塞班crack基础教材
- 格式:doc
- 大小:382.00 KB
- 文档页数:20
编译语言:1.C语言能力要求:至少要达到精通选用教材:《C Primer Plus 中文版(第5版)》其他教材:《标准C程序设计(第3版)》《C语言入门经典(原书第3版)》补充教材:《C程序设计语言》《C陷阱与缺陷》《C专家编程》《C与指针》2.C++语言能力要求:至少要达到熟练选用教材:《C++ Primer 中文版(第4版)》其他教材:《C++ Primer Plus 中文版(第5版)》补充教材:《C++程序设计陷阱》《Effective C++》《More Effective C++》《Essential C++中文版》3.ASM语言能力要求:至少要达到掌握选用教材:《80x86汇编语言程序设计教程》和《Windows环境下32汇编语言程序设计》其他教材:《汇编语言》补充教材:《汇编语言编程艺术》脚本语言:1.ASP能力要求:至少要达到掌握选用教材:尚无其他教材:尚无补充教材:尚无2.PHP能力要求:至少要达到精通选用教材:《PHP与MySQL基础教程(第2版)》其他教材:《PHP和MySQL Web开发(原书第3版)》《PHP和MySQL Web应用开发核心技术》补充教材:《Ajax与PHP基础教程》3.Perl能力要求:至少要达到熟练选用教材:《Perl语言入门(第4版)》其他教材:《Perl技术内幕》《Perl教程(Win32版)》补充教材:《Perl网络编程》4.Python能力要求:至少要达到掌握选用教材:《用Python学编程》补充教材:《Python网络编程基础》操作系统(这里看导师的项目要求,原则上推荐从Microsoft开始。
):概览类:《深入理解计算机系统》1.Windows系统学习类:《深入解析Windows操作系统》系统编程类:《Windows程序设计》和《Windows核心编程》网络编程类:《Windows网络编程》2.Linux系统学习类:尚无系统编程类:《Linux程序设计(第3版)》在完成第一层后就阅读《深入理解计算机系统》。
第5章 E7 2.0的时间线编辑编辑工作可以说是视频程序的驱动力量。
通过认真地组合音频和视频剪辑,可以控制激动、紧张和兴致盎然的气氛。
E7 2.0通过多样的功能和编辑工具组合在一起,构建了一个强大的工作环境,令我们的工作不再是枯燥无味和令人厌烦的过程,而是充满了创造性、逻辑性和有价值的过程。
5.1 基本编辑概念和工具我们编辑一个节目,就是在将不同的剪辑组合到一起的过程,这样的过程主要在两个主要区域中进行:时间线窗口和时间线回放窗口。
时间线窗口提供了可视的项目概观。
只要将剪辑从素材管理器中拖拽到时间线中,就可以开始进行粗略的编辑了。
使用时间线窗口的各种工具,可以按照逻辑顺序组织剪辑。
工作时,通过时间线回放窗口观察效果,可以调整时间线窗口的剪辑以达到需要的效果。
当然,通过更多的编辑技术(例如覆盖编辑、插入编辑、三点以及四点编辑、提升、提取等)可以进一步对剪辑进行细微的调整编辑。
毋庸置疑,工作时,会逐渐养成适合所创建产品类型的习惯。
例如,通过快捷键操作可以提高效率等。
5.2 素材管理器的使用移动时码区绿色游标,到目标画面,拖动窗口中画面捕捉器(绿框)到目标画面,此时蓝框移动或者调整大小,时码区游标处都会自动添加一个关键帧,用这种方法依次锁定其他画面,设置入出点后,选择窗口下部的保存按钮对关键帧进行保存,选择HD>SD按钮进行被抓取画面的生成。
引出的特技模板目录下应包含如下目录:提供四种搜索类型:按素材信息搜索、按素材来源搜索、按文件信息搜索、按时间搜索。
点击CG按钮,进入模板管理器窗口。
新建文件夹。
模板库内新建一个文件夹。
第二步:5.3 时间线的使用时间线编辑窗口如下图所示,它的结构与其他非线性编辑软件大致相同。
有过其他非编使用经验的使用者在一般的操作上应该都没有什么问题,但是具体的使用可能就不甚了解了,下面将对时间线编辑窗口的每一个区域、每一个图标逐个讲解,让使用者能够尽快上手。
起始时码:设定时间线的起始时码。
83080 Receiver Architectures and Synchronizationin Digital CommunicationsPractical RF Architectures for GSM and WCDMA Mobile TerminalsMobile Generations•1st generation systems, analog•NMT, AMPS, TACS•2nd generation systems, digital•GSM, IS-136 TDMA, IS-95 CDMA, PDC•3rd generation systems, digital wide band•WCDMA standards have been prepared by ETSI (Europe), ARIB (Japan), TIA (USA),...•3GPP1is a joint project that combines all proposals into one standard•Harmonized standard includes three modes•Direct sequence mode based on 3GPP (UTRA2/FDD)•Multi carrier mode based on CDMA2000 (USA proposal)•TDD mode based on 3GPP (UTRA/TDD)1) 3GPP = 3rd Generation Partnership Project2) UTRA = Universal Terrestrial Radio AccessMain Drivers for RF Architecture Design •Cost, Size, Power consumption•System complexity, time to marketComponent count in GSM RF501001502002503003504004505001994199619982000Design Process -time to market Req Spec's Req Spec's Applications Applications System Design System Design RF-, A/ASIC DesignRF-, A/ASIC Design Mfg ramp-up Mfg ramp-up Integration Integration HW, PCB, pkgHW, PCB, pkgMech. DesignMech. Design Concepts Concepts D/ASIC Design D/ASIC Design DSP, MCU SW designDSP, MCU SW designCritical Interface:from system design to detailed design Critical Interface:from detailed design to integrationGSM Specifications for Receiver•Bad frame indication performance•Sensitivity•Usable receiver input level range•Co -channel rejection•Adjacent channel rejection (selectivity)•Intermodulation rejection•Blocking and spurious response•AM suppressionExample of sensitivity specificationTable 1: Reference sensitivity performanceGSM 900Type of Propagation conditionschannel static TU50TU50RA250HT100(no FH)(ideal FH)(no FH)(no FH) FACCH/H(FER)0.1 % 6.9 % 6.9 % 5.7 %10.0 %FACCH/F(FER)0.1 %8.0 % 3.8 % 3.4 % 6.3 %SDCCH(FER)0.1 %13 %8 % 8 %12 %RACH(FER)0.5 %13 %13 %12 %13 %SCH(FER) 1 %16 %16 %15 %16 %TCH/F9.6 & H4.8(BER)10-50.5 %0.4 %0.1 %0.7 %TCH/F4.8(BER)-10-410-410-410-4TCH/F2.4(BER)-210-410-510-510-5TCH/H2.4(BER)-10-410-410-410-4TCH/FS(FER)0.1α%6α%3α%2α%7α %class Ib (RBER)0.4/α %0.4/α %0.3/α%0.2/α %0.5/α %class II (RBER)2%8%8%7%9% TCH/HS(FER)0.025 % 4.1 % 4.1 % 4.1 % 4.5 %class Ib (RBER, BFI=0)0.001 %0.36 %0.36 %0.28 %0.56 %class II (RBER, BFI=0)0.72 % 6.9 % 6.9 % 6.8 %7.6 %(UFR)0.048 % 5.6 % 5.6 % 5.0 %7.5 % class Ib (RBER,(BFI or UFI)=0)0.001 %0.24 %0.24 %0.21 %0.32 %(EVSIDR)0.06 % 6.8 % 6.8 % 6.0 %9.2 %(RBER, SID=2 and (BFI or UFI)=0)0.001 %0.01 %0.01 %0.01 %0.02 %(ESIDR)0.01 % 3.0 % 3.0 % 3.2 % 3.4 %(RBER, SID=1 or SID=2)0.003 %0.3 %0.3 %0.21 %0.42 %How to convert system specificationsto RF design parameters ?•From the bit error rate (BER) requirement of the whole phone we can derive secondary specifications for the radio section (Gain, Signal to Noise ratio, Linearity)•System specification and detector implementation define the required S/N ratio•GSM needs 8…9 dB S/N (number includes some implementation margin 2…3 dB)Radio section Detector BERC/N -15 dBm...-102 dBmSensitivityf 0S/N =9 dBNF = P s + 174 dBm -10 log B -S/NwhereB is equivalent noise bandwidth of the receiverP s is reference sensitivity levelFor GSM 900 MHz P s = -102 dBm -> NF = 10 dBSignal must be 9 dB above noise floor, sorequirement for receiver noise figure (NF) isPowerSensitivity and Selectivity •Cascaded noise figure•NF = 10 log F, where NF is noise figure and F is noise factor•F = F1+ (F2-1)/G1+ (F3-1)/G1G2+ … + (F n-1)/ G1G2…G n-1•RF section must have enough gain to provide adequate signal level for A/D converter•Minimum input level is -102 dBm -> 1.8 uV @ 50 ohm. If we need for example 100 mV at A/D converter input, voltage gain needs to be20log(100mV/1.8uV) = 95 dBF 1 F 2G1 G2FSelectivity•Before detector interfering signals need to be filtered so that S/N is adequate•This attenuation is split between IF filter, analog BB filter and digital filter after A/D•Digital filtering at baseband would be cost effective but then A/D coverter must be able to handle wider dynamic range (typical A/D resolution 10 (12)bits)•Distribution of gain and selectivity affects also linearity requirement of the analog part•If interfering signal is for example -43 dBm -> 5 mV @ 50 ohm and we amplify that 95 dB the signal level would be 280 V !Microsoft ExcelWorksheet•Local oscillator (LO) phase noise has effect both on sensitivity and selectivity •Phase noise may pass through mixer and degrade sensitivity different ways1) Noise at IF leaks directly into mixer IF port 2) Noise at RF leaks directly into mixer RF port3) Noise at the distance of IF from the RX-frequency mixes with RX and appears in the mixer IF port4) Noise at the distance of IF from the LO-frequency mixes with LO and appears in the mixer IF portIF IFIFRX IF4)4)3)2)1)RXIFLO•LO mixes both with wantedsignal and interfering signal•LO spectrum shifts to IFLO RX InterferenceIFIF•Usually selectivity sets most difficult requirement for VCO phase noise •Example GSM 900 MHz handportable:•wanted signal -102 dBm + 3 dB = -99 dBm•blocking signal -43 dBm @ 600 kHz offset•typical values S/N = 9 dB, noise BW = 200 kHz•Phase noise = -99-(-43)-10 log 200000 -9 = -118dBc/Hz (600 kHz)Receiver Architectures •Heterodyne+ flexibility, achievable component specifications+ standard components available-spurious responses•IF Sampling+ no need for I/Q mixer-requires better A/D converter•Homodyne (direct conversion)+ simplest architecture+ no IF filters, advantage especially in multiband/multisystem phones -very difficult to implementGSM Receiver Principles•GMSK modulation has no AM component that carries information •However the equalizer requires real time amplitude information to be able to correct the multipath propagation→Most common solution is linear receiver that provides in-phase (I) and quadrature (Q) signals for the baseband→Non linear (limiting) receiver possible, if it can provide amplitude information for the equalizerLimiting Receiver in GSM•Relaxes AGC and A/D requirements•High level interferers must be low enough before limiter-> requires good IF filters•Can handle fast amplitude changes without saturation•Mixing products in nonlinear circuits can cause spurious responses if they fall at IF or RX frequency •Usually low order products are the most important•Some examples of spurious responses in superheterodyne receiver with high side LO injection2LOIFIFf SPURLO2f SPURHalf IF: 2f LO -2f SPUR = f IFLOIFIFimageWanted signal Image: f SPUR -f LO = f IF•In full duplex systems the high level TX signal causes more spurious responses •If TX leaks to RX mixer it mixes directly with spurious signal: f SPUR -f TX = f IF •Mixing can also take place in power amplifier: 2f TX -f SPUR = f RX LOIFIFTXf SPURf SPURLO2TXTXf RX2f TX -f SPURf SPURfSPURf TXChoosing IF frequency•Spurious response requirements•Image should be at relatively quiet band•Usually IF/2 spurious should not be in RX band -> first IF > 2 * operating band•TX + IF should not fall in RX band (on the other hand we can use TX+ IF = RX)•IF filter availability, size and cost•71 MHz is most popular GSM IF at the moment•Higher frequency SAW filter is smaller but stopband attenuation is notas good•LO frequency•lower frequency is slightly easier to implement. On the other hand inmobile TX band is below RX and LO may be too close to TX band withlow side injection•Amount of oscillators•Use same oscillator for RX and TX if possible•harmonics of the oscillators should not fall in RX bandDuplexing Techniques•Uplink and downlink signals can be separated using different frequency or different time slot •RX and TX use same frequency but different time slot •-> Time Division Duplex (TDD)•RX and TX are on simultaneously but use different frequency •-> Frequency Division Duplex (FDD)•GSM can use either switch or duplexer•WCDMA must use a duplexer (option for TDD in the spec.)TX RXRXTXDuplexing Issues•Using a duplex filter in GSM may be feasible if RF archtecture is such that also TX needs good filtering•If a simple high pass filter is adquate in TX, lower cost and size can be achieved with a switch and separate filters•Typically swithch and filters are combined in a ceramic module•In GSM system receive and transmit functions occur in different time slots →Isolation between TX and RX is not a concern•High level circuit integration possible•Common blocks for RX and TX possible, e.g. synthesizer (frequency canbe shifted between RX and TX time slots)•Less spurious responses in the RXAutomatic Gain Control (AGC)•With AGC the average signal level at the A/D converter input is kept almost constant•Trade off between AGC and A/D converter dynamic range•In GSM phone reports received signal strength and +1 dB relative measurement accuracy is required from -110 dBm to -48 dBm•In IS-95 CDMA the TX power must follow received signal strength: Pout = -Pin -76 dBm at the input range -104 dBm to -25 dBm (open loop power control, accuracy requirement +9.5 dB)•In CDMA RX and TX gain controls should have similar temperature behaviorAGC Implementation•Accuracy and temperature compensation are easier to implement at IF and baseband•By adjusting front-end gain, AGC also provides a measure against intermodulation distortion at high signal levels•Often AGC is split between front-end and IF, for example20 (30)dB step in front-end and 60…80 dB at IFBaseband 935-960890-91513 1006-1031116 MHz13 MHz71 MHzQI+45ΣA/DD/ASuperheterodyne with IF sampling GSM 900 MHz÷2Baseband+45935-960890-91513I1006-103111671Q71 MHzQI+45ΣA/DD/ASuperheterodyne GSM 900 MHzExample of a GSM Block DiagramBaseband+45935-960890-91513I890 -960QQI+45ΣA/DD/ADirect conversion GSM 900 MHz•LO leakage to the RX input causes DC-offset•LO leakage can not be filtered out and it may cause too high spurious emissions(limit in GSM specification is -57 dBm)•High level interference signals can couple to LO an cause LO pulling•RF part must be very linear because strong adjacent channel signals are notfiltered out until baseband•To meet all requirements mixer linearity and balance are essential•Can be much larger than a weak signal•DC offset is first measured without signal before RX burst•This information is then used to cancel offset just before detection•Direct conversion implemented in GSM by Alcatel and Nokia•RFIC vendors are developing direct conversion chipsets (Analog Devices)BBLNAMIXRF INLOCLK DSP A DA D •Balanced circuits and double LO frequency reduce interference coupling90 d e gGSM Data Services, HSCSD and GPRS •HSCSD & GPRS•HSCSD = High Speed Circuit Switched Data•GPRS = General Packet Radio Service•Different coding 9.6 kbit/s -> 14.4 kbit/s•More slots, for example 2 slots -> 28.8 kbit/s•Dynamic use of slots in GPRS•In multislot case receiver has less time to changetime channel -> synthesizer must be faster•Adjacent slots may have different amplitude ->more dynamic range needed because gain controlhas no time to adapttimeGSM Data Services, EDGE•In EDGE also modulation changes GMSK -> 8PSK•Not constant amplitude anymore, only linear receiver possible•EDGE has several coding schemes and fastest data speeds can only be achieved with very good signal to noiseconditions•Theoretical maximum 69 kbit/s per timeslot•AGC gain distribution important•LNA gain step should not be used as low levels as inbasic GSMGSM Radio Access in the Time Domain RXTX MONITOR Adjacent cell BCCH max. 6 pcs.01234567012345674.615 ms 01234567012345670123456701234567HSCSD RF• 2 + 2 slots or 3 +1 slots still leave some settling time between the slots•In dual slot operation with maximum timing advance the time between RX and TX slots is 577 µs -233 µs = 344 µs•It becomes difficult to achieve this with conventional synthesizer •Separate synthesizers for RX and TX•Fractional-N synthesizer•Use double frequency (synthesizer step 400kHz) and dividefor LO• 3 + 3 slots and higher the RX and TX overlap and whole RF system design must be different including two synthesizers,duplex filter and high isolation between TX and RXSpread-Spectrum Basics•Spectrum is spread using a code that is independent of the information signal•Bandwidth used in spread spectrum transmission is typically at least 100 times wider than the information signal bandwidth•WCDMA uses direct sequence spreading where a pseudo-random code is directly combined to the signal•Users are separated by different codes•Bits in the spreading code are called chipstime timecode codeGSM WCDMAfrequency frequencyMobile Radio Channel•Multipath propagation (frequency selective fading)•Shadowing•Doppler shift→linear time-variant channelSignallevelTimeMobile Receiver•In GSM training sequence is used to estimate the impulse response of the radio channel•This information is necessary to equalize the user bits on a burst by burst basis•CDMA chip rate is typically greater than flat fading BW of the channel and multipath components appear like uncorrelated noise -> no equalizer is needed•RAKE receiver combines time shifted versions of the original signal •One finger is assigned for the direct signal, another for the reflectedsignal•Fingers in RAKE receiver can also be used for soft handoff•One finger is assigned for new base station while another still listens the old BS•RAKE receiver in implemented in digital baseband and it does not require any special functionality in RF part -> Receiver can be implemented with similar blocks as current GSM receiverCDMA System Parameters•IS-95 CDMA•Frequency bands•Cellular band (AMPS): TX 824…849, RX 869…894 MHz•PCS1900: TX 1850...1910, RX 1930...1990 MHz•Carrier spacing 1.25 MHz, 64 Walsh codes•Chip rate 1.2288 Mchip/s•WCDMA•Frequency bands•UTRA FDD (Europe & Asia): TX 1920…1980 MHz , RX 2110…2170 MHz •Carrier spacing 5.00 MHz•Chip rate 3.84 Mchips/s (first proposal 4.096 Mchips/s)Receiver requirements•Sensitivity requirement is -117 dBm @ 12.2 kbps user data rate •Changing user bit rate changes processing gain (PG) and also sensitivity level•PG = 10 log (3.84Mcps/user symbol rate)•Selectivity requirement is defined as RX filter attenuation at adjacent channel compared to wanted channel, spec is 33 dB, interferer crest factor not defined yetNoise floor Wanted signalNoise floor Wanted signalGSMWCDMARX Design issues•Full duplex operation•TX noise at RX band must be attenuated•A good duplexer is relatively large and expensive component •High chiprate•Wide BW in baseband -> higher current consumption•Wide band IF filters -> higher lossWCDMA RX Design Issues•Linear modulation -> limitting receiver not possible•In full duplex system TX noise at RX band may desense receiver•If we require that TX is not decreasing RXsensitivity, noise at RX input must below thermalnoise floor (-174 dBm/Hz)•Even if TX chain is relatively low noise, about 40dB attenuation is needed in duplexer•Wider band compared to GSM increases slightly filter losses and current consumptionVariable duplex separation•In WCDMA specification there is an option to use variable duplex separation•This means that receiver and transmitter channels can be selected freely and distance between RX and TX center frequency is variable •In current situation where operators have only two or three channels this option is not useful but if more spectrum becomes available it makes spectrum allocation more flexible•In superheterodyne receive variable duplex separation increases number of spurious responses dramatically and makes the calculation complex•With direct conversion architecture independent RX and TX frequencies are relatively easy to implementDirect Conversion Receiver in WCDMA•Integration level •Image suppression 90oDADA•DC offsets•Envelope distortion•Flicker noiseDSPDirect conversion problems in CDMA•No idle time slots for cancellation•Highpass filtering possible (dc block in thesignal path or servo feedback)•Slow transients•Large component values•Long-term average subtracted from signal•DSP controls analog offset•Digital methods•Typically for offsets 10-50 % depending onalgorithm•Own TX interference•Leakage through duplex filter and to RXVCO•TX modulation at mixer output•Double VCO frequency f=4 GHz anddifferential circuits reduce coupling•Envelope distortion•2nd-order nonlinearity•BALANCING•Mixer and first stages of baseband critical•Interference sources: all radio channels containing AM •Variable (non-constant) envelope in digital modulation–QPSK, QAM•TDMA (GSM)•TDD (WCDMA)•Analog baseband processing•Mixer is a part of the demodulator•I/Q balance•Offsets•Gain control•Time constant critical inside offset compensation loop•Techniques to maintain the same offset with different gain values •Flicker noise•Critical in direct conversion•Linearity & power consumption limits gain at RF•Smaller relative contribution in wide-band systemIntegrating WCDMA Receiver•Most functions can already be integarated•Most difficult blocks are•Front end RF filters•Tank circuit in VCO•Reference oscillator, at least crystal is external•Small size & smaller parasitics•Better matching•Low cost in mass productionSingle-Chip Integration •High-speed clock and digitalsignals on the same chip withRX front-end•Coupling through substrateand interconnections•Transmitter power and noiseon RX band•Differential RF•Double VCO frequency DALO CLKPAComponent Technologies •RF part of a GSM phone includes typically following blocks •One RF ASIC including RX, synthesizer(s) and TX•Power amplifier•VCO module•TCXO module•Front end switch•SAW filters (RX front end filter may be on the switch module)•Some passive components•In WCDMA RX and TX are likely to be on separate chipsComponent Technologies, RFIC •BiCMOS process is most suitable for RF ASIC design•Good RF performance•Easy to implement control logic and digital part in synthesizer •SiGe option increases ft•Main advantage of higher speed process is lower power consumption •Packages are typically ball grid arrays (BGA) with pin count up to 100•Power amplifier technologies•HBT GaAs (most popular today)•Silicon MOS•GaAs FET•Silicon bipolar•InP and InGaP are promising some performance improvement over GaAs HBTComponent Technologies, Filters andSwitches•Filter technology has been changing from ceramic to surface acustic wave (SAW)•Bulk Acoustic Wave (BAW) filters would give even smaller size and some integration possibilities•BAW technology is more difficult to implement than SAW beacause also material thickness should be controlled extremely accurately•Switches are used in front end so performance is very important because it directly effects the total receiver performance•GaAs FET and pin diode switches are used today•Micromechanical Switches (MEMS) would improve both insertion loss and isolation performance dramatically•MEMS linearity is also superior compared to electrical switches •Problems today are reliability and high control voltages。
(1)用注册机算出注册码注册。
在电脑上运行注册机,输入你的手机串号(在手机输入*#06#可看到串号)。
确认,可得到注册码。
在手机上进入需要注册的程序,输入注册码。
ok(2)用app 破解补丁(或别的破解补丁)破解。
其他带破解文件的破解方法类同。
用rsc 汉化文件的方法也是一样的。
(3)本身已破解,直接安装就可以了(或输入任意数字注册)当我们拿到一个软件,我们为了要正常使用它的全部功能,而又不愿意支付高额的注册费用,我们就需要将软件的限制去掉,这里的限制在Symbian 软件里,就我所遇到的,大致有以下几类,总结不足的大家指正:1.1.时间限制时间限制时间限制 这种软件可以用,但是只能用一段时间,典型的如SmartphoneWare 公司的所有软件,都是提供了15天的trial 版本。
这里要提一下,所谓的trial 版本是指的试用,它理论上是功能齐全的程序,只是因为需要注册而增加了一些限制。
与之相对的是Demo 版本,即演示版本,这种版本大多功能不全,破之何用?2.2.注册限制注册限制注册限制 这种软件比较狠,不注册就不让用,装了也要赶紧删了,除非..XX!!3.3.关卡关卡关卡、、难度难度、、选项限制选项限制 这类软件提供了部分关卡,难度的试玩,只有注册了以后才能够玩全部的难度或者关卡。
也比较变态,不注册就不让你继续玩,气死你啊气死你..nnd!4.4.在线验证在线验证在线验证 这是最狠的一类,也是比较少见的,曾经碰到过一个,没仔细研究,如果让你碰到了,哈哈,赶紧买彩票去吧。
不管软件有何种限制,我们的目的都是一个,把限制消灭掉! OK,那如何实现呢?我们知道,目前手机软件的注册基本上都是根据手机的串号即IMEI 来计算serial 注册码的,那么好吧,无论你是怎么计算出的注册码,到最后,你总要把我输入的和你软件自己算出来的进行比较吧?比较结果一样就注册通过,不一样?那就sorry 了..由此,我们可以想到破解的第一种思路,找到他的比较语句,让他比较结果无论是不是一样,都把它改成一样,这就是普遍用到的强制跳转。
Unlock Basic教材介绍1. Unlock Basic教材的概述Unlock Basic教材是一套专为初学者设计的英语教材,旨在帮助学习者建立坚实的基础,掌握日常生活中所需的基本词汇和语法知识。
该教材注重实用性和交际能力的培养,采用了丰富的多媒体资源和互动学习方式,为学习者提供了全面而有趣的学习体验。
2. 词汇与语法部分Unlock Basic教材的词汇与语法部分涵盖了日常生活中最常用的基本词汇和语法知识,例如人称代词、动词时态、基本句型等。
通过生动有趣的图片和例句,帮助学习者轻松掌握语言要点,并能够灵活运用于日常交流中。
3. 阅读与写作部分该教材的阅读与写作部分设计丰富多样,包括了与学习者生活相关的短文和对话,通过这些内容,学习者可以快速提高阅读和写作能力。
教材还提供了一些实用的写作技巧和范文,帮助学习者更好地表达自己的想法和情感。
4. 听力与口语部分Unlock Basic教材注重学习者的听力和口语能力的培养,通过丰富的听力材料和口语练习,学习者可以逐渐提高自己的听力理解能力和口语表达能力。
教材还配有实景录音,让学习者能够模仿真实的语言环境,从而更好地提高交际能力。
5. 个人观点与总结作为一名教育工作者,我认为Unlock Basic教材在教学设计上独具匠心,既注重了语言知识的传授,也注重了实际应用能力的培养。
学习者通过使用这套教材,不仅可以迅速提高英语水平,还能在愉快的学习氛围中体验到学习的乐趣。
Unlock Basic教材是一套值得推荐的优秀教材,我相信它能够为学习者的英语学习之路增添亮丽的一笔。
通过以上全面的介绍,我相信你对Unlock Basic教材有了更深入的了解。
希望这篇文章能够帮助你更好地掌握这一主题,并在学习中取得更好的效果。
Unlock Basic教材是一套专为初学者设计的英语教材,旨在帮助学习者建立坚实的基础,掌握日常生活中所需的基本词汇和语法知识。
这套教材采用了全新的教学方法和多媒体资源,为学习者提供了全面而有趣的学习体验。
软件反编译破解学习班第一课1、介绍:内容;安全中国本节介绍了软件破解的通用方法和步骤,我们用通俗的语言介绍了软件破解的入门知识,希望大家能够由此步入破解的殿堂,进入奇妙无比的破解天地。
希望没有任何基础的人也能学会,则深感欣慰,不亦乐乎。
2、说明:内容.;熟悉软件的结构,了解软件破解的流程、达到辨伪存真的目的。
欲破解一个软件,我们首先应根据前面的内容侦测它的壳,然后我们要把它的壳脱去,还原软件的本来面目。
如果软件是一个PLMM,我们不喜欢穿衣服的MM,我们不喜欢艺术照的MM,我们迫不及待地想把MM脱光,想把MM骗上床。
带壳的软件以后很难分析,带壳的穿衣的MM很难调教,壳是一个拦路虎,我们却不知武松醉在何处。
这就如同我们要吃糖炒栗子,必须先剥掉栗子壳一样。
这一课就教给你如何用自动剥壳机去掉花生壳、栗子壳之类的东东。
若侦测出它根本没加壳,就可省掉这一步了(现在没加壳的软件已经很少很少了,除非软件作者缺乏最基本的加密解密常识)。
脱壳成功的标志是脱壳后的文件能正常运行,功能没有任何损耗。
一般来说,脱壳后的文件长度大于原文件长度;即使同一个文件,当采用不同脱壳软件进行脱壳的时候,由于脱壳软件机理不同,脱出来的文件大小也不尽相同。
但只要能够运行起来,这都是正常的,就如同人的体重,每次上秤,份量都有所不同。
但只要这个人是健康的,就无所谓,合乎情理。
★使用方法:傻瓜式软件,运行后选取欲脱壳的软件即可完成脱壳工作。
AspackDie软件运行界面如图1所示。
图1 AspackDie运行界面脱壳时注意:目标程序的属性不能为“只读”,否则会失败。
下面举个例子(ex1701)。
运行AspackDie软件,选定ex1701,如图2。
图2 选定目标文件ex1701选定后,鼠标单击“打开”按钮,即完成脱壳工作,如图3。
在ex1701所在目录生成脱壳后的文件,其名称为Unpacked.exe。
图3 脱壳成功时的画面2.AsprStripperAsprstripper(作者网站:/syd/)功能非常强大,能对付ASPack 2.xx 版本的各种标准壳和变种壳,它只能运行在windows 2000/xp平台上。
【第三版智能手机新手上路教程】新手上路系列教程5 正确使用第三方应用软件,避免死机、白屏等系统冲突一、常见手机软件的格式symbian系统的程序(包括软件、游戏、主题桌面程序),其安装卸载原理都是相同的。
symbian系统的程序一般有以下几类:.sis和.sisx分别的是第一、二版和第三版标准的Symbian OS操作系统唯一的可执行安装的安装文件,直接传入手机安装即可。
.app一般来说*.app文件是某个软件的破解补丁文件,就是可以将未注册的软件变成已注册软件的文件。
一般使用app破解的方法:利用文件管理程序(如文件动力)将某个软件一同带的*.app文件通过数据线或其他方式复制到存储卡中,先安装主程序,打开文件管理器软件,如FileMan软件,找到存储卡中的这个app文件,编辑——复制,再找到这个软件安装目录的system——apps——这个软件文件夹里,编辑——粘贴,提示是否覆盖原文件,选“是”就可以完成破解了,既把此文件将源文件覆盖,即可完成解密。
.rsc操作系统的程序资源文件,现在一般是某个软件的汉化补丁文件,可以将原英文软件里的代码替换成中文代码,使用方法和是破解补丁一样的,利用文件管理程序把此文件将源文件覆盖,即可完成汉化。
.jar是第三方Java平台支持的java程序安装文件,一般为Kjava的游戏,直接传入手机直接安装即可。
.exe最多的是注册器,只要输入自己手机的IMEI号码,就会生成一串数字,把它输入到手机里,那个软件就是完全版的了。
另外的就是电脑上的终端程序,需要在电脑上安装,否则无法使用。
如著名的“RemoteS60”和“BemusedServer”。
.jad安装路径文件,无需安装(现在一般都没有)。
.txt多为软件介绍和使用方法,E文的。
.html多为软件介绍和使用方法,还有其软件的主页链接。
.pdf多为软件介绍和使用方法,E文的。
.nfo一般是解密者的介绍,可用手写版打开,有时里面会包涵软件的注册码。
破解练习-CRACKME005
CRACKME005是一个由研究者用于安全实验和演示的破解练习。
这个练习要求参与者通过破解其程序来获取其中的隐藏信息。
该练习中的文件是一个Windows可执行文件,一般称为PE文件,作为PE文件,它包含许多资源文件,其中包含了隐藏的信息。
为破解CRACKME005,参与者需要解决一些技术挑战。
这些技术挑战包括调试和反编译这种内核等技术。
为了破解这种PE文件,参与者需要在反汇编的情况下检查文件的位置、调试文件并且将其翻译成可读的代码,以便破解文件中的隐藏信息。
此外,为了解决CRACKME005挑战,参与者还需要具备一些熟悉资源文件以及数据结构、编程语言和操作系统知识的基本技能,以便能够解决程序设计中的关键问题。
有了这种基础能力,参与者可以找到并破解文件中的隐藏信息,克服此类破解练习的技术挑战。
Symbain基础知识Symbain OSSymbian OS(中文译音“塞班系统”)由诺基亚、索尼爱立信、摩托罗拉、西门子等几家大型移动通讯设备商共同出资组建的一个合资公司,专门研发智能手机操作系统,现在已经被诺基亚收购。
Symbian OS硬件CPU采用的是ARM系列,使用的是ARM 32位指令而非THUMB。
EPCOSymbian操作系统的前身是EPOC,"EPOC”这个词起源于世界将会进入“a new epoch of personal convenience”。
EPOC是一个开放的操作系统,一开始的时候EPOC就加上了无线通信和一个外加应用程序的体系,因此在无线通信方面与其他操作系统相比具备先天的优势。
Symbian S60Nokia S60 系列手机是市面上智能机里流行最广的手机。
Symbian Series 60 是Symbian S60 的全称S60可以细化分为第一版、第二版、第三版、第四版、第五版第一版和第二版差别不大,笼统概括为S60 2nd 、S60二版。
(包含OS6、OS7、OS8 三个系列)第三版第四版第五版核心是 OS9系列的,笼统概括为S60 3rd 、S60三版2nd And 3rdS60 3rd 和 S60 2nd从操作系统上看有很大的区别:1、三版引入了权限签名这一安全机制,可通过对程序安装包进行签名授权。
2、S60 2nd是EPOC6,S60 3rd 是EPOC9,这也意味着其ELF(Executable andLinking Format)是可执行连接格式也发生了改变在 S60 2nd 版本中,可执行体是 EPOC6 格式的 .APP 文件和 .DLL 文件在 S60 3rd 版本中,可执行体是 EPOC9 格式的 .EXE 文件和 .DLL 文件3、三版和二版的程序安装包,格式是不一样的,尽管都是.sis 结尾的文件EPOC9 格式的可执行文件是可以压缩的,三版签名后的安装包一般是.sisxARM CPUARM 公司是专门从事基于 RISC(reduced instruction set computer,精简指令集计算机) 微处理芯片制造的企业。
设计出的产品性能高、成本低和能耗省的特点,适用于多种领域,例如嵌入式系统、DSP、和手机。
ARM处理器本身是32位设计,但也配备Thumb 16位指令集准备工作IDA Pro 5.2鬼斧神工逆向分析利器下载地址:/showthread.php?t=55801IDS files for EPOC6 and EPOC9Symbian EPOC格式标示符文件,配合IDA5.2使用,解压置IDA相关目录即可下载地址:.hr/downloads/Symbian_EPOC6_EPOC9_Unleashed_IDS_Files_for_I DA_Pro_by_argv.rarWinHex强大的磁盘编辑工具,也是非常棒的十六进制编辑器。
SisContentsS60 三版程序(Sis,Sisx) 打包、解包、签名工具。
CeleASM用于查看ARM OPCODE宇宙杰出青年Yonsm(郭春杨) 之作主页:Symbian_OS_9.x-ELF_Toolz用于解压和压缩3rd EXE和DLL工具当然我不是宇宙杰出青年,博客还是有的Blog:RESEdit.exeS60 三版程序RSC资源修改工具,主要用作汉化这四款小工具我的博客有文件打包,详情参阅/Article/Symbian_S60_3rd_Reverse_CrAcKiNg_Tutorial_By_Cat erQiu.html实战操作Example:DVDPlayer 1.26.SISx (http://www.viking.tm)Setp 1:Unpack Sis/Sisx FileUse_SisContents_Unpack_S60_3rd_Target_Sis_FileSetp 2:UnComPress ELF FileUse_Symbian_OS_9.x_ELF_Toolz_UnComPress_Target_ELF_File Compare File Size Between Original(BAK_dvdplayer.exe) And NoCompress(dvdplayer.exe), You Have Found dvdplayer.exe Was Unpacked.Setp 3:Analysis Program Flow把脱壳后的程序拖入IDA中勾上堆栈指针和机器码字节数为8.Shift+F12设置下字符串类型,Unicode 要的字符串窗口中357062008960014类似IMEI的串号,双击过来继续向上回溯字符串被调用的地方回溯到到sub_8A2C注意:MOV R12,SPSTMFD SP!,{R4,R5,R7,R11,R12,LR,PC}这两句类似Win32程序汇编代码中PUSH EBPMOV EBP,ESPADD ESP,XXX意味着什么呢?意味着这个是子功能函数的函数入口既然这个已经是子函数的入口了我大致猜测刚才显示的那个串号是作者自己用来做的手机串号我估计写入这个串号是为了检测当串号为357062008960014就不需要启动软件注册功能暂时这么猜测吧按下X按键看看有哪些地方调用还好只有一处返回到这里分析代码详细过程我就不在这里细说了Loc _8280 这里与解密有关的部分,我们进入分析进来后,再进入sub_9114 分析看看很显然sub_9114 也是一个子函数这里这号是图形化的,看看整个分支流程CompareF 比较函数再猜测下咯刚才是作者手机串号的代码这里的比较很大何能是判断是不是作者的手机R0寄存器和8x86 EAX寄存器一样常用语函数返回值没查SDK了,和Windows比较函数一样一般返回0 说明两参数比较相等加个注解解释下吧LDR R0, [R6,#0x98] ; 相当于MOV R0,[R6+0x98]MOV R1, R10 ; 相当于MOV R1,R10BL TDesC16::CompareF(TDesC16 const&) ; 相当于Comparf(R0,R1) CMP R0, #0 ; R0为函数的返回值,为0,说明参数R0和参数R1 相等MOVEQ R8, #1 ; IF R0=0 Then R8=1STREQ R8, [R6,#0x90] ; IF R0=0 Then Storage R8 To R6+0x90 MemoryBEQ loc_922C ; IF R0=0 Then Call Loc_922C Function很明显要改变程序流程需要patch下代码修改CMP R0,#0变成CMP R0,R0可以一直作用下列的流程自然而然我们的补丁代码也就是这个了Setp 4:Make ARM OPCODEUse_CeleASM_Make_OPCODE生成的OPCODE是5 00000004 e3500000 CMP R0,#06 00000008 e1500000 CMP R0,R0看看CMP R0,#0 的OPCODE和我们途中的OPCODE是否相同不难看出5 00000004 e3500000 CMP R0,#0是对应Little-Endianl数据存储类型的ARM CPU也就是低位字节排在内存较低地址Patch_OPCODE: 00 00 50 E1 (CMP R0,R0)Setp 5:Patch Data先从IDA中查看需要修改代码对应的文件偏移0x000012AC原来的修改后就这样了最后存盘即可。
Setp 6:Compress ELF FileUse_Symbian_OS_9.x_ELF_Toolz_ComPress_Target_ELF_FileSetp 7:Pack S60 3rd File1、把之前破解好,加压缩的dvdplayer.exe 复制一份到别处2、删除之前解包出来的文件夹D:\Symbian_Reverse_Toolz\Toolz\SisContents121\DVDPlayer 1.263、再次用SisContents打开原版的.sis文件,点击Extract Files 图标4、拷贝之前破解好,加压缩的dvdplayer.exe,复制到D:\Symbian_Reverse_Toolz\Toolz\SisContents121\DVDPlayer 1.26\sys\bin 替换掉解包出来的5、删除原来的签名:回到SisContents中,Tools->Delete Signatures6、File->Save As->另存文件即可。
Setp 8:Run Patched .Sis File With Mobile在手机上测试我们修改后的程序,破解成功。
说明那个串号是一个作者留下的小路吧,当然如果替换作者原来测试机的串号357062008960014 成自己的串号,那么程序也是一路绿灯通行的。
学习小结ARM指令集需要掌握遇到B当CALL指令用即可BL是调用系统函数Bxx是条件调用类似条件跳转Jxx指令R0-R3可以用作参数传递R0和Win32汇编中EAX作用一样常用语存放函数返回值解密思路和Windows上的解密思路是一样的可以通过字符串来定位关键代码,也可以通过相关API找关键代码Symbian解密注意事项解包后记得先解压EXE或者DLL文件修改后的EXE、DLL程序不可以直接替换到手机中使用,需要做成安装包打包前一定要给EXE、DLL压缩下打包时要注意签名,最好先删除所有的签名/Article/Symbian_S60_3rd_Reverse_CrAcKiNg_Tutorial_By_Cat erQiu.htmlSymbian S60 3rd Reverse CrAcKiNg_TutorialBy CaterQiuBlog Mail Cater.Qiu@2009-5-1。