ABAQUS应用梁单元计算简支梁
- 格式:docx
- 大小:24.40 KB
- 文档页数:4
ABAQUS简支梁分析梁单元和实体单元梁单元是ABAQUS中常用的一种单元类型,适用于对梁结构进行分析。
它是一维元素,具有沿一个坐标轴的长度、截面积和转动惯量等属性。
梁单元适用于对纤维偏离主轴较小的梁进行建模。
与梁单元相比,实体单元更适用于对复杂几何形状的梁进行建模。
实体单元是三维元素,它在三个坐标轴上都具有长度,并且可以定义复杂的几何形状。
实体单元适用于对纤维偏离主轴较大的梁、异形梁和复杂梁进行建模。
梁单元的建模步骤如下:1.创建部件:在ABAQUS中创建一个新部件,并设定其属性,如截面形状、材料参数等。
2.创建草图:使用ABAQUS提供的工具创建梁单元的草图,定义梁的几何形状和尺寸。
3.定义截面:将截面属性应用到梁单元上,包括截面形状和尺寸。
4.创建网格:使用ABAQUS的网格划分工具将梁的草图划分为网格,生成梁单元。
5.设置材料属性:为梁单元定义材料属性,包括弹性模量、泊松比等。
6.施加边界条件:为梁单元定义边界条件,如支撑和加载情况。
7.定义分析类型:选择适当的分析类型,如静力分析或动力分析。
8.执行分析:运行分析,并获取梁的响应结果,如位移、应变和应力。
实体单元的建模步骤如下:1.创建部件:在ABAQUS中创建一个新部件,并设定其属性,如材料参数等。
2.创建草图:使用ABAQUS提供的工具创建梁的草图,定义梁的几何形状和尺寸。
3.创建几何图形:使用ABAQUS的几何模块创建复杂的实体几何形状。
4.定义材料属性:为实体单元定义材料属性,包括弹性模量、泊松比等。
5.生成网格:使用ABAQUS的网格划分工具将实体几何形状划分为网格,生成实体单元。
6.施加边界条件:为实体单元定义边界条件,如支撑和加载情况。
7.定义分析类型:选择适当的分析类型,如静力分析或动力分析。
8.执行分析:运行分析,并获取梁的响应结果,如位移、应变和应力。
梁单元和实体单元在ABAQUS中都提供了丰富的分析功能和选项,可以根据实际需要使用不同的单元类型来建模和分析梁结构。
基于ABAQUS简支梁受力和弯矩的相关分析(梁单元和实体单元)对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。
另外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。
对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae,odb,inp文件。
不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。
可以到小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件下载。
对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm,b=300mm,l=1600mm,F=300000N。
现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。
材料采用45#钢,弹性模量E=2.1e6MPa,泊松比v=0.28。
图1 简支梁结构简图1.梁单元分析ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。
在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。
图2 建立part并分割接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。
然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。
图3 创建梁截面形状接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。
ABAQUS计算指导0:应用梁单元计算简支梁的挠度对于梁的分析可以使用梁单元、壳单元或是固体单元。
Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。
注意:因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。
简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。
F=10kN,不计重力。
计算中点挠度,两端转角。
理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。
文件与路径:顶部下拉菜单File, Save As ExpAbq00。
一部件1 创建部件:Module,Part,Create Part,命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。
2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。
3 退出:Done。
二性质1 创建截面几何形状:Module,Property,Create Profile,命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。
2 定义梁方向:Module,Property,Assign Beam Orientation,选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。
3 定义截面力学性质:Module,Property,Create Section,命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109 N/m2),G=82.03e9,ν=0.28,关闭。
基于ABAQUS 简支梁受力和弯矩的相关分析(梁单元和实体单元)对于简支梁,基于ABAQUS2016,首先用梁单元分析了梁受力作用下的应 力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。
另 外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。
对于CAE 仿真分析具体细节操作并没有给出详细的操作,不过在后面上 传了对应的cae, odb , inp 文件。
不过要注意的是本文采用的是 ABAQUS2016 进行计算,低版本可能打不开,可以自己提交 inp 文件自己计算即可。
可以到 小木虫搜索:“基于ABAQUS 简支梁受力和弯矩的相关分析”进行相应文件 下载。
对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在 梁的两端受集中载荷,梁的大直径 D=180mm ,小直径d=150mm ,a=200mm ,b=300mm , l=1600mm , F=300000N 。
现通过梁单元和实体单元分析简支梁的受 力情况,变形情况,以及分析其剪力和弯矩等。
材料采用 45#钢,弹性模量E=2.1e6MPa,泊松比 v=0.28。
1.梁单元分析ABAQUS2016 中对应的文件为 beam-shaft.cae , beam-shaft.odb , beam-shaft.inp 。
在建立梁part 的时候,采用三维线性实体,按照图1所示尺寸建立,然后 在台阶及支撑梁处进行分割,结果如图 2所示lbb aaA ACBA图1简支梁结构简图图2建立part并分割接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。
然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2, n 1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。
图3创建梁截面形状接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。
在Abaqus中使用梁单元进行计算在Abaqus中使用梁单元进行计算(2012-03-26 11:28:00)转载▼标签:分类:ABAQUSabaqus梁杂谈xiaozity 助理工程师:在练习老庄的Crane例题时,欲提取梁元的截面应力。
反复折腾后,小小体会,总结如下:(1)书中讲到:“线性梁元B21、B31及二次梁元B22、B32是考虑剪切变形的Timoshenko 梁单元;而三次梁元B23、B33不能模拟剪切变形,属Euler梁单元”。
(2)众所周知,当要考虑剪切变形时,例如深梁,采用Timoshenko梁单元比较合适。
三次梁元由于可模拟轴线方向的三阶变量,因而对static问题,一个构件常常用一个三次单元就足够,特别对于分布载荷的梁,三次梁元的精度相当高。
(3)Abaqus 会默认在积分点处的若干截面点输入应力值;但用户可自定义应力输出的截面点位置,这通过property-section-manage-edit-output points 来定义输出应力值的截面点;(4)特别要指出的是,无论B22还是B33还是其它梁元,其输出的应力分量只有S11,如图所示;那么,现在的问题是:1:S11代表什么应力,根据经验,大家会认为11是1方向的正应力或主应力等等2:为什么没有S22、S33、S12......下面分别说明:1:S11表达的是梁元的弯曲应力,即局部坐标系下截面上的正应力2:只输出S11,而无其它应力,这是因为梁元之所以成为梁元,有一基本前提就是用梁元来模拟的构件,其正应力是最主要的,而剪应力是可忽略的;一个基本的佐证就是:众所周知,在建立梁的总势能方程时,总是讲剪切应变能是小量,因而它总是被忽略掉的;忽略剪应力的一个结果是:mises应力将与S11在数值上完全相同,不仅Abaqus如此,Ansys 也是如此,这也难怪有人讲:“Timoshenko梁单元是骗人的,它根本没有考虑剪应力”;对这件事情,我想作如下评价:(A)不仅Timoshenko梁单元,其它梁元(不考虑剪切变形)确实在应力的层面没有考虑剪应力的影响,这可从mises应力与S11的比较看出来;而为什么这样处理,理由如上所述,剪应力是高阶量,可忽略,否则就认为不能用梁元来模拟。
对于梁的分析可以使用梁单元、壳单元或是固体单元。
Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。
注意:因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。
简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。
F=10kN,不计重力。
计算中点挠度,两端转角。
理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。
文件与路径:顶部下拉菜单File, Save As ExpAbq00。
一部件1 创建部件:Module,Part,Create Part,命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。
2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。
3 退出:Done。
二性质1 创建截面几何形状:Module,Property,Create Profile,命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。
2 定义梁方向:Module,Property,Assign Beam Orientation,选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。
3 定义截面力学性质:Module,Property,Create Section,命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109 N/m2),G=82.03e9,ν=0.28,关闭。
在Abaqus中使用梁单元进行计算在Abaqus中使用梁单元进行计算(2012-03-26 11:28:00)转载▼标签:分类:ABAQUSabaqus梁杂谈xiaozity 助理工程师:在练习老庄的Crane例题时,欲提取梁元的截面应力。
反复折腾后,小小体会,总结如下:(1)书中讲到:“线性梁元B21、B31及二次梁元B22、B32是考虑剪切变形的Timoshenko 梁单元;而三次梁元B23、B33不能模拟剪切变形,属Euler梁单元”。
(2)众所周知,当要考虑剪切变形时,例如深梁,采用Timoshenko梁单元比较合适。
三次梁元由于可模拟轴线方向的三阶变量,因而对static问题,一个构件常常用一个三次单元就足够,特别对于分布载荷的梁,三次梁元的精度相当高。
(3)Abaqus 会默认在积分点处的若干截面点输入应力值;但用户可自定义应力输出的截面点位置,这通过property-section-manage-edit-output points 来定义输出应力值的截面点;(4)特别要指出的是,无论B22还是B33还是其它梁元,其输出的应力分量只有S11,如图所示;那么,现在的问题是:1:S11代表什么应力,根据经验,大家会认为11是1方向的正应力或主应力等等2:为什么没有S22、S33、S12......下面分别说明:1:S11表达的是梁元的弯曲应力,即局部坐标系下截面上的正应力2:只输出S11,而无其它应力,这是因为梁元之所以成为梁元,有一基本前提就是用梁元来模拟的构件,其正应力是最主要的,而剪应力是可忽略的;一个基本的佐证就是:众所周知,在建立梁的总势能方程时,总是讲剪切应变能是小量,因而它总是被忽略掉的;忽略剪应力的一个结果是:mises应力将与S11在数值上完全相同,不仅Abaqus如此,Ansys 也是如此,这也难怪有人讲:“Timoshenko梁单元是骗人的,它根本没有考虑剪应力”;对这件事情,我想作如下评价:(A)不仅Timoshenko梁单元,其它梁元(不考虑剪切变形)确实在应力的层面没有考虑剪应力的影响,这可从mises应力与S11的比较看出来;而为什么这样处理,理由如上所述,剪应力是高阶量,可忽略,否则就认为不能用梁元来模拟。
基于ABAQUS简支梁受力和弯矩的相关分析(梁单元和实体单元)对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。
另外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。
对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae,odb,inp文件。
不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。
可以到小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件下载。
对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm,b=300mm,l=1600mm,F=300000N。
现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。
材料采用45#钢,弹性模量E=2.1e6MPa,泊松比v=0.28。
图1 简支梁结构简图1.梁单元分析ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。
在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。
图2 建立part并分割接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。
然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。
图3 创建梁截面形状接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。
ABAQUS简支梁分析梁单元是一种一维元素,用于模拟梁结构的性能。
这些单元只在一维方向上有自由度,并且可以模拟杆、梁、桁架等结构的变形和应力响应。
梁单元的计算速度相对较快,且具有较高的精度,适用于较长且较细的结构中,如钢筋混凝土构件、悬索桥、高层建筑等。
实体单元是一种三维元素,用于对立方体、球体、柱体等实体结构的性能进行分析。
实体单元具有六个自由度,分别为三个平移自由度和三个旋转自由度,能够充分模拟结构的各向异性、非线性和复杂几何形状等特性。
实体单元可以用来分析基础、墙体、桥梁、汽车车身等各种结构的力学响应和变形特性。
在ABAQUS中,梁单元和实体单元的使用方式类似,首先需要定义节点坐标和单元拓扑关系,并指定材料属性、边界条件和加载方式等。
然后,可以进行求解并获取结构的应力、应变、位移和变形等结果。
以下内容将详细介绍如何使用ABAQUS进行简支梁的分析。
1. 创建模型:首先,在ABAQUS的Preprocessing环境中创建模型。
选择适当的单位系统,并定义节点坐标和单元拓扑关系。
在创建节点时,需要注意节点编号和坐标的设置,以确保准确的节点连接关系。
2. 定义材料属性:根据实际材料的力学性质,在Material Manager中定义材料的弹性模量和泊松比等参数。
如果需要考虑材料的非线性行为,可以添加相应的本构模型。
3. 指定边界条件:根据简支梁的边界条件,使用Boundary Conditions Manager指定约束条件。
通常,简支梁的两个端点应变为零,即不存在位移和转角。
在指定边界条件时,需要选择适当的边界条件类型并将其应用到相关节点上。
4. 定义加载方式:根据实际加载情况,在Load Manager中定义加载方式。
对于简支梁,可以施加集中载荷、均布载荷、自重载荷等。
在定义载荷的时候,需要指定作用方向、大小和加载位置等。
5. 设置求解选项:在Step Manager中设置求解选项,包括求解器类型、收敛准则和迭代次数等。
基于ABAQUS简支梁受力和弯矩的相关分析(梁单元和实体单元)对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。
另外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。
对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae,odb,inp文件。
不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。
可以到小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件下载。
对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm,b=300mm,l=1600mm,F=300000N。
现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。
材料采用45#钢,弹性模量E=2.1e6MPa,泊松比v=0.28。
图1 简支梁结构简图1.梁单元分析ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。
在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。
图2 建立part并分割接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。
然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。
图3 创建梁截面形状接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。
基于ABAQUS简支梁受力和弯矩的相关分析(梁单元和实体单元)对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。
另外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。
对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae,odb,inp文件。
不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。
可以到小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件下载。
对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm,b=300mm,l=1600mm,F=300000N。
现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。
材料采用45#钢,弹性模量E=2.1e6MPa,泊松比v=0.28。
图1 简支梁结构简图1.梁单元分析ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。
在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。
图2 建立part并分割接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。
然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。
图3 创建梁截面形状接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。
Abaqus分析实例(梁单元计算简支梁的挠度)精讲ABAQUS计畀捲导0 : 应用梁单元计算简支梁的挠度o对于梁的分析可以使用梁单元、壳单元或是固体单元。
Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。
注意:因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。
简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,尸0.28, p=7850kg/m3 (在不计重力的静力学分析中可以不要)。
F=10kN,不计重力。
计算中点挠度,两端转角。
理论解:I =2.239 X 10-5m, w中=2.769 X 10-3m B边=2.077 X 10-3。
文件与路径:顶部下拉菜单File, Save As ExpAbq00 。
一部件1 创建部件:Module, Part, Create Part, 命名为Prat-1; 3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。
2绘模型图:选用折线,从(0,0)T(2,0)T(4,0)绘出梁的轴线。
3 退出:Done。
二性质1 创建截面几何形状:Module , Property, Create Profile ,命名为Profile-1,选I 型截面,按图输入数据,1=0.1 , h=0.2 , b l =0.1 , b2=0.1 , t l=0.01 ,t 2 = 0.01 , t 3=0.01 ,关闭。
2 定义梁方向:Module , Property , Assign Beam Orientation ,选中两段线段,输入主轴 1 方向单位矢量(0,0,1)或(0,0,-1) ,关闭。
3 定义截面力学性质:Module ,Property ,Create Section,命名为Section-1,梁,梁,截面几何形状选Profile-1 ,输入E=210e9 (程序默认单位为N/m2,92GPa=10 N/m),G=82.03e9 , v0.28,关闭。
ABAQUS应用梁单元计算简支梁梁是一种常用的结构元素,广泛应用于建筑、桥梁、机械等领域中。
在工程实践中,经常需要对梁进行计算分析,以确定其受力状态和变形情况。
ABAQUS是一种常用的有限元分析软件,可以用于求解梁结构的力学问题。
本文将介绍如何使用ABAQUS进行简支梁的计算分析。
首先,我们需要将梁模型导入ABAQUS软件中。
梁的几何形状可以使用线、点或者直接输入坐标点的方式进行定义。
梁的截面信息(如截面类型、尺寸等)也需要进行定义。
在ABAQUS中,可以选择多种截面类型,例如矩形、圆形等。
根据实际情况选择合适的截面类型,并根据设计要求输入相应的尺寸。
在模型定义完成后,需要定义边界条件。
对于简支梁而言,端点处的位移应设定为零。
在ABAQUS中,可以通过选择固定边界条件或者施加等效约束条件来实现。
选择固定边界条件需要定义节点的自由度受限情况,而施加等效约束条件则可以直接将节点的位移限制为零。
在定义了几何形状、截面信息和边界条件后,需要定义材料参数。
梁的弹性模量、泊松比和密度等参数需要根据实际材料性质进行设定。
在ABAQUS中,可以选择多种材料模型,例如线弹性模型、双线性弹塑性模型等。
根据实际需求选择合适的材料模型,并输入相应的参数。
模型导入并定义完毕后,需要进行网格划分。
在ABAQUS中,可以选择多种网格划分算法,例如四边形单元、六面体单元等。
根据实际需求选择合适的网格划分算法,并根据划分精度设定网格尺寸。
在进行网格划分时,需要注意保证梁模型的几何形状和截面信息的精确性,避免过度简化导致计算结果的不准确。
完成网格划分后,可以进行加载条件的定义。
在ABAQUS中,可以定义多种加载条件,例如集中力、均布载荷等。
根据实际需求选择合适的加载条件,并输入相应的加载参数。
完成加载条件的定义后,可以进行求解运算。
在ABAQUS中,可以选择静力分析或者动力分析方法进行求解。
根据实际需求选择合适的求解方法,并进行计算。
对于梁的分析可以使用梁单元、壳单元或是固体单元。
Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。
注意:因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。
简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。
F=10kN,不计重力。
计算中点挠度,两端转角。
理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。
文件与路径:顶部下拉菜单File, Save As ExpAbq00。
一部件1 创建部件:Module,Part,Create Part,命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。
2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。
3 退出:Done。
二性质1 创建截面几何形状:Module,Property,Create Profile,命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。
2 定义梁方向:Module,Property,Assign Beam Orientation,选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。
3 定义截面力学性质:Module,Property,Create Section,命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109 N/m2),G=82.03e9,ν=0.28,关闭。
在Abaqus中使用梁单元进行计算在Abaqus中使用梁单元进行计算(2012-03-26 11:28:00)转载▼标签:分类:ABAQUSabaqus梁杂谈xiaozity 助理工程师:在练习老庄的Crane例题时,欲提取梁元的截面应力。
反复折腾后,小小体会,总结如下:(1)书中讲到:“线性梁元B21、B31及二次梁元B22、B32是考虑剪切变形的Timoshenko 梁单元;而三次梁元B23、B33不能模拟剪切变形,属Euler梁单元”。
(2)众所周知,当要考虑剪切变形时,例如深梁,采用Timoshenko梁单元比较合适。
三次梁元由于可模拟轴线方向的三阶变量,因而对static问题,一个构件常常用一个三次单元就足够,特别对于分布载荷的梁,三次梁元的精度相当高。
(3)Abaqus 会默认在积分点处的若干截面点输入应力值;但用户可自定义应力输出的截面点位置,这通过property-section-manage-edit-output points 来定义输出应力值的截面点;(4)特别要指出的是,无论B22还是B33还是其它梁元,其输出的应力分量只有S11,如图所示;那么,现在的问题是:1:S11代表什么应力,根据经验,大家会认为11是1方向的正应力或主应力等等2:为什么没有S22、S33、S12......下面分别说明:1:S11表达的是梁元的弯曲应力,即局部坐标系下截面上的正应力2:只输出S11,而无其它应力,这是因为梁元之所以成为梁元,有一基本前提就是用梁元来模拟的构件,其正应力是最主要的,而剪应力是可忽略的;一个基本的佐证就是:众所周知,在建立梁的总势能方程时,总是讲剪切应变能是小量,因而它总是被忽略掉的;忽略剪应力的一个结果是:mises应力将与S11在数值上完全相同,不仅Abaqus如此,Ansys 也是如此,这也难怪有人讲:“Timoshenko梁单元是骗人的,它根本没有考虑剪应力”;对这件事情,我想作如下评价:(A)不仅Timoshenko梁单元,其它梁元(不考虑剪切变形)确实在应力的层面没有考虑剪应力的影响,这可从mises应力与S11的比较看出来;而为什么这样处理,理由如上所述,剪应力是高阶量,可忽略,否则就认为不能用梁元来模拟。
在Abaqus中使用梁单元进行计算在Abaqus中使用梁单元进行计算(2012-03-26 11:28:00)转载▼标签:分类:ABAQUSabaqus梁杂谈xiaozity 助理工程师:在练习老庄的Crane例题时,欲提取梁元的截面应力。
反复折腾后,小小体会,总结如下:(1)书中讲到:“线性梁元B21、B31及二次梁元B22、B32是考虑剪切变形的Timoshenko 梁单元;而三次梁元B23、B33不能模拟剪切变形,属Euler梁单元”。
(2)众所周知,当要考虑剪切变形时,例如深梁,采用Timoshenko梁单元比较合适。
三次梁元由于可模拟轴线方向的三阶变量,因而对static问题,一个构件常常用一个三次单元就足够,特别对于分布载荷的梁,三次梁元的精度相当高。
(3)Abaqus 会默认在积分点处的若干截面点输入应力值;但用户可自定义应力输出的截面点位置,这通过property-section-manage-edit-output points 来定义输出应力值的截面点;(4)特别要指出的是,无论B22还是B33还是其它梁元,其输出的应力分量只有S11,如图所示;那么,现在的问题是:1:S11代表什么应力,根据经验,大家会认为11是1方向的正应力或主应力等等2:为什么没有S22、S33、S12......下面分别说明:1:S11表达的是梁元的弯曲应力,即局部坐标系下截面上的正应力2:只输出S11,而无其它应力,这是因为梁元之所以成为梁元,有一基本前提就是用梁元来模拟的构件,其正应力是最主要的,而剪应力是可忽略的;一个基本的佐证就是:众所周知,在建立梁的总势能方程时,总是讲剪切应变能是小量,因而它总是被忽略掉的;忽略剪应力的一个结果是:mises应力将与S11在数值上完全相同,不仅Abaqus如此,Ansys 也是如此,这也难怪有人讲:“Timoshenko梁单元是骗人的,它根本没有考虑剪应力”;对这件事情,我想作如下评价:(A)不仅Timoshenko梁单元,其它梁元(不考虑剪切变形)确实在应力的层面没有考虑剪应力的影响,这可从mises应力与S11的比较看出来;而为什么这样处理,理由如上所述,剪应力是高阶量,可忽略,否则就认为不能用梁元来模拟。
ABAQUS应用梁单元计算简支梁
对于梁的分析可以使用梁单元、壳单元或是固体单元。
Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。
注意:
因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。
简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。
F=10kN,不计重力。
计算中点挠度,两端转角。
理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。
文件与路径:
顶部下拉菜单File, Save As ExpAbq00。
一部件
1 创建部件:Module,Part,Create Part,
命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。
2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。
3 退出:Done。
二性质
1 创建截面几何形状:Module,Property,Create Profile,
命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。
2 定义梁方向:Module,Property,Assign Beam Orientation,
选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。
3 定义截面力学性质:Module,Property,Create Section,
命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109 N/m2),
G=82.03e9,ν=0.28,关闭。
4 将截面的几何、力学性质附加到部件上:Module,Property,Assign Section,
选中两段线段,将Section-1信息注入Part-1。
三组装
创建计算实体:Module,Assembly,顶部下拉菜单Instance,Create,
Create Instance,以Prat-1为原形,用Independent方式生成实体。
四分析步
创建分析步:Module,Step,
Create Step,命名为Step-1,静态Static,通用General。
注释:无,时间:不变,非线性开关:关。
五载荷
1 施加位移边界条件:Module,Load,Create Boundary Condition,
命名为BC-1,在分析步Step-1中,性质:力学,针对位移和转角,Continue。
选中梁左端,Done,约束u1、u2、u3、u R1、u R2各自由度。
命名为BC-2,在分析步Step-1中,性质:力学,针对位移和转角,Continue。
选中梁右端,Done,约束u2、u3、u R1、u R2各自由度。
2 创建载荷:Module,Load,Create Load,
命名为Load-1,在分析步Step-1中,性质:力学,选择集中力Concentrated Force,Continue。
选中梁中点,Done,施加F y(CF2)=-10000(程序默认单位为N)。
六网格
对实体Instance进行。
1 撒种子:Module,Mesh,顶部下拉菜单Seed,Instance,
Global Seeds,Approximate global size 0.2全局种子大约间距0.2。
2 划网格:Module,Mesh,顶部下拉菜单Mesh,Instance,yes。
七建立项目
1 建立项目:Module,Job,Create Job,Instance,
命名为ExpAbq00,选择完整分析,其余先不变,OK。
2 计算:Module,Job,Job Manager,
Submit,可以用Monitor进行求解进程观察,算完。
八观察结果
1 看图:
打开结果文件ExpAbq00.odb,看位移彩图,学习修改图形参数。
2 看数据:计算结果w中=2.853×10-3m,θ边=2.083×10-3。
学习显示节点号等信息,学习存储结果数据文件,学习查找节点、单元数据结果。
命令流
** Job name: ExpAbq00int Model name: Model-1
*Preprint, echo=NO, model=NO, history=NO, contact=NO
**
** PARTS
*Part, name=Part-1
*End Part
**
** ASSEMBL Y
*Assembly, name=Assembly
*Instance, name=Part-1-1, part=Part-1
*Node
1, 0.0, 0.0, 0.0
21, 4.0, 0.0, 0.0
*Ngen, ,Nset=Part1
1, 21, 1, , , , ,0.0,1.0,0.0
*Element, type=B31
1, 1, 2
*Elgen, Elset=Part1
1, 20, 1, 1
** Section: Section-1 Profile: Profile-1
*Beam General Section, elset=Part1, poisson = 0.28, section=I 0.1, 0.2, 0.1, 0.1, 0.01, 0.01, 0.01
0.,0.,-1.
2.1e+11, 8.203e+10
*End Instance
**
*Nset, nset=A, internal, instance=Part-1-1
1,
*Nset, nset=B, internal, instance=Part-1-1
21,
*Nset, nset=C, internal, instance=Part-1-1
11,
*End Assembly
** ----------------------------------------------------------------
** STEP: Step-1
*Step, name=Step-1
*Static
1., 1., 1e-05, 1.
** BOUNDARY CONDITIONS
** Name: BC-1 Type: Displacement/Rotation
*Boundary
A, 1, 5
** Name: BC-2 Type: Displacement/Rotation
B, 2, 5
** LOADS
** Name: Load-1 Type: Concentrated force *Cload
C, 2, -10000.
** OUTPUT REQUESTS
*Restart, write, frequency=0
** FIELD OUTPUT: F-Output-1
*Output, field, variable=PRESELECT
** HISTORY OUTPUT: H-Output-1
*Output, history, variable=PRESELECT
*End Step。