一元二次方程综合复习
- 格式:doc
- 大小:247.00 KB
- 文档页数:4
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm2,你认为他的说法正确吗?请说明理由.【答案】 (1) 李明应该把铁丝剪成12 cm和28 cm的两段;(2) 李明的说法正确,理由见解析.【解析】试题分析:(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm2建立方程求出其解即可;(2)设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm2建立方程,如果方程有解就说明李明的说法错误,否则正确.试题解析:设其中一段的长度为cm,两个正方形面积之和为cm2,则,(其中),当时,,解这个方程,得,,∴应将之剪成12cm和28cm 的两段;(2)两正方形面积之和为48时,,,∵,∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.考点:1.一元二次方程的应用;2.几何图形问题.2.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.3.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.(1)求证:对任意实数m,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【答案】(1)证明见解析;(2)m的值为2,方程的另一个根是5.【解析】【分析】(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x﹣3)(x﹣4)﹣m2=0,∴x2﹣7x+12﹣m2=0,∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,∵m2≥0,∴△>0,∴对任意实数m ,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m 2=0,解得m=±, ∴原方程为x 2﹣7x+10=0,解得x=2或x=5, 即m 的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b 2-4ac >0时,方程有两个不相等的实数根;当△=b 2-4ac=0时,方程有两个相等的实数根;当△=b 2-4ac <0时,方程没有实数根.4.将m 看作已知量,分别写出当0<x<m 和x>m 时,与之间的函数关系式;5.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值. 【答案】(1)m 的最小整数值为4-;(2)3m =【解析】【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题.【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯- ⎪⎝⎭22218m m m =++-+29m =+方程有两个实数根0∴∆≥,即290m +≥92m ∴≥- ∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m∴=,25m=-92m≥-3m∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.6.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.(1)求y与x之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最大,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x,(2)解一元二次方程即可求解,(3)表示出最大利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x元(40≤x≤60),则y=180+10(60-x)=-10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10<0,二次函数向下,函数有最大值,当x=59时, 利润最大,为3610元.【点睛】本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.7.已知关于x的方程x2﹣(2k+1)x+4(k﹣12)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?【答案】(1)详见解析;(2)k=32或2.【分析】(1)计算判别式的值,利用完全平方公式得到△=(2k﹣3)2≥0,然后根据判别式的意义得到结论;(2)利用求根公式解方程得到x1=2k﹣1,x2=2,再根据等腰三角形的性质得到2k﹣1=2或2k﹣1=3,然后分别解关于k的方程即可.【详解】(1)∵△=(2k+1)2﹣4×4(k﹣12)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)() 2k12k3 x=2±+﹣∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k=32或2.【点睛】本题考查了根的判别式以及等腰三角形的性质,分a是等腰三角形的底和腰两种情况是解题的关键.8.如图,一艘轮船以30km/h的速度沿既定航线由南向北航行,途中接到台风警报,某台风中心正以10km/h的速度由东向西移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离AB=300km.(1)如果这艘船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航向不变,轮船航行速度不变,求受到台风影响的时间为多少小时?【答案】(1)如果这艘船不改变航向,那么它会进入台风影响区.(2)经过1515就会进入台风影响区;(3)15【分析】(1)作出肯定回答:这艘轮船不改变航向,那么它能进入台风影响区.(2)首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.(3)将轮船刚好进入台风影响区和刚好离开台风影响的两个时间节点相减,即能得出受影响的时间长.【详解】解:(1)如图易知AB′=300﹣10t,AC′=400﹣30t,当B′C′=200时,将受到台风影响,根据勾股定理可得:(300﹣10t)2+(400﹣30t)2=2002,整理得到:t2﹣30t+210=0,解得t=15±15,由此可知,如果这艘船不改变航向,那么它会进入台风影响区.(2)由(1)可知经过(15﹣15)h就会进入台风影响区;(3)由(1)可知受到台风影响的时间为:15+15﹣(15﹣15)=215h.【点睛】此题主要考查了一元二次方程的应用以及勾股定理等知识,根据题意得出关于x的等式是解题关键.9.∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨(或水费是按来计算的)则有151=1.7×80+(80-m)×即m2-80m+1500=0解得m1=30,m2=50.又∵四月份用水量为35吨,m1=30<35,∴m1=30舍去.∴m=50【解析】10.解方程:(x+1)(x-1)=2x.【答案】x1,x2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x+1)(x-1)=x2-2x-1=0∵a=1,b=-c=-1∴△=b2-4ac=8+4=12>0∴∴xx2.1。
一元二次方程专题复习(一)直接开平方法→配方法要点一、一元二次方程的解法---配方法1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.类型一、用配方法解一元二次方程1.用配方法解方程x 2-7x-1=0.【答案与解析】将方程变形为x 2-7x =1,两边加一次项的系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为x =+或x =-.【总结升华】一般地,用先配方,再开平方的方法解一元二次方程,应按以下步骤进行: (1)把形如ax 2+bx+c =0(a ≠0)的方程中二次项的系数化为1; (2)把常数项移到方程的右边;2222()a ab b a b ±+=±(3)方程的两边都加“一次项系数一半的平方”,配方得形如(x+m)2=n(n ≥0)的方程; (4)用直接开平方的方法解此题.举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.要点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,一定要学好.类型二、配方法在代数中的应用2.若代数式,,则的值( )A .一定是负数B .一定是正数C .一定不是负数D .一定不是正数【答案】B ;【解析】(作差法).故选B.【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.221078Ma b a =+-+2251N a b a =+++M N -22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>3.用配方法说明:代数式x2+8x+17的值总大于0.【答案与解析】x2+8x+17= x2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴(x+4)2+1>0,故无论x取何实数,代数式 x2+8x+17的值总大于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值得符号.举一反三:【变式】求代数式 x2+8x+17的最小值4.(2014春•滦平县期末)已知x2+y2﹣4x+6y+13=0,求(x+y)2013的值.【思路点拨】采用配方法求出x、y的值,代入计算即可得到答案.【答案与解析】解:x2+y2﹣4x+6y+13=0,x2﹣4x+4+y2﹣+6y+9=0,(x﹣2)2+(y+3)2=0∴x﹣2=0,y+3=0,解得,x=2,y=﹣3,(x+y)2013=﹣1.【总结升华】本题考查的是配方法的应用和非负数的性质的应用,掌握配方法的步骤和几个非负数的和为0,每个非负数都为0是解题的关键.1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式 一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:② 当时,右端是零.因此,方程有两个相等的实根: ③ 当时,右端是负数.因此,方程没有实根.20 (0)ax bx c a ++=≠2224()24b b ac x a a -+=240b ac ∆=->1,22b x a-±=240b ac ∆=-=1,22b x a=-240b ac ∆=-<5. 用公式法解下列方程.(1); (2).【总结升华】 用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算的值;(3)若是非负数,用公式法求解.举一反三:【变式】用公式法解方程6.用公式法解下列方程:(1); (2) .【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在的前提下,代入求根公式可求出方程的根.23310x x --=2241x x =-24b ac -24b ac -2341x x =+2100x -+=(1)(1)x x +-=240b ac -≥举一反三:【变式】(2014秋•泽州县校级期中)用公式法解方程:5x 2﹣4x ﹣12=0.【巩固练习】 一、选择题1.已知关于x 的一元二次方程,用配方法解此方程,配方后的方程是( )A .B .C .D . 2.用配方法解下列方程时,配方有错误的是( )A .化为B .化为C .化为D .化为3.(2015春•张家港市校级期中)若M=2x 2﹣12x+15,N=x 2﹣8x+11,则M 与N 的大小关系为( ) A .M ≥N B . M >N C . M ≤N D . M <N 4.不论x 、y 为何实数,代数式的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-x+ =( )2; (2)x 2+px+ =( )2. 220x x m --=2(1)1x m -=+2(1)1x m +=+22(1)1x m -=+22(1)1x m +=+22990x x --=2(1)100x -=22740t t --=2781416t ⎛⎫-= ⎪⎝⎭2890x x ++=2(4)25x +=23420x x --=221039x ⎛⎫-= ⎪⎝⎭22247x y x y ++-+438.已知,则的值为 . 9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,∴所以方程的根为_________. 11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.(2015春•重庆校级期中)a 2+b 2﹣4a+2b+5=0,则b a 的值为 .三、解答题 13. 用配方法解方程.(1) 3x 2-4x-2=0; (2)x 2-4x+6=0.14. 用公式法解下列方程:(2) .15.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.16.已知在⊿ABC 中,三边长a 、b 、c ,满足等式a 2-16b 2-c 2+6ab+10bc=0,求证:a+c=2b223730216b a a b -+-+=a -2(1)210x ax --=;22222(1)()ab x a x b x a b +=+>一元二次方程专题复习(二)温故知新:1.直接开平方法2.配方法3.公式法一、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。
x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。
步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。
步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。
一元二次方程综合练习1.a 、b 、c 是△ ABC 的三边长,且关于x 的方程b(2x -1)-2a x +c(2x +1)=0有两个相等的实根,求证:这个三角形是直角三角形。
2.关于x 的代数式2x +mx +m +8是一个完全平方式,求m 的值。
3.已知三角形ABC 中,AB =AC =m ,BC =n ,求证:关于x 的方程42x -8mx +2n =0一定有两个不相等的实根。
4.已知a 、b 、c 、是三角形的三边,方程 ()032)(2222=++++++x c b a x c b a 有两个相等实根。
求证:三角形是正三角形。
5.已知,方程2x -2px +3=0的一根是2,求另一根及p 的值。
6.已知,关于x 的方程0)2()1(222=+---b x a x 有相等实根,求32003b a +的值。
7.已知a ≠b ,且满足2a -3a +1=0,2b -3b +1=0,求111122+++b a 的值。
8.已知关于x 的方程2x +3x ―m =0的两个实根的平方和是11,求证:关于x 的方程(k -3)2x +kmx -2m +6m ―4=0有实根。
10、已知关于x 的方程2x -2(m -2)x +2m =0,问:是否存在实数m 使方程的两根的平方和等于56,若存在,求出m ,若不存在,说明理由。
11、 已知一元二次方程(m +1)2x +2mx +m -3=0有两个不相等的实数根,且这两个根不互为相反数,①求m 的取值范围;②当m 在取值范围内取最小偶数时,方程的两根为1x 和2x ,求()221413x x -的值。
12、 已知.关于x 的方程m 2x ―(2m ―1)x +m -2=0(m>0),①求证:这个方程有两个不相等的实数根;②如果这个方程的两个实数根分别是1x 和2x ,且(1x ―3)(2x ―3)=5m ,求m 的值。
13、关于x 的一元二次方程2x ―(5k +1)x + 2k ―2=0,是否存在负数k ,使方程两实数根的倒数和等于4?如果存在,求出k ,如果不存在,说明理由。
一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a)2=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac 2-4ac≥0)。
步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0 或 b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于 0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②若b2-4ac<0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3(x+4)中,不能随便约去 x+4。
一元二次方程复习一、一元二次方程知识点1、一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程2、一元二次方程的解法(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。
在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,(X2={-b-√[b2-4ac)]}/2a3、解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法(就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c4、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a ,二根之积=c/a也可以表示为x 1+x 2=-b/a,=c/a 。
利用韦达定理,可以求出一元二次方程中的各系数, 在题目中很常用 5、一元二次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“dei er ta”, 而△=b 2-4ac ,这里可以分为3种情况:I 、当△>0时,一元二次方程有2个不相等的实数根; II 、当△=0时,一元二次方程有2个相同的实数根;¥III 、当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)二、考点研究考点一、概念例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x x B 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
第3章 一元二次方程总复习资料主备人:张静 审核人:一、知识扫描1.只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.因此,由一元二次方程的定义可知,即一元二次方程必须满足满足以下三个条件:①方程的两边都是关于未知数的整式;②只含有一个未知数;③未知数的最高次数是2。
这样的方程才是一元二次方程,不满足其中任何一个条件的方程都不是一元二次方程。
例如:535,53,02,3422222+===-+-x x x x x x x 都是一元二次方程。
而03132=-+x x不是一元二次方程,原因是x1是分式。
2.任何关于x 的一元二次方程的都可整理成)0(02≠=++a c bx ax 的形式.这种形式叫做一元二次方程的一般形式,它的特征是方程左边是一个关于未知数的二次三项式,方程右边是零,其中2ax 叫二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
注意b 、c 可以是任何实数,但a 绝对不能为零,否则,就不是一元二次方程了。
化一元二次方程为一般形式的手段是去分母、去括号、移项、合并同类项,整理后的方程最好按降幂排列,二次项系数化为正数。
注意任何一个一元二次方程不可缺少二次项,担可缺少一次项和常数项,即b 、c 均可以为零。
如方程013x 023x 02222=-=-=、、x x 都是一元二次方程。
3.一元二次方程的解. 使一元二次方程左、右两边相等的未知数的值,叫一元二次方程的解,又叫一元二次方程的根。
如x=1时,022=-+x x成立,故x=1叫022=-+x x的解。
4.一元二次方程的解法解一元二次方程的基本思想是通过降次转化为一元一次方程,本节共介绍了四种解法。
(1)直接开平方法:方程)0(2≥=a a x的解为a x ±=,这种解一元二次方程的方法叫直接开平方法。
它是利用了平方根的定义直接开平方,只要形式能化成()a =2的一元二次方程都可以采用直接开平方法来解。
一元二次方程专题复习 知识盘点1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。
通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。
2. 一元二次方程的解法:(1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。
(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为 ,即方程两边同时除以二次项系数;②移项,使方程左边为 项和 项,右边为 项;③配方,即方程两边都加上 的平方;④化原方程为2()x m n +=的形式,如果n 是非负数,即0n ≥,就可以用 法求出方程的解。
如果n <0,则原方程 。
(3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________(4)因式分解法:用因式分解法解一元二次方程的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个 的乘积;③令每个因式都等于 ,得到两个 方程;④解这两个方程,它们的解就是原方程的解。
3.一元二次方程的根的判别式 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 的实数根,即-----=-----=2,1x x(2)ac b 42-=0⇔一元二次方程有两个 的实数根,即-----==21x x ,(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根。
4. 一元二次方程根与系数的关系如果一元二次方程20ax bx c ++=(0)a ≠的两根为12,x x ,则12x x += ,12x x =提示:在应用一元二次方程根与系数的关系时,一定要保证元二次方程有实数根。
5. 列一元二次方程解应用题列一元二次方程解应用题的步骤和列一元一次方程解应用题的步骤一样,即审、找、设、列、解、答六步。
《一元二次方程》全章复习1. 一元二次方程的有关概念2. 配方法的应用3. 根判别式,根与系数的关系4. 一元二次方程的解法:1)直接开平方法 2)因式分解法 3)配方法 4)公式法5. 实际问题:1)传播与数字问题 2)增长率与销售问题 3)有关面积的问题【巩固练习】1.下列方程是一元二次方程的是( ) A.211x x x-=+ B.224x xy y -+= C.20ax bx c +=+ D.(x 1)1x x -=- 2.在一元二次方程2410x x --=中,二次项系数和一次项系数分别为( )A.1,4B.1,-4C.-1,-4D.2,4x x -3.在一元二次方程260x kx --=中,已知一个根为3x =,则实数k 的值为( )A.1B.-1C.2D.-24.关于x 的一元二次方程22(a 1)10x x a -++-=的一个根是0,则a 的值为( )A.1B.-1C.1或-1D.12 5.若关于x 的一元二次方程220x x m -+=没有实数根,则实数m 的取值范围是( )A.m <1B.m > -1C.m < -1D.m > 16. 若关于x 的方程2(m 1)02x m mx +-+=有两个不等的实数根,则m 的取值范围是7. 已知2410x x a +=-可变为2(2)x b -的形式,则ab=8. 若关于x 的方程2(2)10x x m m +++=-有两个相等的实数根,则m=9.已知一个矩形长比宽多2cm ,其面积为82cm ,则此长方形的周长是10. 若方程2310x x b +=+无解,则b 应满足的条件是11. 若关于x 的方程22(21)20k x x k -+-+=+有实数根,则k 的取值范围是 12. 若分式2817x x x -+-的值为0,则x= 13. 关于x 的方程22202x x a b a +-=+的根是14. 若关于x 的方程260x x k +=+的两根之差为2,则k=15. 已知关于x 的方程22(31)0x x m m --+=有两根为12,x x ,且121134x x +=-,则m= 16.用恰当的方法解下列方程: (1)21(3)13x += (2)2(21)2(2x 1)x +=+(3)(x 8)16x += (4)2280x x +-=(5)22(32)(2x 1)x +=- (5)2(21)4(21)40y y +-++=17.已知,αβ是方程2250x x +-=的两个实数根,求22ααβα++的值18.已知12,x x 是方程2214160x x +-=的两个实数根,求下列代数式的值,(1)212()x x - (2)2112x x x x + (3)12(2)(2)x x -- (4)12x x -19.已知关于x 的方程222(a 1)740x x a a +-+--=的两根为12,x x ,且满足12123340x x x x --+=,求a 的值20.实数k 在什么范围取值时,方程22(k 1)0kx kx -+-=有两个正的实数根21.若关于x 的方程2430x x k -+-=的两根为12,x x ,且满足123x x =,试求出方程的两个实数根及k 的值23.若n > 0,关于x 的方程21(m 2n)04x x mn --+=有两个相等的正的实数根,求m n24.如果2246130x x y y -++=,求(xy)z25.水果店花500元进了一批水果,按40%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利67元.若两次打折相同,每次打了几折?26.如图,在△ABC中,AB=10m,BC= 40m,∠C=90°,点P从点A开始沿AC边向点C以2m/s的速度匀速移动,同时另一点Q由C点开始以3m/s的速度沿着CB匀速移动,几秒时,△PCQ的面积等于450m2?25.某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为_________ 万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)。
中考数学一轮专题复习一元二次方程综合复习一元二次方程综合复习一选择题:1. 关于X 的一元二次方程(m-1) x=+5x+m : - 3m+2=0,常数项为0,则m 值等于() A. 1 B. 2C ・ 1 或 2 D. 0 2. 下列方程中,是一元二次方程共有() ①呂3二0:②2x c - 3xy+4=0; (3)x : - 4x+k=0:④x :hnx - 1 二0;⑤3x :+x=20・ 3A.2个B.3个C.4个D.5个 3. —元二次方程3x c - 4= - 2x 的二次项系数、一次项系数、常数项分别为( ) C. 3, 2, -4 D.3, -4,04. 若关于x 的一元二次方程kx 2 - 6x+9二0有两个不相等的实数根,则k 的取值范羽( )5. 关于x 的一元二次方程(m ・1) x 2+5x+m : - 3m+2二0的常数项为0,则m 等于() 6. 用配方法解一元二次方程x :-6x-4=0.下列变开征确的是() 7•三角形两边的长是3和4,第三边的长是方程x=10x+21二0的根,则该三角形的周长为() A. 14 B. 10 C. 10或14 D.以上都不对8.已知等腰三角形的腰和底的长分别是一元二次方程X 3 -4x+3二0的根,则该三角形的周长可以是()A. 5B.7 9. 一元二次方程4x=+l=4x 的根的情况是(A.没有实数根C.有两个相等的实数根 B. 3, - 2, - 4 A. kV ]且 k^O B.k^O C.k<lD.k>lA. 1B.2 C ・1或2 D.0A. (x-6) '=-4+36B. (x-6)2=4+36C. (x-3) J-4+9D. (x-3)^4+9C. 5 或 7D. 10B.只有一个实数根D.有两个不相等的实数根A. 1B.2 C ・1或2 D.010•已知“ &是关于x的方程x2+ax - 2b=0的两实数根,且X,+XF・2, X/X R,则X的值是()A. 1B. - 1C.4D. - 14 411.若关于x的一元二次方程x:+mx+m-3m+3=0的两根互为倒数,则m的值等于()12•已知x为实数,且满足(丘+3»+2(€+3»-3二0,那么€+3x的值为()A. 1B. -3 或1C.313•有一人患了流感,经过两轮传染后共有64人患了流感.设每轮传染中平均一个人传染了x个人,列出的方程中考数学一轮专题复习一元二次方程综合复习A. x (x+1) =64B. x (x - 1) =64C. (1+x)'二64D. (l+2x) =6414.某市2013年生产总值(GDP)比2012年增长T 12%,由于受到国际金融危机的影响,预计今年比2013年增长7%.若这两年GDP年平均增长率为嚥,则硫满足的关系是( )A. 12%+7%=x%B. (1+12%) (1+7%) =2 (1+x%)C. 12%+7%=2*x%D. (1+12%) (1+7%) = (1+x%):15.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为( )A. 200(l+x)==1000B. 200+200X2x=1000C. 200+200 X3x=1000D. 200 C1+ (1+x) + (1+x) :]=100016.有两个一元二次方程:M: ax'+bx+c二0, N: cf+bx+a二0,其中a+c二0,以下列四个结论中,错误的是( ) A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B•如果6是方程M的一个根,那么寺是方程N的一个根6C.如果方程M和方程N有一个相同的根,那么这个根必是X二-1D.如果方程M有两根符号相异,那么方程N的两根符号也相异17•根据下面表格中的取值,方程x:+x - 3=0有一个根的近似值(精确到0.1)是( )A. 1.5B. 1.2C. 1.3D. 1.418.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )A.4个B.5个C.6个D.7个19•已知实数/ b分别满足a: - 6a+4=0, b2 - 6b+4=0,且aHb,则屯冲的值是( )a bA. 7B. - 7C. 11D. - 1120.设关于x的一元二次方程(x-l)(x-2)二m(m>0)的两实根分别为0 ,且0< 0,则G, 0满足( )A. l<a <3 <2B. 1< a <2< BC. a <1<P<2D. a < 1 且B >2二填空题:中考数学一轮专题复习一元二次方程综合复习21.某电动自行车厂三月份的产量为1000辆,由于市场需求疑不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为_%.22.某公司4月份的利润为160万元,由于经济危机,6月份的■利润降到90万元,则平均每月减少的百分率是___________________ .23. __________________________________________________________________________设血&是方程X2+X-2013= 0的两个不相等的实数根,则/十的值为____________________________________________•24.九年级(3)班全体同学在圣诞节将自己的贺卡向本班其他同学各赠送一张,全班共互贈了1980张,若全班共有x名学生,则根据题意列出的方程是________________________25.某厂一月份生产零件50万件,第一季度共生产零件182万个,该厂二、三月份平均每月的增长率为兀,则兀满足的方程是___________________________________ .26.若m、n是方程x:+6x・5=0的两根,则3m+3n - 2mn二____ ・27.若关于x的一元二次方程(k - 1) x:+2x - 2=0有两个不相等的实数根,那么k的取值范用是2&如果关于x的一元二次方程2x(kx-4)-x:+6=0没有实数根,那么k的最小整数值是 ______________ .29.某种植物的主干长出若干数目的支干又长出同样数目的小分支,主干、支干和小分支的总数是91.设每个支干长岀x个小分支,则可得方程为____________________________________ .30.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m\那么通道的宽应设计成多少m?设通道31•解方程:(2x- l)s=(3-x)s32.解方程:3x2 - 6x+l=0 (用配方法)33•解方程:x2+l=3x:中考数学一轮专题复习一元二次方程综合复习34•已知a、b. c是三角形的三条边长,且关于x的方程(c-b)x c+2(b-a)x+(a-b)=0有两个相等的实数根,试判断三角形的形状.35•已知:关于x的一元二次方程(4k+l) x+3k+3=0 (k是整数).(1)求证:方程有两个不相等的实数根:(2)若方程的两个实数根分别为m X:(其中X1<x=),设y二判断y是否为变量k的函数?如果是,请写岀函数解析式;若不是,请说明理由.36. 已知关于x的一元二次方程x2+2 (m+1) x+m2 - 1=0.(1)若方程有实数根,求实数m的取值范围:(2)若方程两实数根分别为X-也且满足(x厂Q咗16-xg 求实数m的值.37•如图,有长为24米的篱笆,一而利用墙(墙的最大可用长度为幺为15米),围成中间隔有一道篱笆的长方形花圃.如果要围成而积为45平方米的花圃,AB的长是多少米?1///////7/"/////////IA\ \ \DB C38•在美化校园的活动中.某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆用成一个矩形花|TC| ABCD (篱笆只围AB, BC两边),设AB=xm・(1)若花园的而积为192m:,求x的值;(2)若在P处有一棵树与墙CD, AD的距离分别是15m和6m,要将这棵树囤在花园内(含边界,不考虑树的粗细),求X取何值时,花园面积S最大,并求出花园而积S的最大值.39. 如图,某市近郊有一块长为60米,宽为50米的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中阴影部分为通道,通适的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为a米)区域将铺设塑胶地而作为运动场地.(1)________________________________________ 设通道的宽度为x米,则a二(用含x的代数式表示):(2)若塑胶运动场地总占地而积为2430平方米.请问通道的宽度为多少米?40. 如图,在直角三角形ABC中,直角边AC二3cm, BOlcm.设P、Q分别为AB、BC上的动点,在点P自点A沿AB 方向向点B作匀速移动的同时,点Q自点B沿BC方向向点C作匀速移动,它们移动的速度均为每秒lcm,当Q 点到达C点时,P点就停止移动.设P、Q移动的时间t秒.(1)写出APBQ的面积S(cm’)与时间t(s)之间的函数表达式,并写出t的取值范围.(2)当f为何值时,APBQ为等腰三角形?(3)APBQ能否与直角三角形ABC相似?若能,求f的值;若不能,说明理由.中考数学一轮专题复习一元二次方程综合复习 参考答案 x :+x+l=91 30、(30 - 2x) (20 ・x)二6X78 Ab 2-4ac=(-3)2-4XlXl = 5>0. :.x=3^ ・:.x.= 3^ , x 戶 朋 ・21 2 2 34、解:由已知条件得 A = [2(A - «) f - 4(c - i) (« - A) = 0 整理为仙—E)@ — Q = 0:• a = b 或ct = c •: U —Z PH O j[lj c b 这个二角形是等腰二角形・35、【解答】(1)证明:kHO, △二(4k+l) 2-4k (3k+3) = (2k- 1) %•・・k 是整数,・・・kH 寺,2k ・lH0, ・•・△= (2k ・1) 3>0, /.方程有两个不相等的实数根;Tk 是整数,•••1』W2<3・又m, /.X1=lkk 36、 【解答】解:(1)由题意有△二[2 (m+1) ]_41) 20,整理得8m+8M0,解得- b•'・实数 m 的取值范【间是 - 1: (2)由两根关系,得 Xi+x2= - 2 (m-rl) , x^x^m' - 1> (x : - x :) "=16 - XiXc (Xi+x :) ■・ 3xiX : ■ 16 二 0, •: [ ■ 2 (m+1 )]"-3(m'"l) - 16-0, .•.m"+8m ・ 9二0,解得 • 9 或 m^l - 137、 (1)设AB 的长是x 米.(24-3x)x=45,解得X :=5,当x 二3时,长方形花圃的长为24-3x=15;当x=5 时,长方形花圃的长为24-3x=9,均符合题意:・・.AB 的长为3m 或5m.(2)花圃的而积为(24-3x) x=-3x2+24x=-3 (x2-8x+16-16)二-3 (x-4) 2+4&・••当AB 长为4m,宽为12m 时,有最大面积,为48平方米.38、 (1) VAB=xm,则 BC 二(28-x) m, Ax (28-x)二 192,解得:xl=12, x2二 16,答:x 的值为 12m 或 16m :x 2 6(2)由题意可得出:i ' 、仃,解得:6 < x < 13•又 S=x (28-X )= - x2+28x= - (x- 14) 2+196.28 - K > 15•••当x£14时,S 随x 的增大而增大■•••x=13时,S 取到最大值为:S=- (13-14) 2+196=195 答:X 为13m 时,花恫而积S 最大,最大而积为195m :.39、 【解答】解:(1)设通道的宽度为x 米,则店~-—:故答案为:一-—60 ■ 3x(2)根据题意得,(50・2x) (60-3x) - 一-~=2430,解得x :=2, x :=38 (不合题意,舍去).40、 作 PH 丄BC 于 M AC=3cm, BC=4cm, ZC=90° AAB=5 VPA=BQ=t APM=sinB PB=3/5(5-t)BM=cosB fB 二4/5(5-1) •••QH 二BM-BQ 二4-9/5 •'•PQ 二 VQM 2 +PM 2 = 4(4-9/5 •t)2 + (3-3/5 *t)2 V APBQ 为等腰三角形•••①当 BQ 二PB 时 5-t=t, /. t=2. 5②当 PQ 二BQ 时 t 二 J (4-9/5 • t)2+ (3-3/5 • t)2 A 13t 2-90t+125=0 At=25/13, (t=5 不符合题意,舍去) ③当 PB=PQ 时 5-t= 4 (4-9/5 • t)2+ (3-3/5 • t)2t=40/13, (t=0 不符合题意,舍去)总之,t=2. 5或t 二25/13,或t 二40/13时,APBQ 为等腰三角形.1、B2、B3、C 4. A 5. B 6、D14.24、 7、 B 8、 B D 15、 D 16、 C 17、 C 18、 B 19、 A 20、 D X (X- 1) =1980 25. 50+50(1+x)+50(l+x)J1829、 21、 26、C 10、 A 11、 B 12. A 10 ■ 22、 25% 23. -8 . 27、k>~|•且 kHl 13、C 2012 29、 31、 33、3G 咗(1)将原方程化为一般形式,得x s -3x+l=0, Va=l, b=-3, 可用直接开平方X1 = -2,x 2 = -32. 3x :-6x+l 二0, ⑵照y 是k 的函数.解方爾,严)士护+牟严2A x=3 或 x=。
一元二次方程综合复习题基础题:一、选择题 :1.定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx +c =0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论成立的是( )A .a =cB .a =bC .b =cD .a =b =c2.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x ,则可列方程为( )A . 25(1+x )2=64 B . 25(1﹣x )2=64 C . 64(1+x )2=25D . 64(1﹣x )2=25 3.关于关于x 的一元二次方程x 2+x ﹣k 2=0的根的情况是( )A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 无法判断4.若关于x 的一元二次方程nx 2﹣2x ﹣1=0无实数根,则一次函数y=(n+1)x ﹣n 的图象不经过( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限5.若关于x 的一元二次方程(m ﹣2)x 2+3x+m 2﹣4=0有一个根是0,则m 的值是( )A . 2B . ﹣2C . 2或﹣2D . 126.下面关于x 的方程中①ax 2+bx+c=0; ②3(x ﹣9)2﹣(x+1)2=1;③x+3=0; ④(a 2+a+1)x 2﹣a=0;⑤3x 2+k=x ﹣1.一元二次方程的个数是( )A . 1B . 2C . 3D . 47.关于x 的方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足( )A . a ≥1B . a>1且a ≠5C . a ≥1且a ≠5D . a ≠58.关于x 的方程x 2+(k 2﹣4)x+k ﹣1=0的两根互为相反数,则k 的值为( )A . ±2B . 2C . ﹣2D . 不能确定9.用配方法解方程x 2﹣4x+1=0时,先把方程变为(x+h )2=k 的形式,则h 、k 的值分别是( )A . 2、17B . ﹣2、15C . 2、5D . ﹣2、310.关于x 的一元二次方程()221x m 3x m 04-++=有两个不相等的实数根,那么m 的最小整数值是( ) A . ﹣1 B . 0 C . 1 D . 211.已知方程x 2+bx+a=0有一个根是﹣a (a ≠0),则下列代数式的值恒为常数的是( )A . abB . a bC . a+bD . a ﹣b 12.设a 、b 、c 是三角形的三边,则关于x 的一元二次方程c ()2c x a b x 04+++=的根的情况是( ) A . 方程有两个相等实根 B . 方程有两个不等的正实根C . 方程有两个不等的负实根D . 方程无实根13.若关于x 的一元二次方程kx 2+2x ﹣1=0有实数根,则k 的取值范围是( )A . k>﹣1B . k≥﹣1C . k>﹣1且k≠0D . k≥﹣1且k≠014.如果(x+2y )2+3(x+2y )﹣4=0,那么x+2y 的值为( )A . 1B . ﹣4C . 1或﹣4D . ﹣1或315.若α、β是一元二次方程x 2+3x ﹣1=0的两个根,那么α2+2α﹣β的值是( ) A . ﹣2 B . 4 C . 0.25 D . ﹣0.516.若方程(x 2+y 2)2﹣5(x 2+y 2)﹣6=0,则x 2+y 2=( ) A . 6 B . 6或﹣1 C . ﹣1D . ﹣6或117.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x 名同学,则根据题意列出的方程是( )A . x (x+1)=182B . x (x ﹣1)=182C . x (x+1)=182×2D . x (x ﹣1)=182×218.已知m ,n 是方程x 2﹣2x ﹣1=0的两根,且(7m 2﹣14m+a )(3n 2﹣6n ﹣7)=8,则a 的值等于( )A . ﹣5B . 5C . ﹣9D . 9二、解答题 : 19.(换元法)解方程:(x 2﹣3x )2﹣2(x 2﹣3x )﹣8=0解:设x 2﹣3x=y 则原方程可化为y 2﹣2y ﹣8=0解得:y 1=﹣2,y 2=4当y=﹣2时,x 2﹣3x=﹣2,解得x 1=2,x 2=1当y=4时,x 2﹣3x=4,解得x 1=4,x 2=﹣1∴原方程的根是x 1=2,x 2=1,x 3=4,x 4=﹣1,根据以上材料,请解方程:(2x 2﹣3x )2+5(2x 2﹣3x )+4=0.20.如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m ),另外三边利用学校现有总长38m 的铁栏围成.(1)若围成的面积为180m 2,试求出自行车车棚的长和宽;(2)能围成的面积为200m 2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.21.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?25.阅读材料:如果x 1,x 2是一元二次方程ax 2+bx+c=0的两根,那么有x 1+x 2=﹣b a ,x 1x 2=c a.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x 1,x 2是方程x 2+6x ﹣3=0的两根,求x 12+x 22的值.解法可以这样:∵x 1+x 2=6,x 1x 2=﹣3则x 12+x 22=(x 1+x 2)2﹣2x 1x 2(﹣6)2﹣2×(﹣3)=42.请你根据以上解法解答下题:已知x 1,x 2是方程x 2﹣4x+2=0的两根,求:(1)1211x x 的值;(2)(x 1﹣x 2)2的值.26.解下列方程:(1)22x 50-= (2)2113x 6x 2022⎛⎫⎛⎫----= ⎪ ⎪⎝⎭⎝⎭.27.已知关于x 的方程x 2﹣2mx+14n 2=0,其中m 、n 分别是一个等腰三角形的腰和底边. (1)求证:这个方程有两个不相等的实数根.(2)若方程的两根x 1、x 2满足丨x 1﹣x 2丨=8,且等腰三角形的面积为4,求m 、n 的值.28.关于x 的一元二次方程4x 2+4(m ﹣1)x+m 2=0(1)当m 在什么范围取值时,方程有两个实数根?(2)设方程有两个实数根x 1,x 2,问m 为何值时,2212x x 17+=?(3)若方程有两个实数根x 1,x 2,问x 1和x 2能否同号?若能同号,请求出相应m 的取值范围;若不能同号,请说明理由.29.已知关于x 的一元二次方程x 2+(m+3)x+m+1=0.(1)求证:无论m 取何值,原方程总有两个不相等的实数根:(2)若x 1,x 2是原方程的两根,且|x 1﹣x 2m 的值,并求出此时方程的两根.提高练习一、选择题 :1.已知a ,b ,c 分别是三角形的三边,则方程(a+b )x 2+2cx+(a+b )=0的根的情况是( )A . 没有实数根B . 可能有且只有一个实数根C . 有两个相等的实数根D . 有两个不相等的实数根 2.三角形两边的长分别是8和6,第三边的长是一元二次方程x 2﹣16x+60=0的一个实数根,则该三角形面积是( )A . 24B . 24或C . 48D .3.关于关于x 的一元二次方程x 2+x ﹣k 2=0的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法判断4.若关于x 的一元二次方程nx 2﹣2x ﹣1=0无实数根,则一次函数y=(n+1)x ﹣n 的图象不经过( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限5.下列命题①方程x 2=x 的解是x =1②4的平方根是2③有两边和一角相等的两个三角形全等④连接任意四边形各边中点的四边形是平行四边形其中真命题有:【 】A .4个 B.3个 C.2个 D.1个6.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b a a b+的值是( ) A .22n + B .22n -+ C .22n - D .22n --7.设a ,b 是方程x 2+x ﹣2009=0的两个实数根,则a 2+2a+b 的值为( )A . 2006B . 2007C . 2008D . 20098.方程x 2﹣kx ﹣(k+1)=0的根的情况是( )A . 方程有两个不相等的实数根B . 方程有两个相等的实数根C . 方程没有实数根D . 方程的根的情况与k 的取值有关9.若关于x 的一元二次方程(m ﹣2)x 2+3x+m 2﹣4=0有一个根是0,则m 的值是( )A . 2B . ﹣2C . 2或﹣2D . 12 10.关于x 的一元二次方程22(1)10a x ax a -++-=的一个根是0,则a 的值为( )A .1 B . 0 C . -1 D . ±111.若式子2210a x x +-能构成完全平方式,则a 的值为( ).A .10B .15C .5或5-D .2512.若是方程的两个实数根,则的值( ) A .2007 B .2005 C .-2007 D .401013.设a 、b 、c 是三角形的三边,则关于x 的一元二次方程c ()2c x a b x 04+++=的根的情况是( ) A . 方程有两个相等实根 B . 方程有两个不等的正实根C . 方程有两个不等的负实根D . 方程无实根14.关于x 的方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足( )A . a ≥1B . a>1且a ≠5C . a ≥1且a ≠5D . a ≠515.已知关于x 的一元二次方程(a ﹣l )x 2﹣2x+l=0有两个不相等的实数根,则a 的取值范围是( )A . a>2B . a<2C . a<2且a ≠lD . a<﹣216.(非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A . 3或﹣1B . 3C . 1D . ﹣3或117.关于x 的方程ax 2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1﹣x 1x 2+x 2=1﹣a ,则a 的值是( )A . 1B . ﹣1C . 1或﹣1D . 2,αβ2220070x x +-=23ααβ++18.设α、β是方程的两根,则的值是( )A .0B .1C .2000D .400000019.已知m ,n 是方程x 2﹣2x ﹣1=0的两根,且(7m 2﹣14m+a )(3n 2﹣6n ﹣7)=8,则a 的值等于( )A . ﹣5B . 5C . ﹣9D . 920.方程x (x+2)=2(x+2)的解是( )A . 2和﹣2B . 2C . ﹣2D . 无解21.已知x 是实数,且满足(x 2+4x )2+3(x 2+4x )﹣18=0,则x 2+4x 的值为( )A . 3B . 3或﹣6C . ﹣3或6D . 622.若一元二次方程x 2﹣2x ﹣m=0无实数根,则一次函数y=(m+1)x+m ﹣1的图象不经过( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限23.若关于x 的方程x 2+px+q=0得一个根为零,另一个根不为零,则( )A . p=0且q=0B . p=0且q≠0C . p≠0且q=0D . p=0或q=024.若方程(x 2+y 2)2﹣5(x 2+y 2)﹣6=0,则x 2+y 2=( )A . 6B . 6或﹣1C . ﹣1D . ﹣6或125.一元二次方程x 2﹣3x+1=0的两个根分别是x 1,x 2,则x 12x 2+x 1x 22的值是( )A . 3B . ﹣3C .D . ﹣二、解答题 :27.用指定方法解方程 (1)2x 2﹣7x+3=0(公式法)(2)y 2+4y ﹣5=0(配方法)(3)(x+2)2﹣10(x+2)+25=0(因式分解法)28.已知关于x 的方程x 2﹣2mx+14n 2=0,其中m 、n 分别是一个等腰三角形的腰和底边. (1)求证:这个方程有两个不相等的实数根.(2)若方程的两根x 1、x 2满足丨x 1﹣x 2丨=8,且等腰三角形的面积为4,求m 、n 的值.29.已知、是一元二次方程的两个实数根.(1)是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由. (2)求使的值为整数的实数的整数值. 30.已知关于x 的方程0141)1(22=+++-k x k x 的两根是一个矩形两邻边的长. 0192=++x x )12009)(12009(22++++ββαα1x 2x 01442=++-k kx kx k 23)2)(2(2121-=--x x x x k 21221-+x x x x k⑴k 取何值时,方程在两个实数根;⑵当矩形的对角线长为5时,求k 的值.应用题:一、选择题 :1.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为( )A . 200(1+x )2=1000B . 200+200×2x=1000C . 200+200×3x=1000D . 200[1+(1+x )+(1+x )2]=1000 2.利民大药房将原来每盒盈利30%的某种药品先后两次降价,经两次降价后每盒仍能盈利10%.则这两次降价的平均降价率是多少?( )A . (1﹣x )2=1+10%B . 30%(1﹣x )2=1+10%C . (1﹣x )2×30%=1+10%D . (1+30%)(1﹣x )2=1+10% 3.某品牌电脑20XX 年的销售单价为7200元,由于科技进步和新型电子原材料的开发运用,该品牌电脑成本不断下降,销售单价也逐年下降.至20XX 年该品牌电脑的销售单价为4900元,设20XX 年至20XX 年,20XX 年至20XX 年这两年该品牌电脑的销售单价年平均降低率均为x ,则可列出的正确的方程为( )A .4900(1+x )2=7200B .7200(1﹣2x )=4900C .7200(1﹣x )=4900(1+x )D .7200(1﹣x )2=4900 4.某厂一月份生产产品150台,计划二、三月份共生产450台.设二、三月平均每月增长率为x ,根据题意列出方程是( )A .150(1+x )2=450B .150(1+x )+150(1+x )2=450C .150(1﹣x )2=450D .150+150(1+x )2=4505.实数m 满足210m +=,则44mm -+的值为( )A .62 B .64 C .80 D .100 二、解答题 :6.百货商店服装部在销售中发现:某品牌童装平均每天可售出20件,每件赢利40元.为了扩大销售量,增加赢利.减少库存,商场决定采取适当的降价措施经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.(1)若平均每天销售这种童装赢利1200元,则从消费者的角度考虑.每件童装应降价多少元?(2)销售这种童装是否可以使赢利最大?若可以,求出这个最大赢利;若不可以.请说明理由.7.某商场为迎接元旦,计划以单价40元的价格购进一批商品,再以单价50元出售,每天可卖出200件;如果每件商品的售价每上涨1元,则每天少卖10件(每件售价不能高于56元).设每件商品的售价为x 元(x 为正整数),每天的销量为y 件.(1)求y 与x 的函数关系式并写出自变量X 的取值范围;(2)每件商品的售价定为多少元时,每天的利润恰为2210元?(3)每件商品的售价定为多少元时,每天可获得最大利润?最大利润是多少元?8.在矩形ABCD中,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q分别从A、B同时出发.(1)几秒后△PBQ的面积等于4cm2?(2)几秒钟后,PQ的长度等于5cm?(3)在(1)中△PBQ的面积能否等于7cm2?请说明理由.9.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1 200元,每件衬衫应降价多少元;(2)每件衬衫降价多少元时,商场平均每天赢利最多.10.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自20XX年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?11.如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1.x2=q,请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数;(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求a bb a的值;(3)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.12.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?13.某食品零售店为食品厂代销一种面包,未售出的面包可退回厂家,经统计销售情况发现,当这种面包单价定为7角时,每天卖出160个,在此基础上,这种面包单价每提高1角,该零售店每天就会少卖出20个,该零售店每个面包的成本是5角.(1)如果每天卖出面包100个,那么这种面包的单价定为多少?这天卖面包的利润是多少?(2)如果每天销售这种面包获得的利润是48元,那么这种面包的单价是多少?14.如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为570米2,问小路应为多宽?。
一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b ≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0)。
步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x +4)中,不能随便约去x +4。
知识框架 知识点总结:一兀二次方程4. 一元二次方程的解法(1) 直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如 (X 可知,X a 是b 的平方根,当 b<0时,方程没有实数根。
(2) 配方法 配方法是一种重要的数学方法,2a) b 的一元二次方程。
根据平方根的定义b 0 时,X a4b , X a J b ,当它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式2 2 2a 2ab b (a b),把公式中的a 看做未知数x ,并用x X 2 2bx b 2(x b)2。
配方法解一元二次方程的一般步骤: 现将已知方程化为一般形式;代替,则有 化二次项系知识点、概念总结 1. 一元二次方程:方程两边都是整式,只含有一个未知数(一元) ,并且未知 数的最高次数是 2 (二次)的方程,叫做一元二次方程。
2. 一元二次方程有四个特点:(1) 含有一个未知数; (2) 且未知数次数最高次数是 2; (3) 是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整 式方程,若是,再对它进行整理。
如果能整理为 ax 2+bx+c=0(a 丰0)的形 式,则这个方程就为一元二次方程。
(4 )将方程化为一般形式: 3. 一元二次方程的一般形式 过整理,?都能化成如下形式 一个一元二次方程经过整理化成 是二次项系数;bx 是一次项, 2ax +bx+c=0时,应满足( :一般地,任何一个关于 X 2ax +bx+c=0 (aM 0)。
2ax +bx+c=0 (a 丰 0)后,b 是一次项系数;a 丰0) 的一元二次方程,经其中ax 2是二次项,c 是常数项。
数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边 配成一个完全平方式;变形为 (X+P) 2=q 的形式,如果q > 0,方程的根是x=-p ±V q ;如果qv 0,方程无实根.(3) 公式法 公式法是用求根公式解一元二次方程的解的方法, 方法。
人教版 九年级数学 第21章 一元二次方程 综合复习一、选择题(本大题共10道小题)1. 一元二次方程x 2-2x =0的根是( )A .0B .0,2C .2D .2,-22. 若方程ax 2+2x =bx 2-1是关于x 的一元二次方程,则a ,b 的值可以是( )A .1,1B.12,12 C .-3,3D .-3,-33. 一元二次方程2x 2-3x +1=0的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根4. 一元二次方程x(x -2)=2-x 的根是( )A .x =-1B .x =0C .x 1=1,x 2=2D .x 1=-1,x 2=25. 方程3x (2x +1)=2(2x +1)的两个根为( )A .x 1=23,x 2=0B .x 1=23,x 2=12C .x 1=32,x 2=-12D .x 1=23,x 2=-126. 2018·福建 已知关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx +a =0的根B .0一定不是关于x 的方程x 2+bx +a =0的根C .1和-1都是关于x 的方程x 2+bx +a =0的根D .1和-1不都是关于x 的方程x 2+bx +a =0的根7. 下列一元二次方程中,没有实数根的是()A.x2-2x=0 B.x2+4x-1=0C.2x2-4x+3=0 D.3x2=5x-28. 对于二次三项式-x2+4x-5的值,下列叙述正确的是()A.一定为正数B.一定为负数C.正、负都有可能D.一定小于-19. 当b+c=5时,关于x的一元二次方程3x2+bx-c=0的根的情况为() A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10. 如图,某小区计划在一块长为32 m,宽为20 m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m2.若设道路的宽为x m,则下面所列方程中正确的是()A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=570二、填空题(本大题共7道小题)11. 若关于x的方程kx2-4x-4=0有两个不相等的实数根,则k的最小整数值为________.12. 对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2-(a-b)2.若(m+2)◎(m-3)=24,则m=________.13. 已知关于x的一元二次方程ax2+2x+2-c=0有两个相等的实数根,则+c的值等于.14. 一个三角形其中两边的长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则此三角形的周长是________.15. 根据下表中的数据写出方程x2+3x-4=0的一个根为________.x 0123 4x2+3x-4-406142416. 设a,b是方程x2+x-2020=0的两个实数根,则(a-1)(b-1)的值为________.17. 一个两位数,它的十位数字比个位数字大1,个位数字与十位数字的平方和比这个两位数小19,则这个两位数是________.三、解答题(本大题共4道小题)18. 某学校机房有100台学生用电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播得非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都将被感染?19. 三个连续的正奇数,最大数与最小数的积比中间的一个数的6倍多3,求这三个奇数.20. 《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”题意为已知长方形门的高比宽多6尺8寸,门的对角线长一丈,那么门的宽和高各是多少?(1丈=10尺,1尺=10寸)21. 已知关于x 的一元二次方程(x -1)(x -4)=p 2,p 为实数.(1)求证:不论p 为何实数,方程总有两个不相等的实数根;(2)当p 为何值时,方程有整数解?(直接写出三个,不需要说明理由)人教版 九年级数学 第21章 一元二次方程 综合复习-答案一、选择题(本大题共10道小题)1. 【答案】B2. 【答案】C3. 【答案】B【解析】代入数据求出根的判别式Δ=b 2-4ac 的值,根据Δ的正负即可得出结论.∵Δ=b 2-4ac =(-3)2-4×2×1=1>0,∴该方程有两个不相等的实数根.4. 【答案】D [解析] x(x -2)+(x -2)=0, (x +1)(x -2)=0,x +1=0或x -2=0,所以x 1=-1,x 2=2.故选D.5. 【答案】D [解析] 3x(2x +1)-2(2x +1)=0,(3x -2)(2x +1)=0,3x -2=0或2x +1=0,所以x 1=23,x 2=-12.6. 【答案】D [解析] ∵关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,∴⎩⎨⎧a +1≠0,Δ=(2b )2-4(a +1)2=0,∴b =a +1或b =-(a +1).当b =a +1时,有a -b +1=0,此时-1是方程x 2+bx +a =0的根; 当b =-(a +1)时,有a +b +1=0,此时1是方程x 2+bx +a =0的根. ∵a +1≠0,∴a +1≠-(a +1),∴1和-1不都是关于x 的方程x 2+bx +a =0的根.7. 【答案】C8. 【答案】B[解析] ∵-x 2+4x -5=-(x 2-4x +4)-1=-(x -2)2-1<0,∴原式的值一定为负数.9. 【答案】A [解析] 因为b +c =5,所以c =5-b.因为Δ=b 2-4×3×(-c)=b 2-4×3×(b -5)=(b -6)2+24>0,所以该一元二次方程有两个不相等的实数根.10. 【答案】A二、填空题(本大题共7道小题)11. 【答案】1 [解析] ∵关于x 的方程kx 2-4x -4=0有两个不相等的实数根, ∴k≠0且Δ=b 2-4ac >0,即⎩⎨⎧k≠0,16+16k>0, 解得k >-1且k≠0,∴k 的最小整数值为1.12. 【答案】-3或4 [解析] 根据题意,得[(m +2)+(m -3)]2-[(m +2)-(m -3)]2=24.整理,得(2m -1)2=49,即2m -1=±7,所以m 1=-3,m 2=4.13. 【答案】2[解析]根据题意得:Δ=4-4a(2-c)=0,整理得4ac-8a=-4,4a(c-2)=-4.∵方程ax2+2x+2-c=0是一元二次方程,∴a≠0,等式4a(c-2)=-4两边同时除以4a,得c-2=-,则+c=2.14. 【答案】13[解析] 解方程x2-6x+8=0,得x1=2,x2=4.∵2,3,6不能构成三角形,∴舍去x=2.当x=4时,三角形的周长=3+4+6=13.15. 【答案】x=116. 【答案】-2018[解析] 根据题意,得a+b=-1,ab=-2020,∴(a-1)(b -1)=ab-(a+b)+1=-2020+1+1=-2018.故答案为:-2018.17. 【答案】32[解析] 设这个两位数的十位数字为x,则个位数字为x-1.根据题意,得x2+(x-1)2=10x+(x-1)-19,解得x1=3,x2=3.5(舍去),∴10x+(x-1)=32.三、解答题(本大题共4道小题)18. 【答案】解:(1)设每轮感染中平均一台电脑会感染x台电脑.根据题意,得1+x+x(1+x)=16,解得x1=3,x2=-5(舍去).答:每轮感染中平均一台电脑会感染3台电脑.(2)三轮感染后,被感染的电脑台数为16+16×3=64,四轮感染后,被感染的电脑台数为64+64×3=256>101.答:若病毒得不到有效控制,四轮感染后机房内所有电脑都将被感染.19. 【答案】解:设这三个连续的正奇数分别为2n-1,2n+1,2n+3(n为正整数).根据题意,得(2n +3)(2n -1)-6(2n +1)=3,解得n 1=3,n 2=-1(舍去).当n =3时,2n -1=5,2n +1=7,2n +3=9.即这三个奇数分别为5,7,9.20. 【答案】解:设门的宽为x 尺,则高为(x +6.8)尺.根据题意,得x 2+(x +6.8)2=102,整理,得2x 2+13.6x -53.76=0,解得x 1=2.8,x 2=-9.6(舍去),所以x +6.8=9.6.所以门的宽为2尺8寸,高为9尺6寸.21. 【答案】解:(1)证明:原方程可化为x 2-5x +4-p 2=0.∵Δ=b 2-4ac =(-5)2-4(4-p 2)=4p 2+9>0,∴不论p 为何实数,方程总有两个不相等的实数根.(2)原方程可化为x 2-5x +4-p 2=0.由求根公式得方程的根为x =5±4p 2+92. ∵方程有整数解,∴找到p 的值,使5±4p 2+92为整数即可, ∴p 可取0,2,-2,10,-10等,此时方程有整数解(答案不唯一,写出三个即可).。
第三讲 一元二次方程
一、主要知识点
二、典型例题分析
例1、下列方程中,关于x 的一元二次方程是( ) A.()()12132
+=+x x B.
02112
=-+
x
x
C.02=++c bx ax D. 1222-=+x x x
例2、已知1x =是一元二次方程2
400ax bx +-=的一个解,且a b ≠,求2
2
22a b
a b
--的值.
例3、关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为( ) (A)a =0. (B)a =2. (C)a =1. (D)a =0或a =2.
例4、设a b ,是方程2
20090x x +-=的两个实数根,则2
2a a b ++的值为( ) A .2006
B .2007
C .2008
D .2009
例5、对于方程()()()()2
2
2
2
140;2230;3320;441290;x x x x x x x -=+=--=-+=
()()()()()2
22
2
5336;670;76;8241x x x x x x =-==+=把最适宜解法的序号填在下面
的横线上。
(1)直接开平方法____ _______;(2)因式分解法_____ __;
(3)配方法____ ___;(4)求根公式法_____ ____。
通常可以这样选择合适的解法:
(1)当方程一边为含有未知数的完全平方式,另一边为非负数时,可用直接开平方法。
(2)当方程的一边为0,而另一边可以分解为两个一次因式的乘积的形式时,运用因式分解法求解。
(3)当方程的一边较易配成含未知数的完全平方式,另一边为非负数时,常用配方法。
(4)当不便用上面三种方法时,就用求根公式法。
例6、解方程:2(3)4(3)0x x x -+-=.
例7、某农场去年种植了10亩地的南瓜,亩产量为2000 kg ,根据市场需要,今
年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60000 kg ,求南瓜亩产量的增长率.
例8、某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出
100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元? (2)设后来该商品每件降价x 元,,商场一天可获利润y 元.若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
例9、已知关于x 的方程2
(2)210m x x --+=有解,那么m 的取值范围是( )
A.3m <
B.3m ≤
C.3m ≤且2m ≠
D.3m <且2m ≠
例10、已知关于x 的方程kx 2-4kx+k-5=0有两个相等的实数根,求k 的值并解这
个方程。
一元二次方程复习题
一、填空题:
1、方程1382-=x x 的二次项系数为 ,一次项为 ,常数项为 。
2、当m 时,方程()05122=+--mx x m 是一元二次方程。
3、方程x x =23的解是 ;方程 0)2)(1(=-+x x 的根是 ;
4、21x x 、是方程06322=--x x 的两个根,那么21x x += ,21x x ⋅= 。
5、方程032=+-m x x 有两个相等的实数根,则m = ,两个根分别为 。
6、某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______.
7、已知1x ,2x 是方程2630x x ++=的两实数根,则
211
2
x x x x +的值为______
8、已知x 是一元二次方程x 2+3x -1=0的实数根,那么代数式2
35(2)362
x x x x
x -÷+-
--的
值为
二、选择题:
9、下列方程是关于x 的一元二次方程的是( );
(A )02=++c bx ax
(B )211
2
=+
x
x
(C )122
2
-=+x x x (D ))1(2)1(32
+=+x x
10、以3和1-为两根的一元二次方程是 ( );
(A )0322=-+x x (B )0322=++x x (C )0322=--x x (D )0322=+-x x 11、不解方程,01322=-+x x 的两个根的符号为( ) (A )同号 (B )异号 (C )两根都为正 (D )不能确定 12、方程012=--kx x 的根的情况是( )
(A )方程有两个不相等的实数根 (B )方程有两个相等的实数根 (C )方程没有实数根 (D )方程的根的情况与k 的取值有关
13、若m 是关于x 的一元二次方程02
=++m nx x 的根,且m ≠0,则n m +的值为( )
(A )1- (B )1 (C )2
1-
(D )
2
1
14、关于x 的方程2
0x px q ++=的两根同为负数,则( )
A .0p >且q >0
B .0p >且q <0
C .0p <且q >0
D .0p <且q <0
三、解答题: 15、解方程:
(1)9)12(2=-x (2)()()2232
-=-x x x (3)0822=--x x
(4)x 2+3x+4=0 (5) 4x 2
+4x +10=1-8x (6)42)2)(1(+=++x x x
16、不解方程,判断下列方程根的情况:
(1)x 2+4x —2=0 (2)9x 2—6x+1=0 (3)x 2+(4k+1)x+2k —1=0
17、设x 1 、x 2是方程2 x 2+4x —3=0的两个根,不解方程,求下列各式的值:
(1)(x 1 —2)(x 2—2) (2)(x 1 —x 2)
2
2
1
11x x +
18、求证:无论m 为何值,方程()()033222=-+-+m x m x 总有两个不相等的实数根?
19、某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么,该厂六、七两月产量平均增长的百分率是多少?
20、已知关于x 的一元二次方程x 2+4x +m -1=0。
(1)请你为m 选取一个合适的整数,使得到的方程有两个不相等的实数根;(4分) (2)设α、β是(1)中你所得到的方程的两个实数根,求α2
+β2
+αβ的值。
(5分)。