(教师版)一年级奥数23讲:第16讲 巧算速算(二)
- 格式:doc
- 大小:62.11 KB
- 文档页数:3
目录第一章:数一数第一讲看图数一数第二讲有几种走法第二章:比一比、看一看第一讲变与不变第二讲移多补少单元练习(一)第三章:算一算(一)第一讲单数和双数第二讲算式猜谜第三讲巧算速算(一)第四讲+、-和()单元练习(二)第四章:简单应用(一)第一讲没有那么简单第二讲简单的判断第三讲小兔吃萝卜第四讲猫和老鼠单元练习(三)第五章:找规律第一讲按规律填下去第六章:算一算(二)第一讲合理分组第二讲天平平衡第二讲巧算速算(二)单元练习(四)第七章:简单应用(二)第一讲摸彩球第二讲付钱的方法第三讲鸡兔同笼单元练习(五)第八章:趣味数学第一讲火柴棒游戏(一)第二讲火柴棒游戏(二)第三讲趣味问题单元练习(六)综合练习(一)综合练习(二)第一章数一数第一讲看图数一数【知识导航】数学上有很多重大的发现和疑难问题的解决都离不开推理,学会了推理,能使小朋友们头脑更灵活,变得更聪明。
这一周我们将共同研究简单推理的初步知识,今后我们将进一步去学习,希望大家能够多观察、多动脑、多分析,培养我们的观察能力和分析能力。
【典型例题】【例1】填空【试一试】填空【例2】“?”处代表几?【试一试】“?”外代表几?【例3】填空。
【试一试】填空。
【例4】【试一试】【*例5】填空。
【*试一试】填空。
课外作业家长签名:1、= + + +2、★ = ☆ + ☆☆ = ▲ + ▲ + ▲★ = ()个▲3、(1)□ + 6 = 12 □=()△ + □ =10 △=()(2)● - ▲ = 7 ▲=()▲ + 4 = 9 ●=()4、(1)○ + ○ + ☆ = 10○ + ○ + ☆ + ☆ =14那么:☆ = 2(2)□ + ○ + ○ = 30如果:○ = 8 那么:□ = ()5、小明比小白大6岁,小丽比小明小6岁。
小白和小丽谁大?我的学习收获:。
我来编题:。
第二讲有几种走法【知识导航】小朋友,我们外出可乘不同的交通工具,两地之间也有不同的路线,究竟有多少种不同的走法,你能一一列举清楚吗?学习下面的内容,你一定会有所收获的。
小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。
选手们为争夺冠军,都在舞台上发挥着自己的最好水平。
台下的工作人员小熊和小白兔正在统计着最后的得分。
由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。
观众的情绪也影响着两位分数统计者。
只见分数一到小白兔手中,就像变魔术般地得出了答案。
等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。
小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。
于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。
你可以试一试。
”小熊照着小白兔说的去做,果然既快又对。
.速算与巧算引导:1、计算(凑十法)1+2+3+4+5+6+7+8+9+102、计算(凑整法)1+3+5+7+9+11+13+15+17+192+4+6+8+10+12+14+16+18+202+13+25+44+18+37+56+753、计算(用已知求未知)1+2+3+4+5+6+7+8+9+10+11+12+13+14+155+6+7+8+9+104、计算(改变运算序次)10-9+8-7+6-5+4-3+2-15、计算(带着“ + ”、“ -”号乔迁)1-2+3-4+5-6+7-8+9-10+11一、凑十法:利用个位数相加之和都等于10 的技术题1 、计算1+2+3+4+5+6+7+8+9+10这种渐渐相加的方法,好处是能够获得每一步的结果,但缺点是麻烦、简单出错;而且一步出错,今后步步都错。
若是利用凑十法,就能战胜这种缺点。
二、凑整法:同学们还知道,有些数相加之和是整十、整百的数,如:巧用这些结果,能够使那些较大的数相加又快又准。
像 10 、20 、 30 、40 、50 、60 、70 、 80 、90 、100 等等这些整十、整百的数就是凑整的目标。
题2 、计算1+3+5+7+9+11+13+15+17+19解:这是求 1 到 19 共 10 个单数之和,用凑整法做:题3 、计算2+4+6+8+10+12+14+16+18+20解:这是求 2 到 20 共 10 个双数之和,用凑整法做:题4 、计算2+13+25+44+18+37+56+75解:用凑整法:三、用已知求未知利用已经获得较简单的知识来解决面对的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的本质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。
题5 、计算: 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20解:由例 2 和例 3 ,已经知道从 1 开始的前 10 个单数之和及从 2 开始的前 10 个双数之和,巧用这些结果计算这道题就简单了。
小学一年级奥数:速算与巧算1、计算(凑十法)1+2+3+4+5+6+7+8+9+102、计算(凑整法)(1) 1+3+5+7+9+11+13+15+17+19(2) 2+4+6+8+10+12+14+16+18+20(3) 2+13+25+44+18+37+56+753、计算(用已知求未知)1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+201+2+3+4+5+6+……+46+47+48+494、计算(改变运算顺序)10-9+8-7+6-5+4-3+2-1 22-20+18-16+14-12+10-8+6-4+2-0 5、计算(带着“+”、“-”号搬家)在只有加减运算的算式中,有时改变加、减的运算顺序可使计算显得十分巧妙!(1) 1-2+3-4+5-6+7-8+9-10+11 (2)45-48+50-52+54-56+58-60+62 (3) 10-20+30-40+50-60+70-80+90例1 哥哥和妹妹分糖。
哥哥拿1块,妹妹拿2块;哥哥拿3块,妹妹拿4块;接着哥哥拿5块、7块、9块、11块、13块、15块,妹妹拿6块、8块、10块、12块、14块、16块。
你说谁拿得多,多几块例2 星期天,小明家来了9名小客人。
小明拿出一包糖,里面有54块。
小明说:“咱们一共10个人,每人都要分到糖,但每人分到的糖块数不能一样多,谁会分”结果大家都无法分,你能帮他们分好吗例3 时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,……照这样敲下去,从1点到12点,这12个小时时钟共敲了几下习题二1.三个小朋友分5块糖。
要求每人都分到糖,但每人分到的糖块数不能一样多,你能分吗2.①把16只小鸡分别装进5个笼子里,每个笼子里都要有鸡,而且每个笼子里的鸡的只数也不能相同,如何分装②按同样要求,把15只小鸡装进5个笼子能办得到吗③按同样要求,把14只小鸡分装到5个笼子能办得到吗3.①把100块糖分给10个小朋友。
小学奥数--速算巧算方法目录1 (3) (5) (8) (10) (14) (16)181920222323252729 注:《速算技巧》 (33)第五讲常用巧算速算中的思维与方法(4)方法一:拆数加减在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可大大地简化运算。
(1)拆成两个分数相减。
例如又如(2)拆成两个分数相加。
例如又如方法二:同分子分数加减同分子分数的加减法,有以下的计算规律:分子相同,分母互质的两个分数相加(减)时,它们的结果是用原分母的积作分母,用原分母的和(或差)乘以这相同的分子所得的积作分子。
分子相同,分母不是互质数的两个分数相加减,也可按上述规律计算,只是最后需要注意把得数约简为既约(最简)分数。
例如(注意:分数减法要用减数的原分母减去被减数的原分母。
)由上面的规律还可以推出,当分子都是1,分母是连续的两个自然数时,这两个分数的差就是这两个分数的积,根据这一关系,我们也可以简化运算过程。
例如方法三:先借后还“先借后还”是一条重要的数学解题思想和解题技巧。
例如做这道题,按先通分后相加的一般办法,势必影响解题速度。
现在从“凑整”着眼,采用“先借后还”的办法,很快就将题目解答出来了。
第六讲常用巧算速算中的思维与方法(5)方法一:个数折半下面的几种情况下,可以运用“个数折半”的方法,巧妙地计算出题目的得数。
(1)分母相同的所有真分数相加。
求分母相同的所有真分数的和,可采用“个数折半法”,即用这些分数的个数除以2,就能得出结果。
这一方法,也可以叙述为分母相同的所有真分数相加,只要用最后一个分数的分子除以2,就能得出结果。
(2)分母为偶数,分子为奇数的所有同分母的真分数相加,也可用“个数折半法”求得数。
比方(3)分母相同的所有既约真分数(最简真分数)相加,同样可用“个数折半法”求得数。
比方方法二:带分数减法带分数减法的巧算,可用下面的两个方法。
奥数一年级教案速算与巧算Company number【1089WT-1898YT-1W8CB-9UUT-92108】【例1】哥哥和妹妹分糖。
哥哥拿1块,妹妹拿2块;哥哥拿3块,妹妹拿4块;接着哥哥拿5块、7块、9块、1 1块、13块、15块,妹妹拿6块、8块、10块、12块、14块、16块。
你说谁拿得多,多几块? 解:方法1:先算哥哥共拿了多少块?1+3+5+7+9+11+13+15=64(块)再算妹妹共拿了多少块2+4+6+8+10+12+14+16=72(块)72—64=8(块)方法2:这样想:先算每次妹妹比哥哥多拿几块,再算共多拿了多少块。
(2﹣1)+(4﹣3)+(6﹣5)+(8﹣7)+(10﹣9)+(12﹣11)+(14﹣13)+(16﹣15)=1+1+1+1+1+1+1+1=8(块)可以看出方法2要比方法1巧妙!平时注意积累,记住一些有趣的和重要的运算结果,非常有助于速算。
比如,请同学记住几个自然数相加之和:1+2=3l+2+3=61+2+3+4=lOl+2+3+4+5=151+2+3+4+5+6=211+2+3+4+5+6+7=281+2+3+4+5+6+7+8=361+2+3+4+5+6+7+8+9=451+2+3+4+5+6+7+8+9+10=55【例2】星期天,小明家来了9名小客人。
小明拿出一包糖,里面有54块。
小明说:“咱们一共10个人,每人都要分到糖,但每人分到的糖块数不能一样多,谁会分”结果大家都无法分,你能帮他们分好吗解:按小明提的要求确实无法分。
因为要使得每个人都得到糖,糖块数人人不等,需要糖块数最少的分法是:第一人分到1块,第二人分到2块,…第十人分到10块。
但是,这种分法共需要有1+2+3+4+5+6+7+8+9+10=55(块)而小明这包糖一共才54块,所以按这种方法无法分。
如果改变一下,有一人少得1块糖,比如说,应该得10块糖的小朋友只分到了9块,但是这样一来,他就和另一个先分得9块糖的那个小朋友一样多了,这又不符合小明提出“每人分到的糖块数不能一样多”的要求。
小学数学奥数精讲速算与巧算The following text is amended on 12 November 2020.在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结构都是整十、整百、整千……的数,再将各组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
一、先讲加法的巧算,加法具有以下两个运算律:加法交换律:两个数相加,交换加数的位置,它们的和不变。
即:a+b=b+a其中,a,b各表示任意数字。
例如,5+6=6+5一般地,多个数相加,任意改变相加的顺序,其和不变。
例如,a+b+c+d=d+b+c+a=…其中,a,b,c,d各表示任意一数。
加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者,先把后两个数相加,再与第一个数相加,它们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中,a,b,c,各表示任意一数。
例如:4+9+7=(4+9)+7=4+(9+7)一般地,多个数相加,可先对其中几个数相加,再与其他数相加。
把加法交换律和加法结合律综合起来运用,就得到加法的一些巧算方法。
1、凑整法。
先把加在一起为整十、整百、整千……的加数加起来,然后再与其他的数相加。
例1:计算(1)23+54+18+47+82(2)1350+49+68+51+32+16502、借数凑整法有些题目直观上凑数不明显,这时可“借数”凑整。
例如,计算976+85,可在85中借出24,即把85拆分成24+61,这样就可以先用976加上24,“凑”成1000,然后再加61。
例2:计算(1)57+64+238+46(2)4993+3996+5997+848二、减法和加减法混合运算的巧算。
加、减法有如下一些重要性质:1、在连减或加、减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。
第三讲 遗算与巧算(2)告诉你本讲酌重点、难点整数四则混合运算的性质对于小数四则混合运算、分数四则混合运算同样适用.对于分数四则混合运算,除了掌握常规的四则运算法则外,还应该掌握一些特殊的运算技巧.看老师画龙点晴,教给你解题诀窍【例1】计算:82.1564.7782.2536.22-++分析与解 通过观察可以发现22.36和77.64两个加数可以“凑整”,25.82和15.82的末尾相同,相减之后可以成为整数,于是可以根据加法的交换律,加减法的运算性质调换数字的位置使计算简便.原式)82.1582.25()64.7736.22(-++=10100+=110=【例2】计算:25.02.35.12⨯⨯分析与解 这一题是三个数连乘,可以运用乘法交换律和结合律进行简算.再从几个数的特点来看,3.2可以拆成0.8和4相乘,分别与12.5和0.25先相乘,原式25.0)48.0(5.12⨯⨯⨯=)25.04()8.05.12(⨯⨯⨯=110⨯=10=【例3】计算:6.45988.22+⨯分析与解 仔细观察发现第一个乘数中有一个因数是22.8,第二个加数,28.226.45⨯=这样 正好和第一个乘式拥有相同的因数22.8,然后运用乘法分配律进行简便计算.原式28.22988.22⨯+⨯=)298(8.22+⨯=⋅⨯=1008.222280=【例4】计算:95558463462558463-⨯⨯+ 分析与解,观察分子与分母,其中有一个算式很接近,分子中是,462558⨯分母中是⨯463,558可以利用乘法分配律把558463⨯改成,558558462+⨯再减去原来的95, 发现分子与分母相等, 原式95558558462462558463-+⨯⨯+= 463558462465584632+⨯⨯+= 1=【例5】计算:5614213012011216121++++++分析与解 根据dn n d n n d +-=+⨯11)((其中n ,d 是自然数),在计算若干个分数之和时,若能将每个分数都分解成两个分数之差并且使中间的分数互相抵消,则能使计算大大简化. 原式7616515414313211211⨯+⨯+⨯+⨯+⨯--⨯= 71616151514141313121211-+-+-+-+-+-= 711-= 76⋅=抉来试一试你的身手吧!计算下列各题:017.2)44.0017.2(56.23.1+--25.1162.053.325.0.2⨯⨯⨯⨯120122011201220102011.3-⨯⨯+ 9017215614213012011216121.4++++++++做题也有小窍门噢!在分数的乘除法运算中,要充分运用约分;在加减法中,有时要将分数分拆.分数分拆、常用约数法,通往初中名校酌班车计算下列各题:114458.035.68.451.2558.4.1⨯+⨯+⨯3403.40340123.0123123.1233.40.2⨯-⨯3.计算:634928181489744921141464732÷÷+÷÷+÷÷÷÷+÷÷+÷÷ 2112119219172171521513213112.4+⨯+⨯+⨯+⨯+⨯ 3333333339.08.07.06.05.04.03.02.01.0.5++++++++提示:233333)4321(4321n n +++++=+++++答 案。
小学一年级奥数速算与巧算Modified by JEEP on December 26th, 2020.小学一年级奥数:速算与巧算1、计算(凑十法)1+2+3+4+5+6+7+8+9+102、计算(凑整法)(1) 1+3+5+7+9+11+13+15+17+19(2) 2+4+6+8+10+12+14+16+18+20(3) 2+13+25+44+18+37+56+753、计算(用已知求未知)1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+201+2+3+4+5+6+……+46+47+48+494、计算(改变运算顺序)10-9+8-7+6-5+4-3+2-1 22-20+18-16+14-12+10-8+6-4+2-05、计算(带着“+”、“-”号搬家)在只有加减运算的算式中,有时改变加、减的运算顺序可使计算显得十分巧妙!(1) 1-2+3-4+5-6+7-8+9-10+11 (2)45-48+50-52+54-56+58-60+62(3) 10-20+30-40+50-60+70-80+90例1 哥哥和妹妹分糖。
哥哥拿1块,妹妹拿2块;哥哥拿3块,妹妹拿4块;接着哥哥拿5块、7块、9块、11块、13块、15块,妹妹拿6块、8块、10块、12块、14块、16块。
你说谁拿得多,多几块例2 星期天,小明家来了9名小客人。
小明拿出一包糖,里面有54块。
小明说:“咱们一共10个人,每人都要分到糖,但每人分到的糖块数不能一样多,谁会分”结果大家都无法分,你能帮他们分好吗例3 时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,……照这样敲下去,从1点到12点,这12个小时时钟共敲了几下习题二1.三个小朋友分5块糖。
要求每人都分到糖,但每人分到的糖块数不能一样多,你能分吗2.①把16只小鸡分别装进5个笼子里,每个笼子里都要有鸡,而且每个笼子里的鸡的只数也不能相同,如何分装②按同样要求,把15只小鸡装进5个笼子能办得到吗③按同样要求,把14只小鸡分装到5个笼子能办得到吗3.①把100块糖分给10个小朋友。