当前位置:文档之家› 黄土地区高速铁路环境振动特性分析

黄土地区高速铁路环境振动特性分析

黄土地区高速铁路环境振动特性分析
黄土地区高速铁路环境振动特性分析

黄土地区高速铁路环境振动特性分析

发表时间:2018-04-16T11:17:14.650Z 来源:《防护工程》2017年第35期作者:白广明王东陈迁[导读] 分析了列车速度为250km/h下黄土地基地面振动的传播和衰减规律,研究结果对黄土地区环境振动特性分析提供了一定的参考。

兰州交通大学兰州 730070

摘要:为了研究黄土地区高速铁路路堤对地面振动的影响,应用ANSYS (LS-DANY)软件建立高速铁路轨道-路基系统三维数值模拟动力学模型对不同高速铁路速度引起的地面振动进行了数值模拟分析。本文分析了250km/h车速下黄土路堤的地面振动的传播与衰减规律。结果表明距轨道中心线8.8m内,即路堤坡脚以内地面振动衰减迅速,路堤坡脚至30m衰减很缓慢,30m以后衰减极小几乎不衰减,并在在

32m处出现了一定的振动“反弹”现象。研究结果对黄土地区环境振动特性分析提供了一定的参考。关键词:高速铁路地面振动路堤黄土

0引言

铁路振动不但影响沿线居民的正常生活与工作,还会对沿线建筑物的安全和精密仪器的正常使用造成影响。朱志辉、余志武等人建立车-桥-墩-桩-土耦合系统的三维有限元模型,认为地面振动强度与列车速度并不是不是线性递增的,而是与上部结构的振动有关。董国庆利用有限元数值软件对高速铁路高架桥段诱发的地面振动及地面隔振进行了研究。黄土地区高速铁路引起环境振动的研究比较少,因此针对黄土地区,开展高速铁路引起的环境振动现场实测和理论研究具有非常重要意义。1列车引起环境振动传播特性

在研究高速铁路环境振动问题时,通常将将土体假设为各向同性的弹性介质体,把土体中传播的应力波简化作弹性波。振动荷载的能量以应力波的形式在土体中向四周各个方向传播。在土体中传播的振动波按照振动方向与传播方向的关系分为有三种剪切波(S波)、压缩波(P波)和表面波(R波)。R波又叫做Rayleigh波,和压缩波统称为体波。能量波在土体中的波速的计算公式:

2 车辆-轨道垂向力模型

2.1车辆模型计算参数

CRH2高速列车采用八节编组形式,计算模型参数如表1所示。表1计算模型参数

2.2列车荷载的计算

高一物理共振现象

第六章C共振现象 一、教学目标 1.知识和技能领域: 1)知道阻尼振动、受迫振动; 2)知道共振现象和共振的条件。 2.方法和过程领域: 1)感受对物理现象进行观察、分析和归纳的过程。 3.情感、态度、价值观领域: 1)激发学习物理的兴趣,培养学生求知和探究进取的精神;2)增强理论联系实际的自觉性。 二、教学重点 共振现象及共振产生的条件 三、教学难点 共振现象及共振产生的条件 四、教学准备 弹簧振子 五、教学设计思路及教学流程 情景引入 ↓↓ 演示实验: 固有振动,受迫振动 ↓ 阻尼振动、受迫振动 固有振动与固有频率 ↓ 自主活动: 观察共振现象 ↓ 共振现象 共振产生的条件 ↓

STS 微波炉加热原理 六、教学过程 引入: 历史上曾发生这几件事,第一件事发生在拿破仑率领法导入侵西班牙时,有一支部队从铁链悬桥上经过时,土兵门跨着整齐而有力的步伐,突然轰隆一声响,桥的一头跌入了大河,把所有的土兵和军官都抛进了水里。 还有一件事发生的俄国圣彼得堡,一只部队在经过丰坦卡河上的大桥时,也是跨着有节奏的步伐,同样发生了桥坠人之的事件。 教材P128,1940年,美国的全长860m的塔柯姆大桥因大风引起的振动而塌毁 [图 6-13(a)],尽管当时的风速还不到设计风速限值的1/3。 [图 6-13(a)] [ 图 6- 13(b)] 上世纪中叶,法国昂热市附近一座长102m的桥,因一队士兵在桥上齐步走,引起桥梁坍塌,死亡226人。 持续发出的某种频率的声音会使玻璃杯破碎 [ 图 6- 13(b)] 。 这是什么原因呢? 认识物理是我们解释、利用和改造自然的工具,激发学习物理知识的热情和兴趣,产生好奇心,激起求知欲。 新课: 一.教材P128“大家谈”(学生讨论) 1. 重新观察实际弹簧振子的振动过程,发现有什么现象? 弹簧振子在阻力作用下振幅越来越小. 2. 简谐运动是理想情况还是实际情况?为什么?

弦振动实验报告

弦振动的研究 '、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密p、弦长L和弦的张力T的关系,并进行测 量。 、、实验仪器 弦线,电子天平,滑轮及支架,砝码,电振音叉,米尺 、实验原理 为了研究问题的方便,认为波动是从A 点发出的,沿弦线朝E端方向传播,称为入射波,再由E端反射沿弦线朝A端传播,称为反射 波。入射波与反射波在同一条弦线上沿相反方向传 播时将相互干涉,移动劈尖E 到适合位置?弦线上 的波就形成驻波。这时, 弦线上的波被分成几段形 成波节和波腹。驻波形成如图(2)所示。 设图中的两列波是沿X轴相向方向传 播的振幅相等、频率相同振动方向一致的简谐波。向右传播的用细实线表示,向 图(2)左传播的用细虚线 表示,它们的合成驻波用粗 实线表示。由图可见,两个 波腹间的距离都是等于半 个波长,这可从波动方程推

导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “0”,且在X二0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y i = Acos2 (ft —x/ ) Y2 = Acos[2 (ft + x/ "+ ] 式中A为简谐波的振幅,f为频率,为波长,X为弦线上质点的坐标位置。两波 叠加后的合成波为驻波,其方程为: Y i + 丫2 = 2Acos[2 (x/ ) + /2]Acos2 ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动, 它们的振幅为丨2A cos[2 (x/ )+ /2] | ,与时间无关t,只与质点的位置 x有关。 由于波节处振幅为零,即:丨cos[2 (x/ ) + /2] | =0 2 (x/ ) + /2 = (2k+1) / 2 (k=0. 2. 3. …) 可得波节的位置为: x = k /2 ②而相邻两波节之间的距离为: X k+1 —X k = (k + 1) 12—k / 2 = / 2③又因为波腹处的质点振幅为最大,即I cos[2 (x/ ) + /2] | =1

转动设备常见振动故障频谱特征案例分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm /s,轴向12.0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。 二、不对中 转子不对中包括轴系不对中和轴承不对中两种情况。轴系不对中是指转子联接后各转子的轴线不在同一条直线上。轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;

2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为1x。第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X和3X振动

振动式HaOH密度在线分析仪

离子膜电解槽的振动式NaOH 密度在线分析仪 离子膜法制碱技术与传统的隔膜法、小邹片相比,具有能耗低、产品质量高、占地面积小、生产能力大及能适应电流昼夜变化波动大等优点,此外,它还彻底根治了石水银对环境污染,因此,被公认为是氯碱工业的发展方向。 在离子膜法制碱过程中,电解槽的阴极室和阳极室用阳离子交换膜隔开,精制盐水进入阳极室 ,纯水加入阴极室 ,通电时H 2O 在阴极表面放电生成氢气,Na +离子通过离子膜 由阳极室迁移到阴极室 与OH —结合成NaOH ,Cl —离子则在阳极表面放电生成氯气经电解 后的淡水随氯气一起离开阳极室 ,阴极中NaOH 的浓度利用电解槽的纯水调节浓度。 在离子膜法制碱过程中由于两个原因,使我们必须测定阴级室 NaOH 浓度 ①离子膜制碱的核心离子交换膜在生产和停车时有一定的碱浓度要求,过高或 过低的NaOH 浓度都会引起膜性能降低,一般在生产时NaOH 要求在30—36%之间,解放军车时17%—36%之间。 ②NaOH 浓度与电流效率之间存在一个极大值,当阴极液NaOH 浓度上升时,膜 含 水率就降低,膜内固定离子浓度随之上升,膜的交换密度变大,因此电流效率就上升, 但是,随NaOH 浓度继续升高,由于OH -离子反渗作用,膜中OH -离子浓度也增大,当NaOH 浓度超过35—36%以后,膜中OH -离子浓度增大的影响就起决定作用OH -要反渗到阳极侧,使 电流效率明显下降。 阳极液中NaOH 浓度对槽电压影响,一般是浓度高槽电压亦高,当碱浓度上升1%时,槽电压就要增加0.014V ,不利生产,因而必须长期稳定地测量控制阴极液中NaOH 浓度是非常重要的。 国外阴极槽碱液浓度测量,一般均采用谐振密度测量方法来解决,谐振式密度计是利用工程力学机械谐振的原理来实现,从力学知道,任一机械振动系统的谐振动频率可根据下式计算: m EK k f 0 E ——谐振元件材料的弹性模量; m ——谐振元件质量; K ——材料的刚度; f 0——零输入时谐振元件频率; k ——与量程有关的常数。 从上式可以看出当有液体存在时,谐振动体振动时其振动频率取决于单振动体质量及期固有的材料特性。由于材料特性和振动体本质质量是一定的,故其振动频率决定于振动体内液体的质量或液体的密度。 P :园筒工作部分长度 n :园筒振动时轴向周期数

(共振现象及其应用)的开题报告

毕业设计开题报告

共振现象及其应用 班级:08级物理师范(2)班姓名:学号: 一、课题的目的及意义 任何物体产生振动后,由于其本身的构成、大小、形状等物理特性,原先以多种频率开始的振动,渐渐会固定在某一频率上振动,这个频率叫做该物体的“固有频率”,因为它与该物体的物理特性有关。当人们从外界再给这个物体加上一个振动(称为策动)时,如果策动力的频率与该物体的固有频率正好相同,物体振动的振幅达到最大,这种现象叫做“共振”。物体产生共振时,由于它能从外界的策动源处取得最多的能量,往往会产生一些意想不到的后果。研究共振现象的目的和意义如下: 目的:对共振现象的条件以及结论进行理论推理,综述防振减振技术及共振现象的应用。 意义:物体发生共振时,由于它能从外界的策动源处取得最多的能量,往往会产生一些意想不到的后果。通过对共振现象的条件以及结论进行理论推理,对共振有充分的认识,巧妙利用,消除危害。那么,共振就能成为我们开发自然的最好的工具。 二、国内外研究概况 共振是物理学上的一个运用频率非常高的专业术语。共振的定义是驱动力的频率接近物体的固有频率时,受迫振动的振幅增大的现象。 超声振动检测法是使被检测物体受激产生振动,通过对其振动特性(主要是振动系统的等效力阻抗Z )的测量从而检测物体的缺陷或特性。实现振动检测的 M 具体方法很多,其中之一是共振法。共振法是利用换能器激发被测物体共振, 又利用换能器测量此共振频率(即Z ,中力抗X=O时的频率)以实现检测【1】。 M 世界上最早进行共振实验是在11世纪,我国宋代科学家沈括,剪一个小纸人放在弦线先上,弹动发生振动的弦,纸人就跳跃颤动,弹动别的弦,纸人却不动。这个实验比欧洲所做的同样的实验早好几个世纪。15世纪,意大利的达·芬奇才开始做共振实验,直到17世纪,牛津的诺布耳和皮戈特才以所谓的“纸游码”

弦振动研究试验(教材)

弦振动研究试验 传统的教学实验多采用音叉计来研究弦的振动与外界条件的关系。采用柔性或半柔性的弦线,能用眼睛观察到弦线的振动情况,一般听不到与振动对应的声音。 本实验在传统的弦振动实验的基础上增加了实验内容,由于采用了钢质弦线,所以能够听到振动产生的声音,从而可研究振动与声音的关系;不仅能做标准的弦振动实验,还能配合示波器进行驻波波形的观察和研究,因为在很多情况下,驻波波形并不是理想的正弦波,直接用眼睛观察是无法分辨的。结合示波器,更可深入研究弦线的非线性振动以及混沌现象。 【实验目的】 1. 了解波在弦上的传播及弦波形成的条件。 2. 测量拉紧弦不同弦长的共振频率。 3. 测量弦线的线密度。 4. 测量弦振动时波的传播速度。 【实验原理】 张紧的弦线4在驱动器3产生的交变磁场中受力。移动劈尖6改变弦长或改变驱动频率,当弦长是驻波半波长的整倍数时,弦线上便会形成驻波。仔细调整,可使弦线形成明显的驻波。此时我们认为驱动器所在处对应的弦为振源,振动向两边传播,在劈尖6处反射后又沿各自相反的方向传播,最终形成稳定的驻波。 图 1

为了研究问题的方便,当弦线上最终形成稳定的驻波时,我们可以认为波动是从左端劈尖发出的,沿弦线朝右端劈尖方向传播,称为入射波,再由右端劈尖端反射沿弦线朝左端劈尖传播,称为反射波。入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,在适当的条件下,弦线上就会形成驻波。这时,弦线上的波被分成几段形成波节和波腹。如图1所示。 设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同、振动方向一致的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,当传至弦线上相应点时,相位差为恒定时,它们就合成驻波用粗实线表示。由图1可见,两个波腹或波节间的距离都是等于半个波长,这可从波动方程推导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动相位始终相同的点作坐标原点“O”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:Y1=Acos2π(ft-x/ λ) Y2=Acos2π(ft+x/ λ) 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos2π(x/ λ)cos2πft ······①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2Acos2π(x / λ) |,只与质点的位置X有关,与时间无关。 由于波节处振幅为零,即|cos2π(x / λ) |=0 2πx / λ=(2k+1) π / 2 ( k=0.1. 2. 3. ······) 可得波节的位置为: X=(2K+1)λ /4 ······②而相邻两波节之间的距离为: X K+1-X K =[2(K+1)+1] λ/4-(2K+1)λ / 4)=λ / 2 ·····③又因为波腹处的质点振幅为最大,即|cos2π(X / λ) | =1 2πX / λ=Kπ ( K=0. 1. 2. 3. ······) 可得波腹的位置为: X=Kλ / 2= 2kλ / 4 ·····④这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节(或相邻两波腹)间的距离,就能确定该波的波长。 1

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

振动分析

振动分析 常见故障类型及频谱 一、常见的故障主要包括以下几类: 1)共振2)不平衡3)不对中4)轴弯曲 5)机械松动6)电动机问题7)滑动轴承问题 8)滚动轴承问题9)齿轮问题10)皮带问题11)风机问题12)泵的问题 二、频谱 1、共振 1.1 判断依据: 共振是旋转机械常见的问题。旋转部件如转轴的共振通常叫做临界转速。共振存在于一个结构的所有部件,甚至在管路和水泥地板等,重要的是要避免机器运行在导致共振的频率上。识别共振的简单方法是比较同一轴承三个方向水平、垂直和轴向的振动值,如果某一方向的振动大于其它方向的振动三倍以上,机器则可能在该方向存在共振。 1.2 频谱现象: 1.3 解决方法: 在可能的条件下改变机器的转速,常用的解决方法是改变机器结构的质量或刚度。 2、不平衡 2.1 判断依据: 当旋转部件的重心与旋转中心不一致,即质量偏心时产生不平衡。不平衡的转子产生离心力使轴承损坏,导致轴承寿命降低。仅仅百分之几毫米的重心位移可引起非常大的推动力。不平衡引起明显的转频振动。 2.2 频谱现象:

2.3 解决方法: 找动平衡 3、不对中 3.1 判断依据: 不对中是指两个耦合的轴的中心线不重合,如果州中心线平行称为平行不对中,如果轴中心线在一点相交则称为角不对中,现实中的不对中是两种类型的结合。 3.2 频谱现象: 4、轴弯曲 4.1 判断依据: 轴弯曲引起的振动类似不对中,轴弯曲可能是电动机转子笼条故障引起的转子受热不均导致的。如果弯曲发生在轴中心位置,主导振动是1 x RPM,如果弯曲发生在接近、连轴器,主导振动频率会是2 x RPM。 4.2 频谱现象: 5、机械松动 5.1 判断依据: 有两种机械松动,旋转和非旋转,旋转松动指在机器旋转和固定部件间存在太大的空间;非旋转松动指两个固定部件之间间隙太大。二者都在三个测量方向产生过大的1x RPM 谐频振动。 5.2 频谱现象:

弦振动实验报告

弦振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系, 并进行测量。 三、 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程

分别为: Y1=Acos2π(ft-x/ λ) Y2=Acos[2π (ft+x/λ)+ π] 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos[2π(x/ λ)+π/2]Acos2πft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2π(x/ λ)+π/2] |,与时间无关t,只与质点的位置x有关。 由于波节处振幅为零,即:|cos[2π(x/ λ)+π/2] |=0 2π(x/ λ)+π/2=(2k+1) π/ 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=kλ /2 ② 而相邻两波节之间的距离为: x k+1-x k =(k+1)λ/2-kλ / 2=λ / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2π(x/ λ)+π/2] | =1 2π(x/ λ)+π/2 =kπ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)λ/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=nλ/ 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: λ=2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=λf,将⑤式代入可得弦线上横波的

AWA6256B-环境振动使用说明

目录 1 概述 2 2 主要性能指标 3 3 结构特征 6 3.1 外形图 6 3.2 按键 6 3.3 输入输出接口7 3. 4 过载指示9 3.5 工作电源9 4 常见符号及名词术语10 5 工作原理11 6 仪器的连接和开关机11 6.1 连接11 6.2 开关机11 7 参数设置12 7.1 参数设置菜单12 7.2 预存测点名的输入14 7.3 查看预存测点名16 8 振动测量16 8.1 显示界面和选项16 8.2 进行测量19 9 数据管理20 9,1 数据调阅20 9.2 用微型打印机打印输出22 9.3 删除存储的数据23 9.3 删除存储的数据23 10频率计权相对响应(ISO8041,2型)24 11 为试验目的规定的信息25 附录装箱清单26

1.概述 AW A6256B +型环境振动分析仪是一种采用数字信号处理技术的手持式分析仪,它既能测量全身垂向(W.B.z )计权振级(也是环境振级),又能测量全身水平(W.B.x-y )计权振级,以及不计权振动加速度级。满足GB/T 10071-1988 《环境振动测量方法》标准对振动测量仪器的要求,也符合ISO 8041:1990《人体对振动的响应——测量仪器》。 AW A6256B +型是AW A6256B 型的换代产品,与AW A6256B 型环境振动分析仪相比,主要是频率计权、检波和时间计权是通过数字信号处理技术实现的,因此稳定性更好,动态范围更大,而且以后可升级为符合正在修订中的新的环境振动国家标准要求,外形更加美观。 环境振动对人体的影响与振动的加速度有效值、振动的频率特性、振动的作用时间、振动的方向和部位等等因素有关。评价振动对人体的影响的基本量是频率计权加速度a W 或频率计权加速度级VL W (简称计权振级): 频率计权加速度(指数平均) a W :按公式4-1进行均方根计算 (1) 计权振级:均方根计权加速度a w 与基准加速度a 0的比值取以10为底的对数再乘以20,即 VL W =20l g(a w /a 0) (dB) (2) 式中:a W 为频率计权加速度有效值(m/s 2) a 0为参考加速度(10-6 m/s 2)。 本仪器内置有根据ISO 8041:1990规定的全身垂直频率计权(W.B.z )和全身水平频率计权(W.B.z-y ),可分别直接测量全身垂直计权振级VL Z 和全身水平计权振级VL X —Y 。仪器还具有平直频率计权特性,用于测量非计权加速度级VLa 。根据GB/T 10070-1980《城市区域环境振动标准》,城市区域环境振动采用铅垂向z 振级,也就是全身垂直()212,exp 1)(???? ????? ??-=?∞-t W W d t a t a ξτξξττ

均匀弦振动实验报告

实验八 固定均匀弦振动的研究 XY 弦音计是研究固定金属弦振动的实验仪器,带有驱动和接收线圈装置,提供数种不同的弦,改变弦的张力,长度和粗细,调整驱动频率,使弦发生振动,用示波器显示驱动波形及传感器接收的波形,观察拨动的弦在节点处的效应,进行定量实验以验证弦上波的振动。它是传统的电子音叉的升级换代产品。它的优点是无燥声污染,通过函数信号发生器可以方便的调节频率,而这两点正好是电子音叉所不及的。 [实验目的] 1. 了解均匀弦振动的传播规律。 2. 观察行波与反射波互相干涉形成的驻波。 3. 测量弦上横波的传播速度。 4. 通过驻波测量,求出弦的线密度。 [实验仪器] XY 型弦音计、函数信号发生器、示波器、驱动线圈和接收线圈等。 [实验原理] 设有一均匀金属弦线,一端由弦码A 支撑,另一端由 弦码B 支撑。对均匀弦线扰动,引起弦线上质点的振动, 假设波动是由A 端朝B 端方向传播,称为行波,再由B 端 反射沿弦线朝A 端传播,称为反射波。行波与反射波在同 一条弦线上沿相反方向传播时将互相干涉,移动弦码B 到 适当位置。弦线上的波就形成驻波。这时,弦线就被分成 几段,且每段波两端的点始终静止不动,而中间的点振幅 最大。这些始终静止的点称为波节,振幅最大的点称为波 腹。驻波的形成如图4-8-1所示。 设图4-8-1中的两列波是沿x 轴相反方向传播的振幅相等、频率相同的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成驻波用粗实线表示。由图4-8-1可见,两个波腹间的距离都是等于半个波长,这可以从波动方程推导出来。 下面用简谐表达式对驻波进行定量描述。设沿x 轴正方向传播的波为行波,沿x 轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点,且在x =0处,振动质点向上达最大位移时开始计时,则它们的波动方程为: )(2cos 1λπx ft A y -= )(2cos 2λ πx ft A y += 式中A 为简谐波的振幅,f 为频率,λ为波长,x 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: 图 4-8-1

旋转机械振动的基本特性

旋转机械振动的基本特性 概述 绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。 旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。 故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。 由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。 从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。 根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。 表1 旋转机械故障原因分类

振动分析仪作业指导书

AWA6256B型环境振动分析仪 作业指导书 一、操作规程 1.开/关机 1.1将LR6(AA)电池装入电池仓,或接入5V外部电源,按下仪器的红色“开机/复位”键后放开,大约1s后LCD显示屏上显示“环境振动分析”并自检。按“△”、“▽”键可以改变LCD显示器的对比度(共30级);按“确定”键,进入主菜单,如果用户5秒以上不按任何键,则自动进入主菜单。主菜单共有三个子菜单,它们分别是①振动测量:并行(同时)测量2种频率计权和1种平直频率响应、4种时间计权的振级或加速度级,统计振动等。②数据管理:查看仪器内已经保存的测量结果。③参数设置:设定测点名、测量时间等参数。 1.2显示屏右上角“”图标后的数字表示还可以保存数据组数。 1.3按“←”、“→”键可以移动光标,按下“确定”键5秒以上不按任何键进入子菜单。 1.4开机后,任何时刻按下“开机/复位”键,仪器马上中断一切操作和测量,执行上述开机/复位操作。 1.5仪器使用完毕,按下“关机”键可将电源关闭,仪器内部的日历时钟子内部后备电池的支持下继续走动,当后备电池充满电时可

供仪器内部的日历时钟继续走动3个月以上。测量结果保存在FLASH 中,没有外部电源的情况下,数据也不会丢失。 2参数设置,在开始测量前,应首先进行参数设置。 参数设置菜单,在主菜单,将光标移动到“参数设置”上,按下“确定”键,依次设定“测点名”、“测定名选择”、“启动前提示用户先设定参数”、“统计用频率计权”、“传感器灵敏度”、“积分测量时间”、“时钟”等参数。 3振动测量 3.1用延伸电缆连接加速度传感器和仪器,将传感器稳定地放置于测点处,传感器上的箭头方向与测量的主轴方向一致。按“开机/复位”键开机,进入“参数设置”子菜单,检查电源电压、测点名、统计用频率计权、传感器灵敏度、积分测量时间、时钟等是否正确,确认后退出“参数设置”子菜单,进入“振动测量”子菜单,选择量程、工作方式,按下“启动”键,仪器开始积分测量和统计分析。 3.2当需要暂停测量时,按一下“启动/暂停”键,仪器暂停测量,再按一下“启动/暂停”键仪器继续测量。 3.3当测量中需要保存测量数据时,先将光标移到屏幕右下角“贮存”项,再按下“确定”键,仪器暂停测量并保存当前测量数据,待存完数据后,按“启动”键继续测量。 3.4当需要人为结束测量并保存测量结果时,先按一下“启动/暂停”键暂停测量,再按下“删除”键,仪器清除当前测量数据并结束测量。

如何演示共振现象

第30卷 第8期2001年8月 中学物理教学参考Physics Teaching in Middle School Vol.30 No.8 Aug.2001 ●实验研究● 如何演示共振现象 朱 红 (江苏常州师范学校 213004) 在演示共振现象时,一般我们是在一根张紧的细绳上悬挂几个固有频率相同和不同的图1 单摆,如图1所示,让单摆A 先摆动起来,对其它的单摆产生驱动力,其它的单摆也会振动起来,振幅越来越大,并且单摆B 、C 的振幅大于单摆D 、E 的振幅,同时单摆A 的振幅逐渐减小,直到为 零;当单摆A 的振幅为零时, 单摆B 、C 的振幅达到最大,之后又逐渐减小,直到为零;此时,单摆A 和单摆D 、E 的振幅不为零,即单摆D 、E 的振幅又大于单摆B 、C 的振幅.在整个过程中,出现单摆B 、C 的振幅有时大于单摆D 、E 的振幅,有时又小于单摆D 、 E 的振幅,那么什么时候能说明产生了共振现 象呢?有些老师从能量的观点来分析,指出当单摆B 、C 的振幅明显大于单摆D 、E 的振幅时,就可以认为产生了共振,实验就可以结束了.笔者认为,这种观点是不恰当的.严格地讲,如图1所示的这个实验装置是一种耦合振动系统,虽然与单摆A 固有频率相同的单摆B 、C 的最大振幅的确是最大的,但是其中每一个单摆都通过绳子受到了周期性的强迫力矩的作用,其运动现象是频率相近的两个同方向的简谐振动合成的“拍”,即振幅时大时小,做周期性的变化,而单摆B 、C 的振幅在某一瞬时最大并不是共振现象,因为共振时的振幅最大且不应该随时间的变化而变化.所以,笔者认为用上述实验装置来演示共振现象是不科学的.下面笔者介绍两种演示共振现象的小实验. 一、竹条(钢锯条)摆找一块硬泡沫塑料做底座,用两根窄的竹条竖直地插在泡沫底座上,再用两只小夹子夹在竹条上不同的位置处,做成“竹条摆”,如图所示实验时用手拿住底座,水平地往复运 动,逐渐提高振动频率.你将会看到在某一特定的频率时,其中的一只摆振幅最大,这就是共振现象.当改变夹子的位置时,摆的固有频图2 率就发生改变,要发生共振,就必须改变往复运动的频率,即驱动力的频率.如果找不到竹条,也可用钢锯条来代替竹条,做成钢锯条摆,其效果也是一样的. 二、拍吊球 用一根橡皮筋像绕线团一样绕在一只小橡胶球上,并将橡皮筋与球接触的根部用线拴图3牢,再将橡皮筋的另一端系在中指根部,把小球吊起来,如图3所示,然后像拍球一样上下摆动手掌.开始时以很低的频率拍球(如f =0.5Hz ),再逐次提高频率,在每次改变频率后,保持稳定一段时间,并且尽力维持驱动振 幅大致相等.观察在驱动频率变化的 过程中球所做受迫振动的情况,可以看到,在某一特定的频率时,球能够大 幅度地上下运动,这时就是发生了共振,而在低于或者高于这个频率时,球的振幅反而变小,即使你使劲地拍也无济于事. 由于上述两种实验装置的制作与取材均非常容易,可以多准备几套,以便把演示实验改为学生随堂小实验,让学生自己去体会共振现象及其产生的条件.在实验过程中随着驱动 力频率的变化,竹条摆和小吊球的振幅也随着 发生变化,只有当驱动力的频率与他们的固有频率相等时,振幅才达到最大(并且在此频率 时振幅不随时间的变化而变化),发生共振.利用这个过程,可以让学生自行探究出驱动力的频率与振幅之间的关系,从而帮助学生理解共振曲线2.. 84

断路器振动分析仪

Circuit Breaker Vibration Analyser- RTGC-8K断路器振动分析仪是一款用于电力系统断路器,负荷开关和隔离开关等交流高压开关机械特性,回路电阻,消弧触头和振动特性等参数测量,分析与智能化评估的综合性分析仪器。仪器功能涵盖了当前所有交流高压开关所需要检测的参数项目。 RTGC-8K断路器振动分析仪产品特性 1)分析仪内部集成的振动测试功能为用户提供了一种全新的断路器机械特性检测手段,相比于传统的时间测量和速度测量,振动指纹检测更简单,更有效。2)振动指纹测试结果包含的断路器信息更丰富,对于存在潜在故障风险或已经存在故障的断路器,能够快速定位故障原因。 3)断路器振动测试无需改变断路器原来的线路连接,因此可以实现对断路器机

械特性的带电检测。 4)消弧触头分析模块,使用户能够在不分拆断路器的情况下实现对断路器内部弧触头磨损程度的自动评估。 5)仪器单机可以完成断路器回路电阻的测量,用户无需再购买回路电阻测试仪,减轻现场试验仪器的重量并节约用户成本。 RTGC-8K断路器振动分析仪技术参数 1、12路时间测量输入通道,其中三路同时支持电阻触头和时间触头,6路完全隔离断口输入,可以同时检测4级串联断口 2、时间测量 测量量程:4000ms分辨率0.01ms,最大测量误差<0.1ms 3、行程传感器: 线性电阻尺测量范围:0~250mm分辨率:0.01mm误差<0.5mm 线性电阻尺测量范围:0~25mm分辨率:0.01mm误差<0.05mm 角度传感器测量范围:0~360度分辨率:0.01度误差<0.5度 加速度传感器测量范围:0~250mm分辨率:0.1mm误差<5%RDG+2D 4、合闸电阻 测量量程:50欧~5000欧姆,测量误差<1%RDG+2D 5、动态电阻: 试电流:25~100A,动态电阻测量误差<1%RDG+2D 6、回路电阻:

分析位移共振和速度共振的条件

分析位移共振和速度共振的条件 高中物理教材关于发生共振条件的论述,现行教材和以前的教材相比说法有所变化。以前的教材讲:“当策动力(现行教材改为驱动力)的频率等于物体的固有频率时,物体做受迫振动的振幅最大,这种现象叫做共振。”,意思是说驱动力的频率等于物体的固有频率是发生共振的条件。现行教材改为“当驱动力的频率接近物体的固有频率时,物体做受迫振动的振幅增大,这种现象称为共振。”究竟怎样才算接近固有频率呢?看高中物理教材共振曲线(见图1),如图2中由12f f →或由43f f →所示的情况也算是接近固有频率吗?如果算,此时却未发生共振,又当如何理解? 再看各种复习参考资料,相关的习题都沿用“驱动力的频率等于固有频率时发生共振”的说法,似乎“驱动力的频率等于物体的固有频率是发生共振的条件”更为可信。然而,根据又是什么呢? 要弄清这个问题,还要从受迫振动说起。为了与高中物理教材吻合,我们只讨论在弱阻尼振动系统上加周期性外力发生的受迫振动。 以弹簧振子为例,质点受三种力:弹性力-kx ,阻尼力dx dt γ-,驱动力F ,设其按余弦(或正弦)规律变化且初相为零,则有 0cos F F t ω= 由牛顿第二定律,有 202cos d x dx m kx F t dt dt γω=--+ 令 2000,2,F k f m m m γ ωβ= == 得 20022cos d x dx x f t dt dt βωω++= 1.1 A f f ′ O 受迫振动的振幅 图2 f 1 f 2 f 3 f 4 A f f ′ O 受迫 振 动的 振 幅 图1

这就是受迫振动的方程,为二阶常系数非齐次微分方程。根据微分方程理论,上式的解为 0cos(')cos()t x Ae t A t βωαω?-=+++ 1.2 A 和α是由初始条件决定的积分常数。(1.2)式为两项之和,表明质点运动包含两个分运动,第一项为阻尼振动,随时间的推移而趋于消失,它反映受迫振动的暂态行为,与驱动力无关。第二项表示与驱动力频率相同且振幅为A 0的周期性振动。开始时,受迫振动的振幅较小,经过一定时间后,阻尼振动消失。质点进行由(1.2)式第二项决定的与驱动力同频率的振动,称为受迫振动的稳定振动状态,可表示如下: 0cos()x A t ω?=+ (1.3) 稳定振动状态表面上像简谐运动,其实不然。ω并非固有频率,而是驱动力的频率;振幅A 0和初相?也并非决定于初始条件,而是依赖于振动系统本身的性质,阻尼的大小和驱动力的特征,将(1.3)式代入(1.1)式,得 20020 00(cos cos sin sin )2(sin cos cos sin )(cos cos sin sin )cos A t t A t t A t t f t ωω?ω?βω?ω?ωω?ω?ω---++-= 由等式性质,有 2 20000 22 00 0()cos 2sin ()sin 2cos 0 A A f A A ωω?βω?ωω?βω?--=-+= 可解出 022 2 2 ()4f A ωωβω = -+ (1.4) 当驱动力频率取某值时,振幅获得最大值(振动系统做受迫振动时,其振幅大最大值的现象叫做位移共振——即高中物理教材中所说的共振)。由上式,并用微分法关于极大值的判据,可求出共振时驱动力的圆频率为 2202r ωωβ=- 这一频率称为位移共振频率。显然,位移共振频率一般不等于振动系统的固有频率。 物体做受迫振动达到稳定状态时,其速度做周期性变化,由(1.3)式可得 0sin()2 x dx v A t dt πωω?= =++ 由此可知速度幅(即速度的最大值) 00v A ω= 由(1.4)式可知,由于A 0随驱动力的频率变化而变化,驱动力频率ω达到某一数值时可使振动的速度幅取最大值,这种现象称为速度共振。将(1.4)式代入00v A ω=,并应用极值的微分判据可得速度共振的条件为 0ωω=

弦振动实验-报告

弦振动实验-报告

实验报告 班级姓名学号 日期室温气压成绩教师 实验名称弦振动研究 【实验目的】 1.了解波在弦上的传播及驻波形成的条件 2.测量不同弦长和不同张力情况下的共振频率 3.测量弦线的线密度 4.测量弦振动时波的传播速度 【实验仪器】 弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台 【实验原理】 驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播,波动方程为 ()λ πx =2 y- cos A ft 当波到达端点时会反射回来,波动方程为 ()λ πx cos =2 y+ A ft

式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为 ft x A y y y πλπ2cos 2cos 22 1=+= 这就是驻波的波函数,称为驻波方程。式中,λπx A 2cos 2是各点的振幅 ,它只与x 有关,即各点 的振幅随着其与原点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ πx A 2cos 2、频率皆为f 的简谐振动。 令02cos 2=λπx A ,可得波节的位置坐标为 () 412λ +±=k x Λ2,1,0=k 令12cos 2=λπx A ,可得波腹的位置坐标为 2λ k x ±= Λ 2,1,0=k 相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。 在本试验中,由于弦的两端是固定的,故两端 点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。 既有 2λ n L = 或 n L 2=λ Λ2,1,0=n

滚动轴承的振动信号特征分析报告

南昌航空大学实验报告 课程名称:数字信号处理 实验名称:滚动轴承的振动信号特征分析实验时间: 2013年5月14日 班级: 100421 学号: 10042134 姓名:吴涌涛 成绩:

滚动轴承的振动信号特征分析 一、实验目的 利用《数字信号处理》课程中学习的序列运算、周期信号知识、DFT 知识,对给定的正常轴承数据、内圈故障轴承数据、外圈故障轴承数据、滚珠故障轴承数据进行时域特征或频域特征提取和分析,找出能区分四种状态(滚动轴承的外圈故障、内圈故障、滚珠故障和正常状态)的特征。 二、实验原理 振动机理分析:机械在运动时,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。 振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。 幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,从而寻找振源,采取相应的措施。 相位:振动信号的相位信息十分重要,如利用相位关系确定共振点、测量振型、旋转件动平衡、有源振动控制、降噪等。对于复杂振动的波形分析,各谐波的相位关系是不可缺少的。 在振动测量时,应合理选择测量参数,如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由速度决定的。速度又与能量和功率有关,并决定动量的大小。 提取振动信号的幅域、时域、频域、时频域特征,根据特征进行故

障有无、故障类型和故障程度三个层次的判断。 三、 实验内容 Step1、使用importdata ()函数导入振动数据。 Step2、把大量数据分割成周期为单元的数据,分割方法为: 设振动信号为{x k }(k =1,2,3,…,n )采样频率为f s ,传动轴的转动速率为V r 。 采样间隔为: 1 s t f ?= (1) 旋转频率为: 60 r r V f = (2) 传动轴的转动周期为: 1 r T f = (3) 由式(1)和(3)可推出振动信号一个周期内采样点数N : 1 1s r r s f f T N t f f = ==? (4) 由式(2)可得到传动轴的转动基频f r =29.95Hz ,再由式(3)可得到一个周期内采样点数N=400.67,取N =400。 Step3、提取振动信号的特征,分析方法包括: 1、时域统计分析指标(波形指标(Shape Factor)、峰值指标(Crest Factor)、脉冲指标(Impulse Factor)、裕度指标(Clearance Factor)、峭度指标(KurtosisValue) )等,相关计算公式如下: (1)波形指标: P f X WK X = (5) 其中,P X 为峰值,X 为均值。p X 计算公式如下:

相关主题
文本预览
相关文档 最新文档