上一点,AB⊥y轴交于点B,C是y轴负半轴上一点,且满足OC:OB =3:2,连接AC交x轴于点D,若S△ABC=25,则k=.15.(4分)如图,正方形ABCD边长为4cm,以A为圆心,4cm为半径画弧,再以AD为直径作半圆.那么阴影部分的面积cm2.16.(4分)若关于x的不等式组有且只有4个整数解,且关于y的分式方程的解为正整数,则符合条件的所有整数a的和为.17.(4分)如图,△ABC中,AB=AC=13,BC=24,点D在BC上(BD>AD),将△ACD沿AD翻折,得到△AED,AE交BC于点F.当DE⊥BC时,tan∠CBE的值为.18.(4分)一个四位正整数M,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M为“共进退数”,并规定F(M)等于M的前两位数所组成的数字与后两位数所组成的数字之和,G(M)等于M的前两位数所组成的数字与后两位数所组成的数字之差,如果F(M)=60,那么M各数位上的数字之和为;有一个四位正整数(0≤x≤8,0≤y≤9,0≤z≤8,且为整数)是一个“共进退数”,且F(N)是一个平方数,是一个整数,则满足条件的数N是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)(2x+y)2﹣(2x+y)(2x﹣y)﹣2y(x+y)(2).20.(10分)在学习了矩形后,小雨借助尺规找到了直角三角形斜边的中点,通过倍长中线构造了矩形,然后利用矩形对角线的性质探究出了直角三角形斜边上的中线与斜边的数量关系.请根据她的思路完成以下作图与填空:(1)已知在Rt△ABC中,∠ABC=90°,用直尺和圆规,作AC的垂直平分线交BC于点E,垂足为点O,连接BO并延长,在射线BO上截取OD=OB,连接AD、CD.(不写作法,保留作图痕迹)(2)在(1)问所作的图形中,求证:.证明:∵OE垂直平分AC,∴点O是AC的中点.∴OA=.∵OB=OD,∴四边形ABCD是平行四边形.∵∠ABC=,∴四边形ABCD是.∴.∵,∴OB=.21.(10分)2023年8月24日,日本无视多方反对,单方面强行启动福岛核事故污染水排海,属无视国际公共利益的极端自私和不负责任之举.为了加强学生对核污染的了解,增强学生的环境保护意识,某学校对初三年级1000名学生进行了一次“海洋保护知识测试”(满分50分且分数均为整数,规定49分及以上为优秀).从该年级甲、乙两班中各随机抽取20名学生的成绩进行整理、描述和分析,给出了下列信息.甲班20名学生的测试成绩为:44,46,43,45,49,49,48,49,45,47,46,47,45,49,43,50,50,50,48,47班级平均数中位数众数优秀率甲班4747b35%乙班47a49c乙班20名学生的测试成绩频数分布表:成绩分组/分频数频率40<x≤4210.0542<x≤4410.0544<x≤4630.1546<x≤4860.3048<x≤5090.45其中,乙班学生测试成绩高于46分,但不超过48分的成绩为:47,48,48,47,48,48.(1)根据以上信息可以求出:a=,b=,c=.(2)你认为甲乙两个班哪个班的学生测试成绩较好,并说明理由(一条即可).(3)请估计该校初三年级参加此次测试中成绩优秀的学生人数.22.(10分)列方程解应用题:人们提倡“节能减排,低碳出行”,随着新能源电动汽车的迅猛发展,在很多高速公路服务区里既有加油站同时又配有充电桩.(1)在某个服务区,新能源电动汽车的充电桩比燃油汽车的加油枪多4个,爱观察的小萌发现:在1个小时内,平均每个充电桩可以为2辆电动车充电,平均一个加油枪可以为7辆燃油车加油,这样在这1小时内共为80辆车提供了充电、加油的服务.那么这个服务区的充电桩和加油枪分别有多少个?(2)一般情况下,在高速公路上行驶时燃油汽车平均每公里的汽油费是新能源电动汽车平均每公里电费的倍,两位车主在服务区分别花250元给燃油车加油、花60元给新能源电动车充电,最后燃油汽车可行驶的里程比新能源电动汽车可行驶的里程多100公里,那么新能源汽车在高速路上行驶时平均每公里费用为多少元?23.(10分)如图,在四边形ABCD中,AB∥CD,CE⊥AB于点E,AE=8,BE=CE=4,DC=2.动点P从点A 出发,沿A→B方向以每秒2个单位长度的速度运动,同时动点Q从点E出发,沿折线E→C→D方向以每秒1个单位长度的速度运动.当点Q到达点D时,P、Q两点都停止运动.设动点P运动的时间为x秒,△PEQ的面积为y.(1)请直接写出y关于x的函数关系式并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,直接写出△PEQ的面积为4时x的值.24.(10分)去五云山寨参加社会实践活动是南开中学高二年级的传统,其中的特色项目——以长征之名,走青春奋斗之路的徒步活动更是走出了南开人越难越开的坚毅不屈和心怀天下的气宇轩昂.如图,徒步活动的起点位于点D处,终点位于点A处,现有两条路线可以选择:①D﹣E﹣A,②D﹣C﹣B﹣A.已知点E在点D的北偏西30°方向,点A在点E的正西方向1500米处,点C在点D的正西方向2500米处,点B在点C的北偏西30°方向且距离C点1000米处,点A在点B的正北方向.(参考数据:)(1)求AB的长度(结果保留根号);(2)已知沿路线①徒步的速度为4.5km/h,沿路线②徒步的速度比路线①快0.5km/h,请通过计算说明,选择哪条路线所用时间较少?25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2与x轴交于A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PE∥y轴交BC于点E,在y轴上取一点F,使得EF=EC,求PE+CF的最大值及此时点P坐标;(3)将原抛物线沿射线CB方向平移个单位长度得到新抛物线y1,过点B作直线MN垂直于BC交y轴于点N,交新抛物线y1于点M,请直接写出点M的横坐标.26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.2024年重庆中考数学预测模拟试卷(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)实数的相反数是()A.﹣B.C.﹣6D.6【答案】A2.(4分)下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A.B.C.D.【答案】A3.(4分)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃【答案】C4.(4分)在平面直角坐标系xOy中,以原点O为位似中心,把△ABO缩小为原来的,得到△CDO,则点A(﹣4,2)的对应点C的坐标是()A.(﹣2,1)B.(﹣2,1)或(2,﹣1)C.(﹣8,4)D.(﹣8,4)或(8,﹣4)【答案】B5.(4分)如图,直线AB∥CD,∠ABE=45°,∠E=20°,则∠D的度数为()A.20°B.25°C.30°D.35°【答案】B6.(4分)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10个图形中●的个数为()A.50B.53C.64D.76【答案】D7.(4分)估算的值()A.在0与1之间B.在0与2之间C.在2与3之间D.在3与4之间【答案】C8.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A =2∠D,且AB=2,则AC的长度是()A.1B.C.D.【答案】B9.(4分)如图,正方形ABCD中,点E、F、G、H分别为边AB、BC、AB、CD上的点,连接DF、DG、E,若HB=DF,BE>CH,∠ADG=∠FDG.当∠BEH=α时,则∠AGD的度数为()A.αB.90°﹣αC.D.135°﹣α【答案】C10.(4分)我们知道,两个奇数相加、相减的结果是偶数,两个偶数相加、相减的结果是偶数,一个奇数与一个偶数相加、相减的结果是奇数,现有由n(n≥2)个正整数排成的一组数,记为x1,x2,x3⋯x n,任意改变它们的顺序后记作y1,y2,y3…y n,若P=(x1﹣y1)(x2﹣y2)(x3﹣y3)…(x n﹣y n),下列说法①p可以为0;②当n是奇数时,P是偶数;③当n是偶数时,P是奇数.其中正确的个数是()A.0B.1C.2D.3【答案】C二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算=.【答案】见试题解答内容12.(4分)若一个多边形每个内角为160°,则这个多边形的边数是18.【答案】见试题解答内容13.(4分)一个不透明的口袋中有2个红球和1个白球,它们除了颜色其他完全相同,从中随机取出一个小球,记下颜色后放回,摇匀后再从中随机取出一个小球,记下颜色,则两次取出的小球颜色相同的概率为.【答案】.14.(4分)如图,A是反比例函数y=图象上一点,AB⊥y轴交于点B,C是y轴负半轴上一点,且满足OC:OB =3:2,连接AC交x轴于点D,若S△ABC=25,则k=﹣20.【答案】﹣20.15.(4分)如图,正方形ABCD边长为4cm,以A为圆心,4cm为半径画弧,再以AD为直径作半圆.那么阴影部分的面积2πcm2.【答案】2π.16.(4分)若关于x的不等式组有且只有4个整数解,且关于y的分式方程的解为正整数,则符合条件的所有整数a的和为8.【答案】8.17.(4分)如图,△ABC中,AB=AC=13,BC=24,点D在BC上(BD>AD),将△ACD沿AD翻折,得到△AED,AE交BC于点F.当DE⊥BC时,tan∠CBE的值为.【答案】见试题解答内容18.(4分)一个四位正整数M,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M为“共进退数”,并规定F(M)等于M的前两位数所组成的数字与后两位数所组成的数字之和,G(M)等于M的前两位数所组成的数字与后两位数所组成的数字之差,如果F(M)=60,那么M各数位上的数字之和为15;有一个四位正整数(0≤x≤8,0≤y≤9,0≤z≤8,且为整数)是一个“共进退数”,且F(N)是一个平方数,是一个整数,则满足条件的数N是1125.【答案】15,1125.三.解答题(共8小题,满分78分)19.(8分)计算:(1)(2x+y)2﹣(2x+y)(2x﹣y)﹣2y(x+y)(2).【答案】(1)2xy;(2).20.(10分)在学习了矩形后,小雨借助尺规找到了直角三角形斜边的中点,通过倍长中线构造了矩形,然后利用矩形对角线的性质探究出了直角三角形斜边上的中线与斜边的数量关系.请根据她的思路完成以下作图与填空:(1)已知在Rt△ABC中,∠ABC=90°,用直尺和圆规,作AC的垂直平分线交BC于点E,垂足为点O,连接BO并延长,在射线BO上截取OD=OB,连接AD、CD.(不写作法,保留作图痕迹)(2)在(1)问所作的图形中,求证:.证明:∵OE垂直平分AC,∴点O是AC的中点.∴OA=OC.∵OB=OD,∴四边形ABCD是平行四边形.∵∠ABC=90° ,∴四边形ABCD是矩形.∴AC=BD.∵,∴OB=AC.【答案】OC,90°,矩形,AC=BD,AC.21.(10分)2023年8月24日,日本无视多方反对,单方面强行启动福岛核事故污染水排海,属无视国际公共利益的极端自私和不负责任之举.为了加强学生对核污染的了解,增强学生的环境保护意识,某学校对初三年级1000名学生进行了一次“海洋保护知识测试”(满分50分且分数均为整数,规定49分及以上为优秀).从该年级甲、乙两班中各随机抽取20名学生的成绩进行整理、描述和分析,给出了下列信息.甲班20名学生的测试成绩为:44,46,43,45,49,49,48,49,45,47,46,47,45,49,43,50,50,50,48,47班级平均数中位数众数优秀率甲班4747b35%乙班47a49c乙班20名学生的测试成绩频数分布表:成绩分组/分频数频率40<x≤4210.0542<x≤4410.0544<x≤4630.1546<x≤4860.3048<x≤5090.45其中,乙班学生测试成绩高于46分,但不超过48分的成绩为:47,48,48,47,48,48.(1)根据以上信息可以求出:a=48,b=49,c=45%.(2)你认为甲乙两个班哪个班的学生测试成绩较好,并说明理由(一条即可).(3)请估计该校初三年级参加此次测试中成绩优秀的学生人数.【答案】(1)48,49,45%;(2)乙班的学生测试成绩较好,理由:乙班的优秀率大于甲班;(3)580人.22.(10分)列方程解应用题:人们提倡“节能减排,低碳出行”,随着新能源电动汽车的迅猛发展,在很多高速公路服务区里既有加油站同时又配有充电桩.(1)在某个服务区,新能源电动汽车的充电桩比燃油汽车的加油枪多4个,爱观察的小萌发现:在1个小时内,平均每个充电桩可以为2辆电动车充电,平均一个加油枪可以为7辆燃油车加油,这样在这1小时内共为80辆车提供了充电、加油的服务.那么这个服务区的充电桩和加油枪分别有多少个?(2)一般情况下,在高速公路上行驶时燃油汽车平均每公里的汽油费是新能源电动汽车平均每公里电费的倍,两位车主在服务区分别花250元给燃油车加油、花60元给新能源电动车充电,最后燃油汽车可行驶的里程比新能源电动汽车可行驶的里程多100公里,那么新能源汽车在高速路上行驶时平均每公里费用为多少元?【答案】(1)这个服务区的充电桩有12个,加油枪有8个;(2)新能源汽车在高速路上行驶时平均每公里费用为0.15元.23.(10分)如图,在四边形ABCD中,AB∥CD,CE⊥AB于点E,AE=8,BE=CE=4,DC=2.动点P从点A出发,沿A→B方向以每秒2个单位长度的速度运动,同时动点Q从点E出发,沿折线E→C→D方向以每秒1个单位长度的速度运动.当点Q到达点D时,P、Q两点都停止运动.设动点P运动的时间为x秒,△PEQ的面积为y.(1)请直接写出y关于x的函数关系式并注明自变量x的取值范围;(2)在给定的平面直角坐标系中,画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,直接写出△PEQ的面积为4时x的值.【答案】(1)y=;(2)图象见解析过程,该函数的性质:函数值的最大值为8;(3)x的值为2或5.24.(10分)去五云山寨参加社会实践活动是南开中学高二年级的传统,其中的特色项目——以长征之名,走青春奋斗之路的徒步活动更是走出了南开人越难越开的坚毅不屈和心怀天下的气宇轩昂.如图,徒步活动的起点位于点D处,终点位于点A处,现有两条路线可以选择:①D﹣E﹣A,②D﹣C﹣B﹣A.已知点E在点D的北偏西30°方向,点A在点E的正西方向1500米处,点C在点D的正西方向2500米处,点B在点C的北偏西30°方向且距离C点1000米处,点A在点B的正北方向.(参考数据:)(1)求AB的长度(结果保留根号);(2)已知沿路线①徒步的速度为4.5km/h,沿路线②徒步的速度比路线①快0.5km/h,请通过计算说明,选择哪条路线所用时间较少?【答案】(1)米;(2)选择路线①所用时间少.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2与x轴交于A(﹣1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PE∥y轴交BC于点E,在y轴上取一点F,使得EF=EC,求PE+CF的最大值及此时点P坐标;(3)将原抛物线沿射线CB方向平移个单位长度得到新抛物线y1,过点B作直线MN垂直于BC交y轴于点N,交新抛物线y1于点M,请直接写出点M的横坐标.【答案】(1)y=﹣x2+x+2;(2)PE+CF的最大值为:4.5,此时点P(3,2);(3)点M的横坐标为.26.(10分)已知△ABC是等腰直角三角形,AB=AC,D为平面内一点.(1)如图1,当D点在AB的中点时,连接CD,将CD绕点D逆时针旋转90°,得到ED,若AB=4,求△ADE 的周长;(2)如图2,当D点在△ABC外部时,E、F分别是AB、BC的中点,连接EF、DE、DF,将DE绕E点逆时针旋转90°得到EG,连接CG、DG、FG,若∠FDG=∠FGE,请探究FD、FG、CG之间的数量关系并给出证明;(3)如图3,当D在△ABC内部时,连接AD,将AD绕点D逆时针旋转90°,得到ED,若ED经过BC中点F,连接AE、CE,G为CE的中点,连接GF并延长交AB于点H,当AG最大时,请直接写出的值.【答案】(1)△ADE的周长为2+2+2;(2)FD=CG+FG,证明见解答;(3)的值为.。
温州2024年九年级上学期期中考试数学模拟试卷答案一.选择题(每小题3分,共30分)1.【答案】D【详解】解:∵O 的半径为3,点P 在O 外,∴3OP >,∴OP 的长可能是4,故选:D .2. 【答案】D【详解】解: 二次函数的顶点式为2225y x =−−(),∴其顶点坐标为:(2,5)−.故选:D3. 【答案】A【详解】解:A 、守株待兔是随机事件,故A 符合题意;B 、种豆得豆是必然事件,故B 不符合题意;C 、水中捞月是不可能事件,故C 不符合题意;D 、水涨船高是必然事件,故D 不符合题意;故选:A .4. 【答案】C【详解】解:抛物线2y x 向右平移3个单位长度得到的抛物线是()23yx =−. 故选:C5. 【答案】D【详解】解:∵圆被等分成4份,其中白色区域占3份, ∴指针落在白色区域的概率为34, 故选:D .6. 【答案】D【详解】解:∵∠BOC 与∠D 是同弧所对的圆心角与圆周角,∠D =32°,∴264BOC D ∠=∠=°, =180=18064=116AOC BOC ∴∠°−∠°−°°,故选:D .7. 【答案】C【详解】解:由25(2)y x m =−−+得图象开口向下,对称轴为直线2x =,∵二次函数25(2)y x m =−−+的图象经过1(0,)A y ,2(1,)B y ,3(4,)C y ,∴点A 、C 关于直线xx =2对称,则31y y =,∵当xx <2时,y 随x 的增大而增大,01<,∴12y y <,∴312y y y =<.故选:C .8. 【答案】A【详解】解:根据题意得,()30wx y =−,即()()=30280w x x −−+,故选:A .9. 【答案】C【解析】 【详解】解:连接OD ,如图,设O 的半径为r ,∵CD AB ⊥,∴ BCBD =,CG DG =, ∵点C 是弧BE 的中点,∴ CECB =, ∴ BECD =, ∴8CD BE ==, ∴142DG CD ==,在Rt ODG △中,∵3,OG r OD r =−=, ∴()22243r r +−=,解得256r =, 即O 的半径为256. 故选:C .10. 【答案】D【详解】解:∵()224321y x x x =−+=−−,10a =>,∴抛物线的开口向上,顶点坐标为()2,1−,对称轴是直线2x =,∴当2x =时,y 取得最小值1−,∵当4m x ≤≤时,总有14y m −≤≤, ∴124m −≤≤, 若02m <≤,则当4x =时,4y m =,即有244443m −×+, 解得:34m =; 若104m −≤≤,则当x m =时,4y m =, 即有2443m m m =−+解得:4m =±,不合题意,∴这种情况不存在,综上所述,当4m x ≤≤时,总有14y m −≤≤,则34m =. 故选:D 二.填空题(每小题4分,共24分)11. 【答案】59【解析】【详解】点()3,5代入2y ax =得:95a =∴59a = 故答案为:59 12. 【答案】0.2【详解】解:根据表格数据,纸杯的杯口朝上的频率稳定在0.2左右,故任意抛掷一只纸杯的杯口朝上的概率为0.2,故答案为:0.213. 【答案】6【详解】解:如图所示,连接OC ,OB ,∵ BC BC =,30BAC ∠=°,∴260COB BAC ∠=∠=°,又∵6OC OB ==,∴OCB 是等边三角形,∴6BC =,故答案为:6.14. 【答案】40°##40度【详解】解:∵C C AB ′∥,∴70ACC CAB ′∠=∠=°, ∵将ABC 绕点A 旋转到AB C ′′△的位置,∴AC AC ′=,CAC BAB ′′∠=∠,∴70ACC AC C ′′∠=∠=°,∴180707040CAC ′∠=°−°−°=°,∴40BAB ′∠=°,故答案为:40°.15. 【答案】24m <<【详解】解:如图,以AO 所在直线为y 轴,以地面所在的直线为x 轴建立平面直角坐标系,由题意可知()()3,1.80,0.9C A ,,设抛物线的解析式为()23 1.8y a x =−+,把()0,0.9A 代入()23 1.8y a x =−+,得: ()20.903 1.8a =−+解得0.1a =−,∴所求的抛物线的解析式是()20.13 1.8y x =−−+, 当 1.7y =时,()20.13 1.8 1.7x −−+=, 解得1224x x ==,, ∴则m 的取值范围是24m <<.故答案为:24m <<.16. 【答案】23或54【详解】设O 的半径为r ,当O 经过A O ′的中点,即经过AO 的中点, ∴1233r AB =, 当O 经过OD 的中点,则12r OB OD ==, ∴2OD r =,2AO AB OB r =−=−,在Rt AOD 中,222AD AO OD +=∴()()222222r r +−=解得:r = 当O 经过A D ′的中点,即经过AD 的中点,设AD 的中点为M ,∴2,1,AO r AM OM r =−== ∴()22221r r −+= 解得:54r =综上所述,半径为23、54故答案为:23或54 三.解答题17. 【答案】(1)2,3b c =−= (2)对称轴为直线1x =【解析】【小问1详解】解:由题意,将点()0,3A ,点()1,2B 代入2y x bx c =++得:312c b c = ++=, 解得23b c =− = . 【小问2详解】解:由(1)可知,二次函数的解析式为()222312y x x x =−+=−+, 所以该二次函数的对称轴为直线1x =.18. 【答案】(1)23 (2)49【解析】【小问1详解】解:23P =; 【小问2详解】解:两次摸到红球的概率为49P =. 19. 【答案】(1)见解析 (2)见解析【解析】【小问1详解】解:如图,AB C ′′△即为所求;【小问2详解】 解:如图,点O 即所求.20. 【答案】(1)见解析 (2)20【解析】小问1详解】证明:∵AB 是O 的直径,∴90ACB ∠=°,∵∥OD BC ,∴90OFA ACB ∠=∠=°,∴OF AC ⊥,∴ AD CD=, ∴点D 为 AC 的中点;【小问2详解】为【解:∵OF AC ⊥,16AC =, ∴182AF AC ==, 在Rt AFO 中,222AO AF OF =+, ∴()22=64OA OD DF +−,∴()22=644OA OA +−,∴10OA =,∴O 的直径为20.21. 【答案】(1)y 关于x 的函数表达式为24852793y x x =−++; (2)该女生在此项考试中是得满分,理由见解析.【解析】【小问1详解】解:∵当水平距离为3m 时,实心球行进至最高点3m 处, ∴设()233y a x =−+,∵()233y a x =−+经过点53 0,, ∴()250333a =−+, 解得:427a =− ∴224485(3)3272793y x x x =−−+=−++, ∴y 关于x 的函数表达式为24852793y x x =−++; 【小问2详解】解:该女生在此项考试中是得满分,理由如下∶ ∵对于二次函数24852793y x x =−++,当0y =时,有248502793x x −++=, ∴2424450x x −−=, 解得∶1152x =,232x =−(舍去), ∵15 6.92>, ∴该女生在此项考试中是得满分.22. 【答案】(1)见解析 (2)O 的半径为5【解析】【小问1详解】证明:延长CO 交O 于F ,C 为 ABD 的中点, AC CD ∴=,,AC DC OC AD ∴=⊥, AB 是O 的直径, 90ADB ∴∠=°,BE AD ∴⊥,OC BE ∴∥;【小问2详解】解:连接BC ,则90ACB ∠=°,OC OA = ,OAC OCA ∴∠=∠, OC BE ∥ ,OCA E ∴∠=∠,OAC E ∴∠=∠,EB AB ∴=,90ACB ∠=° ,BC AE ∴⊥,CA CE ∴==2AE CE ∴ 设O 的半径r ,则2EB AB r ==,62DE BD EB r ∴=+=+, 22222AB BD AE DE AD −=−= ,2222(2)6(62)r r ∴−=−+, 整理得23400r r +−=,解得125,8r r ==−(舍去), ∴ O 的半径为5. 23. 【答案】(1)2244y x x =−+ (2)4a =(3)见解析【解析】【小问1详解】解:∵此函数图象过点(2,4), ∴44324a a a −+−=, 解得2a =,∴这个二次函数的表达式为2244y x x =−+;【小问2详解】解:由()22232122y ax ax a a x a =−+−=−+−得,该函数的图象的对称轴为直线1x =, ∵若123x x =时,127y y ==, ∴点A 、B 关于直线1x =对称, ∴12223122x xx x ++==,解得212x =, 将1,72 代入函数表达式中,得2112272a a −+−=,解得4a =;【小问3详解】证明:由题意,21y y −()()222211232232ax ax a ax ax a =−+−−−+− ()()2221212a x x a x x =−−−()()21212a x x x x =−+−,∵12x x <,∴210x x −>,∵121x x a +=−,∴1223x x a +−=−,∵0<<3a ,∴30a −<,则1220x x +−<,∴210y y −<,∴12y y >.24. 【答案】(1)见解析 (2(3)125或9625【解析】【小问1详解】证明:连接AEAB 是直径,90AEB ∴∠=°,∴90EAD ADE ∠+∠=°,AF BC ⊥ ,90FAB ∴∠=°,∴90B F ∠+∠=°,点E 为弧AC 得中点,B EAD ∴∠=∠,F ADE ∴∠=∠,AD AF ∴=.【小问2详解】解:3,4AF AB ==,AF AB ⊥,∴在Rt ABF 中,5FB =, ∵1122ABF S AB AF BF AE =⋅=⋅ , ∴345AE ×=, 解得:125AE =,在Rt ABE △中,根据勾股定理可得:165BE , ∵3AD AF ==,∴在Rt AED △中,95ED =, 75BD BE ED ∴=−=, ABD ∴ 的周长7424355AB AD BD =++=++=. 【小问3详解】解:①当AE AP =时,125AP AE ==,②当AE PE =时, P 与C 重合,过点F 作FH AD ⊥于点H ,连接BC ,∵,AF AD AE DF =⊥, ∴1825DF DE ==, ∵1122ADF S DF AE AD FH =⋅=⋅ , ∴1812355FH ×=, 解得:7225FH =, ∵,BCD FHD BDC FDH ∠=∠∠=∠, ∴BCD FHD ∽, ∴DF FH BD BC=,则187252575BC =, 解得:2825BC =,根据勾股定理可得:2125CD =, ∴9625AP AC AD CD ==+=;③当AP PE =时,连接,OE OA ,连接OP 交AE 于点G , ∵AP PE =,OE OA =,∴OP 垂直平分AE , ∴1625AG AE ==,根据勾股定理可得:85OG ==, ∴11185PG OG OP =+=,2225P G OG OP =−=,根据勾股定理可得:1AP 2AP =,综上所述:125AP =或9625.。
初中九年级中考数学模拟试题数学试卷(含答案)初中九年级中考数学模拟试题数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上).......1.计算1+(-2)的结果是()A.-1B.1C.3D.-32.已知点A(1,2)与点A′(a,b)关于坐标原点对称,则实数a、b的值是() A. a=1,b=2B.a=-1,b=2C.a=1,b=-2 D.a=-1,b=-2??2_>_-1,3.一元一次不等式组?1的解集是()_≤1?2?A. _>-1B._≤2C.-1<_≤2D._>-1或_≤24.如图,AB是⊙O的直径,CD是⊙O的弦,连结AC、AD、BD,若∠BAC=35°,则∠ADC的度数为() A.35° C.65°B.55° D.70°A O D (第4题)C B5.在数轴上,与表示6的点距离最近的整数点所表示的数是()A.1B.2y C.3 D.46.如图,二次函数y=a_2+b_+c(a≠0)的图像如图所示,给定下列结论:①ac <0,②b>0,③a-b+c>0,其中正确的是() A.①② C.①③ B.②③ D.①②③_ -1 O 1 (第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上).......7.计算:9=.8.据调查,截止____年2月末,全国4G用户总数达到1 030 000 000户,把1 030 000 000用科学记数法表示为.9.若一个棱柱有7个面,则它是棱柱.110.若式子+1在实数范围内有意义,则_的取值范围是._-111.计算:5-21=. 212.已知一元二次方程_2+_+m=0的一个根为2,则它的另一个根为. 13.同一个正方形的内接圆与外切圆的面积比为.14.如图,某小区有一块长为36m,宽为24m的矩形空地,计划在其中间修建两块形状相同的矩形绿地,它们的面积之和为600m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为 m.(第14题)y C 3624O B A _ (第16题)15.在数据1,2, 4,5中加入一个正整数..._,使得到的新一组数据的平均数与中位数相等,则_的值为.3k16.已知一次函数y=_-3的图像与_、y轴分别交于点A、B,与反比例函数y =(_>0)的图像交2_于点C,且AB=AC,则k的值为.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、.......证明过程或演算步骤)1-1317.(1)(5分)计算:8+2cos45°+∣-2∣_(-);2(2)(4分)解方程(_-3)( _-1)=-1.18.(7分)(1)计算:(2)方程411-=的解是▲ . _-4_-22241-; _-4_-2219.(7分)某校为了解“阳光体育”活动的开展情况,从全校1000名学生中,随机抽取部分学生进行问卷调查(每名学生只能从A、B、C、D中选择一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.学生选择的活动项目条形统计图人数 25 20 215 15 10 10 5A C D 学生选择的活动项目扇形统计图 D A B 30% C A:踢毽子 B:乒乓球 C:篮球 D:跳绳B 项目根据以上信息,解答下列问题:(1)被调查的学生共有▲ 人,并补全条形统计图;(2)在扇形统计图中,求表示区域D的扇形圆心角的度数;(3)全校学生中喜欢篮球的人数大约是多少人?20.(7分)在课外活动时间,甲、乙、丙做“互相踢毽子”游戏,毽子从一人传给另一人就记为一次踢毽.(1)若从甲开始,经过三次踢毽后,毽子踢到乙处的概率是多少?请说明理由;(2)若经过三次踢毽后,毽子踢到乙处的可能性最小,则应从▲ 开始踢. 21.(8分)如图,在□ABCD中,点M、N分别为边AD、BC的中点,AE、CF分别是∠BAD、∠BCD的平分线.(1)求证:AE∥CF;(2)若AD=2AB,求证:四边形PQRS是矩形.B A F P NQ M S R Q ECD N (第21题) 22.(7分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=37°,∠E=45°,DE=902cm,AC=160cm.求真空热水管AB的长.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.(7分)如图,已知△AB C.(1)作图:作∠B的角平分线BD交AC于点D;在BC、AB上作点E、F,使得四边形BEDF为菱形.(要求:用尺规作图,不写做法,保留作图痕迹)(2)若AB=3,BC =2,则菱形BEDF的边长为▲ .24.(8分)已知二次函数y=(_-m)2-2(_-m)(m为常数).(1)求该二次函数图像与_轴的交点坐标;(2)求该二次函数图像的顶点P的坐标;(3)如将该函数的图像向左平移3个单位,再向上平移1个单位,得到函数y =_2的图像,直接写出m的值.B (第23题) O B D AC (第22题) E A C 25.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.(1)求证:DF为⊙O的切线;⌒(2)若AB=4,∠C=30°,求劣弧BE的长.26.(9分)某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴(送一次外卖称为一单)构成,外卖送单补贴的具体方案如下:外卖送单数量每月不超过500单超过500单但不超过m单的部分(700≤m≤900)超过m单的部分补贴(元/单) 6 8 10 (第25题)E O B D C AF (1)若某“外卖小哥”4月份送餐400单,则他这个月的工资总额为多少元?(2)设5月份某“外卖小哥”送餐_单(_>500),所得工资为y元,求y与_的函数关系式;(3)若某“外卖小哥”5月份送餐800单,所得工资为6500元,求m的值. 27.(11分)如图,在△ABC中,∠A=90°,AB=4,AC=2,M是AB上的动点(不与A、B重合),过点M作MN∥BC交AC于点N,以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.设AM=_.(1)△MNP的面积S=▲ ,MN=▲ ;(用含_的代数式表示)(2)在动点M的运动过程中,设△MNP与四边形MNCB重合部分的面积为y.试求y关于_的函数表达式,并求出_为何值时,y的值最大,最大值为多少?B (备用图) A M P B (第27题) O NC A B (备用图) C A C 参考答案一、选择题1 A 二、填空题7.3 8.1.03_109 9.五 10._≠1 11.22 12.-3 13.1:2 14.2 15.3或8 16.12 三、解答题1-1317.(1)8+2cos45°+∣-2∣_(-)22=2+2_+2_(-2) ………………4分2=2-2;………………5分(2)解: _2-4_+3=-1,_2-4_+4=0,………………2分 (_-2) 2=0,………………3分∴_1=_2=2.………………4分_+241418.(1)2-=-………………2分_-4_-2(_+2)( _-2)(_+2)( _-2)2-_=………………4分 (_+2)( _-2)1=-;………………5分_+2(2)-4.………………7分 19.(1)50,画图正确;………………3分 10(2)_360°=72°;………………5分5020(3)_1000=400(人).50答:估计全校学生中喜欢篮球的人数有400人.…………7分20.(1)从甲开始,经过三次踢毽后所有可能结果为:(乙,甲,乙)、(乙,甲,丙)、(乙,丙,甲)、(乙,丙,乙)、(丙,甲,乙)、(丙,甲,丙)、(丙,乙,甲)、(丙,乙,丙),共有8种结果,且是等可能的,其中毽子踢到乙处的结果有3种.…………4分 3因此,从甲开始,经过三次踢毽后,毽子踢到乙处的概率P=.…………5分8(2)乙.…………7分2 D3 C4 B5 B6 C 21.(1)∵四边形ABCD是平行四边形,∴AD∥BC,∠BAD =∠BCD.…………1分∵AE、CF分别是∠BAD、∠BCD的平分线,11∴∠DAE=∠BAD,∠BCF=∠BCD,∴∠DAE=∠BCF, (2)分22∵AD∥BC,∴∠DAE=∠BEA,…………3分∴∠BEA=∠BCF,∴AE∥CF.…………4分(2)∵四边形ABCD为平行四边形,M、N为AD、BC的中点,∴MD∥BN,且MD=BN,∴四边形BMDN为平行四边形,∴BM∥DN.又由(1)AE∥CF,∴四边形PQRS为平行四边形,∵AD=2AB,点M为边AD的中点,∴AM=AB,∵AE平分∠BAD,∴AE⊥BM,∴∠APB=∠SPQ=90°,∴四边形PQRS是矩形. 22.解:在Rt△DCE中,∵sin∠E=DC222DE=2,∴DC=2DE=902_2=90.在Rt△AOC中,∵cos∠A=ACOA=0.8,∴OA =AC÷0.8=160_54=200.∵tan∠A=OCAC=0.75,∴OC=AC_0.75=160_0.75=120,∴OD=OC-DC=120-90=30, A ∴AB =OA-OB=OA-OD=200-30=170.答:真空热水管AB的长为170cm. 23.(1)作图正确;…………4分F D (2)65.…………7分 B E C 24.(1)令y=0,得(_-m)2-2 (_-m)=0 ,即(_-m) (_-m-2)=0,解得_1=m,_2=m+2.∴该函数图像与_轴的交点坐标为(m,0),(m+2,0).(2)y=(_-m)2-2(_-m)=(_-m)2-2(_-m) +1-1=(_-m-1)2-1,∴该函数图像的顶点P的坐标为(m+1,-1);(3)m=2. 25.(1)连接AD、OD.∵AB是直径,∴∠ADB=90°.∵AB=AC,∴BD=CD,又∵OA =OB,∴OD是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,……3分即∠ODF=90°.∴DF为⊙O的切线;(2)连接OE.∵AB=AC,∴∠B=∠C=30°,∴∠BAE=60°,∵∠BOE =2∠BAE,∴∠BOE=120°, (6)分…………7分…………8分…………2分…………3分…………5分…………6分…………7分.........2分.........3分.........5分.........6分 (8)分………1分………2分………4分………5分………6分4⌒120∴BE=·4π=π. (8)3603分26.(1)1000+400_6=3400(元).答:他这个月的工资总额为3400元.………2分(2)当500<_≤m时,y=1000+500_6+8(_-500) =8_;………4分当_>m时,y=1000+500_6+8(m-500) +10 (_-m) =10_-2m;………6分(3)当m≥800时,y=8_=8_800=6400≠6500,不合题意;………7分当700≤m<800时,y=10_-2m=10_800-2m=8000-2m=6500,解得m=750.所以m的值为750.………9分1527.(1)_2,_;………3分 42(2)随着点M的运动,当点P落在BC上,连接AP,则O为AP的中点.AMAO11∵MN∥BC,∴△AMO∽△ABP. ∴==,∴AM=MB=AB=2.………4分ABAP221①当0<_≤2时,y=S△PMN=_2,∴当_=2时,y取最大值为1;………6分4②当2<_<4时,设PM、PN与BC交于点E、F.∵四边形AMPN为矩形,∴PN∥AM,PN=AM=_,又∵MN∥BC,∴四边形MBFN为平行四边形,∴FN=BM=4-_,△PEF∽△ACB,∴PF=PN-FN=2_-4.S△PEFPF22_-421∵=(),∴S△PEF=()__4_2=(_-2)2,42S△ACBAB13∴y=S△PMN -S△PEF=_2-(_-2)2=-_2+4_-4,………9分44384∴y=-(_-)2+(2<_<4),43384∴当_=时,满足2<_<4,y取最大值为. (10)分3384综上所述,当_=时,y取最大值,最大值为.………11分33。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图,如果 AB ∥CD ,∠C=60°,那么∠A+∠E=( ) A .20B .30°C .40D .60°2.样本3、6、4、4、7、6的方差是( )A .12B .C .2D3.下列运算正确的是( ) A .3362a a a +=B .853)()(a a a -=-⋅-C .3632244)2(b a a b a -=⋅-D .221114416339a b a b b a ⎛⎫⎛⎫---=- ⎪⎪⎝⎭⎝⎭4.在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为( ) A .14B .16C .12D .345.在△ABC 中,三个内角满足以下关系:∠A=12∠B=13∠C ,那么这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .任意三角形6.用放大镜将图形放大,应该属于( ) ) A .相似变换B .平移变换C .对称变换D .旋转变换7. 下图中,正确画出△ABC 的AC 边上的高的是( )A .B .C .D .8.在“口2口4a 口4”的空格“口”中,任意填上“+”或“一”,在所有得到的代数式中,能构成完全平方式的概率是( ) A .1B .12C .13D .149.如图是用直尺和圆规作一个角的平分线的示意图,则说明 OC 平分∠AOB 的依据是( ) A . SASB .SSSC .ASAD . AAS10.若21x y =⎧⎨=-⎩是下列某二元一次方程组的解,则这个方程组为( ) A . 351x y x y +=⎧⎨+=⎩B . 325x y y x =-⎧⎨+=⎩C . 251x y x y -=⎧⎨+=⎩D . 231x yx y =⎧⎨=+⎩11.下列方程中,与方程1x y +=有公共解23x y =-⎧⎨=⎩的是( ) A .45y x -=B .23y 13x -=-C .21y x =+D .1x y =-12.某人在平面镜里看到的时间是,此时实际时间是( ) A . 12:01B . 10:51C . 10:21D . 15:1013.如图所示,已知 AB ∥CD ,则与 ∠1相等的角 (∠1 除外)共有( ) A .5 个B .4 个C .3 个D .个14.桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜.哪方赢的机会大?( ) A .红方B .蓝方C .一样D .不知道15.若两条平行线被第三条直线所截,则一对同旁内角的平分线的位置关系为( ) A .平行B .垂直C .相交D .不能确定16.等腰三角形的周长为l3,各边长均为自然数,这样的三角形有( ) A .0个B .l 个C . 2个D .3个17.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .818.三角形内到三角形各边的距离都相等的点必在三角形的( ) A . 中线上B .平分线上C .高上D . 中垂线上19.若△ABC 的三条边长分别为 a 、b 、c ,且满足222323a b c c ab -=-,则△ABC 是( ) A . 直角三角形B .边三角形C .等腰直角三角形D . 等腰三角形20.画一个物体的三视图时,一般的顺序是( ) A .主视图、左视图、俯视图 B .主视图、俯视图、左视图 C .俯视图、主视图、左视图 D .左视图、俯视图、主视图21.白云商店购进某种商品的进价是每件8元,销售价是每件l0元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,把每件的销售价降低2%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x 应等于 ( ) A .1B .1.8C .2D .1022.如图是一个正三棱柱,它的俯视图为( )23.在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来.如图所示,则这堆正方体货箱共有( ) A .9箱B .10箱C .11箱D .12箱24.在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数是( ) A .30元B .35元C .50元D .100元25.如图,∠ADE 与∠DEC 是( ) A .同位角B .内错角C .同旁内角D .不能确定26.方程345x-=的解为()A.3x=-B.1 3x=C.13x=-D.3x=27.在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答.()A.一定不会B.可能会C.一定会D.以上答案都不对28.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③29.在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非负数D.非正数30.两个负数与一个正数相加,其和为()A.负数B.正数C.零D.以上都有可能31.下列四个算式中,误用分配律的是()A.111112(2)12212123636⨯-+=⨯-⨯+⨯B.1111(2)1221212123636-+⨯=⨯-⨯+⨯C.111112(2)12212123636÷-+=÷-÷+÷D.1111(2)1221212123636-+÷=÷-÷+÷32.下列各式中,计算正确的是()A=B=C.(a b-3=-33.下列说法中,正确的是()A .有最小的实数B .有最大的实数C .有理数与无理数不能比较大小D .有绝对值最小的实数34.若a =-时,a 是( ) A . 全体实数B . 正实数C .负实数D .零35.算术平方根等于它的立方根的数是( ) A .0B .±1 C .0和±1 D .0和 136.下列各组中的两项为同类项的是( ) A . 23a b 与223abB .2x y 与2x zC .2mnp 与2mnD .12pq 与qp 37.如果(3x 2y-2xy 2)÷m=-3x+2y ,则单项式m 为( ) A .xyB .-xyC .xD .-y38.已知当1a =,2b =-时,代数式10ab bc ca ++=,则c 的值为( ) A . 12B . 6C .-6D . -1239.下列调查中,适合用全面调查方式的是( ) A .了解某班学生“50米跑”的成绩 B .了解一批灯泡的使用寿命 C .了解一批炮弹的杀伤半径D .了解一批袋装食品是否含有防腐剂40.如图所示扇形统计图中,有问题的是( )A .B .C .D .41.如图,由A 测B 的方向是 ( ) A .南偏东25°B .北偏西25°C .南偏东65°D .北偏西65°42.如图所示,是轴对称图形的个数有( )A .4个B .3个C .2个D .1个43.一个多边形各边长为5,6,7,8,9,另一个相似图形和6对应的边长为9,则这个相似图形的周长为 ( )A .35B .40.5C .45D .52.544.在综合实践活动课上,小红准备用两种不同颜色的布料缝制一个正方形座垫,座垫的图案如图所示,要使其与右图拼接后符合原来的图案模式,应该选下图中的( )45.甲、乙两把不相同的锁,各配有 2 把钥匙,那么从这4 把钥匙中任取 2 把钥匙,打开甲、乙两把锁的概率为( ) A . 12B .13C .23D .5646.下列各式的因式分解中,正确的是( ) A .236(36)m m m m m -=- B .2()a b ab a a ab b ++=+ C .2222()x xy y x y -+-=--D .222()x y x y +=+47.若2(2007)987654321N +=,则(2017)(1997)N N +⋅+的值等于( ). A .987654321B .987456311C . 987654221D . 无法确定48.如图,AB 是ABC ∆和ABD ∆的公共边,要判定△ABC ≌△ABD 还需补充的条件不能..是( )A .∠1= ∠2,∠C= ∠D B .AC=AD ,∠3= ∠4C .∠1= ∠2,∠3= ∠4D .AC=AD ,∠1= ∠249.如图,在ABC ∆中,AB=AC=10,AB 的垂直平分线交AC 于G ,BC=7,则GBC ∆的周长是( ) A .10 B .20 C .17 D .1350.如图是某校九年级(1)班的全体同学最喜欢的球类运动的统计图,则下列说法中,正确 的是( ) A .从图中可以直接看出喜欢各种球类的具体人数 B .从图中可以直接看出全班的总人数C .从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D .从图中可以直接看出全班同学现在最喜欢各种球类的人数的比例51.如图中的两个三角形是位似图形,它们的位似中心是( ) A .点PB .点OC .点MD .点N52.如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A .32B .33C .34D .353.如图,在直角坐标系中,⊙O 的半径为1,则直线y x =-+与⊙O 的位置关系是( ) A .相离 B .相交 C .相切 D .以上三种情形都有可能54.抽查20名学生每分脉搏跳动次数,获得如下数据(单位:次)81,73,77,79,80,78,85,80,68,90,80,89,82,81,84,72,83,77,79,75. 以5次为组距分组,绘制频数分布表时,频率为0.45的一组是( ) A .72.5~77.5B .77.5~82.5C .82.5~87.5D .87.5~92.555.若点 (x 1,y 1)、(x 2,y 2)和 (x 3,y 3)分别在反比例函数2y x=-的图象上,且1230x x x <<<,则下列判断中正确的是( ) A .123y y y <<B .312y y y <<C .231y y y <<D .321y y y <<56.若抛物线2y ax =经过点 (m ,n ),则它也经过点( ) A .(一m ,n )B .(m ,一n )C . (-m, -n )D .(n ,m )57.将抛物线2y x =经过怎样的平移可得到抛物线269y x x =++( ) A .向右平移3 个单位 B .向左平移3个单位 C .向上平移6 个单位 D .向下平移6 个单位 58.关于抛物线215322y x x =-+-,下列说法不正确的是( ) A .开口向下B .对称轴是直线x=-3C . 顶点坐标(3,2)D . 顶点是抛物线的最高点59.如图,甲、乙、丙比赛投掷飞镖,三人的中标情况如图所示,则三人的名次应是( )A .甲第一,乙第二,丙第三B .甲第三,乙第二,丙第一C .甲第二,乙第三,丙第一D .甲第一,丙第二,乙第三60.下列说法正确的是( ) A .弦是直径B .弧是半圆C .过圆心的线段是直径D .平分弦的直径平分弦所对的弧61.已知圆锥的母线长为5,底面半径为3,则圆锥的表面积...为( ) A .15πB .24πC .30πD .39πFADEBC62.如果菱形的周长是8cm ,高是1cm ,那么这个菱形两邻角的度数比为( ) A .1:2B .1:4C .1:5D .1:663.已知3x =4y ,则yx=( ) A .34 B .43 C .43-D .以上都不对64.下列命题中的假命题是( ) A .一组邻边相等的平行四边形是菱形 B .一组邻边相等的矩形是正方形C .一组对边平行且相等的四边形是平行四边形D .一组对边相等且有一个角是直角的四边形是矩形65.已知抛物线21(4)33y x =--的部分图象如图所示,图象再次与x 轴相交时的坐标是( )A .(5,0)B .(6,0)C .(7,0)D .(8,0)66.抛物线2(3)1y x =-+的顶点坐标为( )A .(3,1)B .(-3,1)C .(3,-1)D .(-3,-1) 67. 四位学生用计算器求 cos27o 40′的值正确的是( ) A . 0.8857B .0.8856C . 0. 8852D . 0.885168.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( ) A .21 B .31 C .41 D .51 69.在Rt △ABC 中, ∠C=90°,若AB=2AC,则cosA 的值等于( ) A .3B .23 C .21 D .33 70. 从某班学生中随机选取一名学生是男生的概率为35,则该班男生与女生的人数比是( )A .35B .23C .32D .2571.甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率为( )A .23B .12C .13D .1672.如图,已知 PA 为⊙O 的切线,A 为切点,PBC 为过圆心0 的割线,DB ⊥PC 于点B ,DB=3 ㎝,PB=4cm ,则⊙O 的直径为( ) A .10 cmB .12 cmC .16 cmD .20 cm73.如图,已知 Rt △AEC 中,∠C= 90°,BC=a ,AC=b ,以斜边 AB 上一点0为圆心,作⊙O 使⊙O 与直角边 AC 、BC 都相切,则⊙O 的半径r 为( ) AB .2ab C .aba b+ D .a bab+74.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离D .与x 轴、y 轴都相切75.如图,小亮同学在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为( )A .6.4米B . 8米C .9.6米D . 11.2米76.证明下列结论不能运用公理“同位角相等,两直线平行”的是 ( ) A .同旁内角互补,两直线平行BC .对顶角相等D .平行于同一直线的两条直线平行77. 一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为( ) A .15,15B .10,15C .15,20D .10,2078.下列函数:①18y x =;②18y x =-;③22y x =;④2y x=.其中是一次函数的个数为( ) A . 0个 B .1个 C . 2个 D .3个79. 一个矩形的长比宽多 4m ,面积是100 m 2.若设矩形的长为 x (m ),根据题意列出下列方程,正确的是( )A PA . 241000x x +-=B .241000x x --=C .241000x x ++=D .241000x x -+=80.如图所示,小明在A 处,小红在B 处,小李在C 处,AB=10 m ,BC=8 m ,下列说法正确的是( ) A .小红在小明东偏北35°处 B .小红在小明南偏西55°处C .小明在小红南偏西55°的距离为10 m 处D .小明在小李北偏东35°的距离为18 m 处81. 一元二次方程22(1)1x x -=-的根是( ) A .32- B .1 C .32-或 1 D . 无解82.关于x 的不等式31x m +<的正整数解是 1、2、3,则整数m 的最大值是( ) A .10B . 11C .12D .1383.等腰梯形的上底与高相等,下底是上底的3倍,则较小内角的度数是 ( ) A .30°B .45°C .60°D .80°84.如图所示,已知AB ∥CD 且与MN 、PQ 相交,那么有 ( ) A .∠l=∠2B .∠2=∠3C .∠l=∠4D .∠3=∠485.22x py =中,下列说法正确的是 ( ) A .x 是变量,y 是常量 B .x ,p ,y 全是变量 C .x 、y 是变量,2p 是常量D .2、p 是常数86.以下可以用来证明命题“若x+2y=0,则x=y=0”是假命题的反例的是( ) A .x=1,y=1B .x=2,y=0C .x=-l ,y=2D .x=2,y=-l87.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的一个根为0,则m 的值等于( ) A .1B .2C .1或2D .088.下列所给的边长相同的正多边形的组合中,不能镶嵌平面的是( )A .正三角形与正方形组合B .正三角形与正六边形组合C .正方形与正六边形组合D .正三角形、正方形、正六边形组合89.下列三条线段的长不能构成直角三角形的一组是 ( )A .32,42,52B C .3k ,4k ,5kD .190.以下可以用来证明命题“任何偶数都是4的倍数”是假命题的反例为( ) A .3B .4C .8D .691.一元一次不等式组x ax b >⎧⎨>⎩的解为x a >,且a b ≠,则a 与b 的关系是( ) A .a b > B .a b < C .0a b >> D .0a b << 92.下列说法正确的是( )A .一组邻角互补的四边形是平行四边形B .两组邻边相等的四边形是平行四边形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直的四边形是平行四边形93.如图,在□ABCD 中,∠ABC 的平分线与∠BCD 的平分线相交于点O ,则∠BOC 的度数为( ) A .90°B .60°C .120°D .不能确定94.一个多边形内角和是1080,则这个多边形是( ) A .六边形B .七边形C .八边形D .九边形95.我市某一周的最高气温统计如下表:则这组数据的中位数与众数分别是( ) A .27℃,28℃B .27.5℃,28℃C .28℃,27℃D .26.5℃,27℃96.在△ABC 中,若∠A =70°-∠B ,则∠C 等于( ) A .35° B .70°C .110°D .140°97.与分式2xy的值相等的是( ) A .222x y ++B .63x yC .3(2x)yD .2x y- 98.把图形(1)进行平移,能得到的图形是( )99.已知代数式12x a+1y b与-3x b y a-b 是同类项,那么a 、b 的值分别是( ) A .2,1a b =⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =-⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩100.某工厂抽查了20名工人的年龄如下(单位:岁):25,27,23,28,25,28,21,26,29,26,25,24,25,27,26,22,25,24,30,28,则岁数落在24.5~26.5这一组的频率是 ( ) A .0.45B .0.40C .0.35D .0.30101.在x ,1,22x -,2r π,12S ab =,nm,2V r h π=中,代数式的个数为( ) A .5 个B .4 个C .3 个D .2 个102.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是( ) A .线段BE 的长度 B .线段EC 的长度 C .线段BC 的长度D .线段EF 的长度103.杭州湾跨海大桥于5月1日23时58分开始试运行,大桥全长36千米,按规定桥上最低时速为60千米,最高时速为100千米,两辆汽车从桥的南北两端同时出发,正常行驶时到它们在途中交会所需时间可能为( ) A .36分钟 B .22分钟 C .15分钟 D .7分钟104.已知二次函数y =x 2-x +a (a >0),当自变量x 取m 时,其相应的函数值小于0,那么下列结论中正确的是( )A .m -1的函数值小于0B .m -1的函数值大于0C . m -1的函数值等于0D .m -1的函数值与0的大小关系不确定105.已知一组数据1x ,2x ,…,n x 的方差为4,则数据132x +,232x +,…,32n x +的方差为( ) A .14B .18C .36D .38106.下列说法中,错误的是( ) A .长方体、立方体都是棱柱 B .竖放的直三棱柱的侧面是三角形C .竖放的直六棱柱有六个侧面,侧面为长方形 C .球体的三种视图均为同样大小的图形107.等腰三角形的腰长为32,底边长为6,那么底角等于( ) A . 30°B . 45°C . 60°D .120°108.已知长方形ABCD 对角线的交点在坐标原点,且AD ∥x 轴,若A 点坐标为(-1,2),则D 点坐标为( ) A .(2,-l )B .(2,1)C .(1,2)D .(-1,2)109.在频率分布直方图中,下列结论成立的是( ) A .各小组频率之和等于n B .各小组频数之和等于1C.各小组频数之和等于nD.各小组长方形高的和等于l110.下列图形不是中心对称图形的是()A.圆B.平行四边形C.菱形D.等腰梯形【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.C3.D4.A5.A6.A7.C8.B9.B10.C11.B12.B13.C14.B15.B16.D17.C18.B19.D20.A21.C22.C23.A25.B 26.D 27.A 28.C 29.C 30.D 31.C 32.C 33.D 34.D 35.D 36.D 37.B 38.D 39.A 40.A 41.C 42.B 43.D 44.C 45.C 46.C 47.C 48.D 49.C 50.D 51.A 52.B 53.C 54.B 55.B 56.A 57.B60.D 61.B 62.C 63.A 64.D 65.C 66.A 67.A 68.B 69.C 70.C 71.B 72.B 73.C 74.A 75.C 76.C 77.A 78.C 79.B 80.C 81.C 82.D 83.B 84.B 85.B 86.D 87.B 88.C 89.B 90.D94.C 95.A 96.C 97.B 98.C 99.C 100.B 101.A 102.A 103.C 104.A 105.C 106.B 107.A 108.C 109.D 110.D。