数学概念、方法、题型、易误点技巧总结——排列、组合和二项式定理
- 格式:doc
- 大小:130.00 KB
- 文档页数:8
排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。
排列、组合和二项式定理要点梳理北京市第八十中学 孙世林此文发表于《中学生数理化》排列、组合和二项式定理是高中数学的重要内容之一,也是高考必考的内容之一,排列、组合和二项式定理是进一步学习概率论和数理统计的基础知识,该部分内容不论其思想方法和解题都有特殊性,概念性强,抽象性强,思维方法新颖。
本文在研究近几年高考试题的基础上,将排列、组合和二项式定理知识要点梳理如下.一、复习建议1、立足课本,紧扣考纲,夯实基础,突出重点由于排列、组合和二项式定理的考题多为基础题、常见题,多属中档题范围,因此复习时应控制题目的难度,立足课本,依据考纲掌握常见题型,不要过多地加宽加深,学习的重点是基本原理和有附加条件的排列及组合的实际应用问题,同时重视本部分知识与立体几何、平面解析几何等知识的交汇点处的题目;二项式定理应重视二项式系数与项的系数的区别和联系、通项1r n r r r n T C a b -+=的正确使用。
由于排列组合应用题极易犯“重复”或“遗漏”的错误,并且结果数目较大,无法一一检验的特点,这就要求考生加深对概念的理解,掌握知识的内在联系和区别,科学周全的思考、分析问题。
2、重视数学思想方法的复习和应用本章主要的数学思想有:化归思想,比较分类思想,极限思想和模型化思维方法。
学习时应注意发散思维和逆向思维,通过分类、分步把复杂问题分解,恰当地应用集合观点、整体思想,从全集、补集等入手,使问题简化;同时运用变式题目,进行多种解法训练,从不同角度,不同侧面对题目进行全面的分析,结合典型题的错解分析,查找思维的缺陷,提高分析解决问题的能力。
3、常见排列组合应用题的解题策略有以下几种:(1) 特殊元素优先安排的策略(2) 合理分类与准确分布的策略(3) 排列、组合混合问题先选后排的策略(4) 正难则反,等价转化的策略(5) 相邻问题捆绑处理的策略(6) 不相邻问题插空处理的策略(7) 定序问题除法处理的策略(8) 分排问题直接处理的策略(9) “小集团”排列问题中先整体后局部的策略(10) 构造模型的策略二、典例分析例1:(2006年,湖北)安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的种数是 .(用数字作答)思路分析:解决这种由限制条件的排列问题,可用直接法,这时往往是对符合要求的情况进行合理的分类,分步,也可以利用间接法求解,即把问题中不符要求的情况求出来,从总数中减去即可。
高中组合知识点归纳总结在高中数学学科中,组合是一个重要的内容领域,涵盖了排列、组合和二项式定理等知识点。
本文将对高中组合知识点进行归纳总结,帮助同学们更好地掌握这一部分内容。
一、排列1. 定义:排列是指从一组元素中选取若干个元素按特定的顺序排列的方式。
根据排列的特征,可以分为有放回排列和无放回排列。
2. 有放回排列:从n个元素中选取r个元素进行排列,每个元素都可以重复选取。
计算公式为P(n,r) = n^r。
3. 无放回排列:从n个元素中选取r个元素进行排列,每个元素只能选取一次。
计算公式为A(n,r) = n! / (n-r)!。
二、组合1. 定义:组合是指从一组元素中选取若干个元素按照无序排列的方式。
根据组合的特征,可以分为有放回组合和无放回组合。
2. 有放回组合:从n个元素中选取r个元素进行组合,每个元素都可以重复选取。
计算公式为C(n,r) = (n+r-1)! / (r!(n-1)!。
3. 无放回组合:从n个元素中选取r个元素进行组合,每个元素只能选取一次。
计算公式为C(n,r) = n! / (r!(n-r)!)。
三、二项式定理1. 定义:二项式定理是数学中的一个重要定理,描述了二次幂的展开式中的系数。
具体公式为(a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)*b^1 + ... + C(n,n)a^0*b^n。
2. 应用:二项式定理在代数、概率和组合等领域都有广泛的应用。
例如,在计算二次幂的展开式时,可以根据二项式定理快速求解。
四、题型归纳在高中数学考试中,组合相关的题目主要有以下几种类型:1. 求排列、组合的个数:题目给出了元素个数和排列或组合的条件,要求计算可能的个数。
2. 求排列、组合的具体情况:题目给出了元素个数和排列或组合的条件,需要求出具体的排列或组合情况。
3. 求满足条件的概率:题目给出了元素个数和排列或组合的条件,需要求出满足条件的概率。
高中数学知识点总结第十章排列组合和二项式定理高中数学知识点总结:第十章——排列组合和二项式定理排列组合和二项式定理是高中数学中重要的概念和工具,它们在各个领域都有广泛的应用。
本文将对这两个知识点进行总结和说明。
1. 排列与组合排列是指从一组元素中按照一定顺序取出一部分元素的方式。
组合是指从一组元素中不考虑顺序地取出一部分元素的方式。
排列和组合都涉及到元素的选择和顺序,但它们在选择的要求上有所不同。
1.1 排列排列的计算公式为:P(n, m) = n! / (n-m)!,其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
1.2 组合组合的计算公式为:C(n, m) = n! / (m!(n-m)!),其中n表示元素总数,m表示需要选择的元素个数,n!表示n的阶乘。
2. 二项式定理二项式定理是数学中一个非常重要的定理,它描述了一个二项式的幂展开式。
二项式是一个形如(a+b)^n的表达式,而二项式定理则给出了(a+b)^n的展开形式。
二项式定理的表达式为:(a+b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1)b^1 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n。
其中C(n, k)表示从n个元素中选择k个元素的组合数。
二项式定理的展开形式中包含了n+1个项,每一项的系数是组合数C(n, k),指数是a和b的幂。
二项式定理的应用非常广泛,在数值计算、概率统计、组合数学等领域中都得到了广泛的运用。
它可以用来快速计算幂次方的结果,也可以用来求解概率问题或者排列组合问题。
3. 相关例题在学习排列组合和二项式定理的过程中,我们可以通过解决一些典型的例题来加深对这两个知识点的理解。
例题1:某班有10名学生,要从中选择3名学生组成一个小组,问有多少种不同的选择方式?解析:根据排列的计算公式,可以得到答案:P(10, 3) = 10! / 7! = 720。
“排列、组合、二项式、概率、统计”复习资料一、基础知识和方法梳理 (一)排列组合 1.计数两原理:分类计数原理:完成一件事情,有n 类方法,在第1类方法中又有m 1种不同的方式可以完成这件事情,在第2类方法中,又有m 2种方式,……第n 类方法中有m n 种方式可以完成,那么要完成这件事情的方法共有:n m m m N +++= 21分步计数原理:完成一件事情,需要分成n 步完成,在第1步中,有m 1种不同的方式可以完成这一步,在第2步中,有m 2种方式,……第n 步中,有m n 种方式可以完成这一步,那么要完成这件事情的方法共有:n m m m N ⨯⨯⨯= 21 2.排列:从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
排列数)!(!)1()1(m n n m n n n A mn -=+--=3.组合:从n 个不同的元素中不重复选取m 个元素组成一组,与顺序无关; 组合公式:)!(!!!)1()1(m n m n m m n n n C mn -=+--=;组合数性质:m n n m n C C -=,mn m n m n C C C 11+-=+4.排列组合常用方法:分类讨论法:将0,1,2,3,4五个数字可以组成多少个无重复数字的五位偶数?间接法:100件产品含有5件次品,从中任取5件,则至少含有一件次品的取法有多少种? 捆绑、插空法:将3本语文书,3本数学书,2本英语书排成一排,数学书必须排在一起,英语书不能相邻,则有多少中排列方式?特殊元素特殊位置优先考虑法:例如,将0,1,2,3可以组成多少个无重复数字的四位数 分组法:将5个苹果分给甲、乙、丙三人,每人至少一个苹果,有多少种分配方案? 隔板法:例如,将10个相同的小球装入3个编号为1,2,3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少盒子的编号数,这样的装法总数有多少种? 等可能性法:六个字母a 、r 、r 、r 、b 、c 排成一排,有多少种排列方式?(二)二项式定理1.二项式定理:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)(,其中rn C 为第1+r 项的二项式系数,=-nb a )(2.通项公式:rr n r n r b a C T -+=1,),1,0(n r =3.二项式定理的性质: (1)对称性,二项式系数是关于2n对称 (2)增减性与最大值,当n 为偶数时,二项式系数最大项为第12+n项,最大值为2nn C当n 为奇数时,二项式系数最大项为第121+-n 项和第121++n 项,最大值为2121+-=n n n n C C (3)二项式系数之和nn n n n C C C 210=+++奇数项与偶数项的二项式系数之和相等131202-=++=++n n n n n C C C C(三)概率1.概率的定义:在大量重复进行同一试验时事件A 发生的频率nm总是接近于某个常数p ,这时就把这个常数叫做事件A 的概率,记做)(A P .2.事件的和A+B :表示事件A 和B 至少有一个发生; 事件的积A ×B :表示事件A 和B 同时发生B A B A B A B A ⋅=++=⋅,3.常见的几种类型的概率计算:(1)等可能事件:可预知的有限个结果,且每个结果出现的可能性相同 计算方法:nm A P =)( (2)互斥事件:在一次试验中,事件A 发生了,则事件B 一定不会发生,事件B 发生了,事件A 不可能发生互斥事件有一个发生的概率计算方法:)()()(B P A P B A P +=+, 特殊的,对立事件:1)()(=+A P A P(3)相互独立事件:在一次试验中,事件A 发生与否对事件B 发生的概率没有影响,同理,事件B 发生与否对事件A 发生的概率没有影响,若A 与B 是独立事件,则A 与B ,A 与B ,A 与B 都是独立事件 独立事件同时发生的概率的计算方法:)()()(B P A P B A P ⋅=⋅(4)n 次独立重复事件恰有k 次发生的概率:kn k k n n p p C k P --=)1()(4.关于两个事件常见的概率计算:(若21)(,)(p B P p A P ==)5.注意事项(1)等可能事件的概率中,基本事件数目的计算可以分化得细致一点或粗略一点,这样虽然形式上有所差别,结果往往是一样的,通常有这样一些不同考虑:“整体考虑或局部考虑” 、“元素可辨或不可辨” 、“元素放回或不放回” 、“元素有序或无序”.(2)重视几种概率类型的混合,注意概率加法、乘法的混合运算,适当注意概率类型的突破. (3)准确理解文字(生活)语言,如“至少”、“至多”、“都”、“不都”、“都不”、“恰有几个”、“有几个”,“只有第几次”、“第几次”,“直到第几次”等等,然后等价转化为数学(概率)语言,并注意表述规范.(四)统计1.离散型随机变量的定义:若随机试验的结果可以用一个变量表示,这个变量叫做随机变量。
高中数学知识点归纳排列组合与二项式定理在高中数学中,排列组合是一种重要的概念与工具,它涉及到对对象的选取和排列的方式。
而在排列组合的基础上,我们还能引出二项式定理,进一步探讨多项式的展开与计算。
本文将对这些数学知识点进行归纳总结和讨论。
一、排列组合的基本概念1.1 排列排列是从给定的一组对象中,按照一定的顺序选择若干个对象进行排列。
假设有n个不同的对象,要从中选择r个对象进行排列,可以得到的排列数记为P(n,r)。
P(n,r) = n!/(n-r)!1.2 组合组合是指从给定的一组对象中,无视其顺序,选择若干个对象。
同样假设有n个不同的对象,要从中选择r个对象进行组合,可以得到的组合数记为C(n,r)。
C(n,r) = n!/(r!(n-r)!)1.3 重复排列与重复组合当给定的一组对象中存在重复的元素时,我们可以计算可能的重复排列与重复组合。
计算公式如下:重复排列:P(n1,n2,...,nk) = n!/(n1!n2!...nk!)重复组合:C(n+r-1,r) = (n+r-1)!/(r!(n-1)!)二、排列组合的应用2.1 生日问题生日问题是指在一个房间里,至少有两个人生日相同的概率有多大。
利用排列组合的思想可以很方便地解决这个问题。
在一个房间里,有n 个人,假设有365天可以选作生日。
我们可以计算至少有两个人生日相同的概率,即为1减去没有人生日相同的概率。
P(at least two people have the same birthday) = 1 - P(no two people have the same birthday)= 1 - C(365,n)/365^n2.2 二项式定理与展开二项式定理是代数中的重要定理之一,它描述了两个数之和的幂展开后的表达式。
假设有实数a和b以及正整数n,根据二项式定理可以将(a+b)^n展开为:(a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)*b^1 + C(n,2)a^(n-2)*b^2 + ... + C(n,n-1)a^1*b^(n-1) + C(n,n)a^0*b^n2.3 二项式系数与组合恒等式二项式系数指的是二项式展开中各项的系数。
高中数学高考总复习---排列组合、二项式定理知识讲解及考点梳理【高考展望】命题角度:该部分的命题就是围绕两个点展开.第一个点是围绕排列,组合展开,设计利用排列组合和两个基本原理求解的实际计数问题的试题,目的是考查对排列组合基本方法的掌握程度,考查分类与整合的思想方法,试题都是选择题或者填空题,难度中等或者偏易;第二点是围绕二项式定理展开,涉及利用二项式的通项公式计算二项式中特定项的系数、常数项、系数和等试题,目的是考查对二项式定理的掌握程度和基本的运算求解能力,试题也都是选择题或者填空题,难度中等.预计高考对该部分的考查基本方向不变,即考查简单的计数问题、二项式定理的简单应用,但由于排列,组合试题的特点,也不排除出现难度稍大的试题的可能.复习建议:该部分的复习以基本问题为主,要点有两个:一个是引导学生掌握解决排列,组合问题的基本思想,即分类与分步的思想,使学生在解题时有正确的思维方向;一个是掌握好二项展开式的通项公式的应用,这是二项式定理的考查核心.【知识升华】一、排列与组合1、分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关.2、排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.3、排列与组合的主要公式①排列数公式:)1()1()!(!+-⋅⋅⋅-=-=mnnnmnnA mn(m≤n)A nn=n! =n(n―1)(n―2) ·…·2·1.②组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=mmmnnnmnmnC mn(m≤n).③组合数性质:①mnnmnCC-=(m≤n). ②nnnnnnCCCC2210=+⋅⋅⋅+++③1314202-=⋅⋅⋅++=⋅⋅⋅++nnnnnnCCCCC4、分类应在同一标准下进行,确保“不漏”、“不重”,分步要做到“步骤连续”和“步骤独立”,并能完成事项.5、界定“元素与位置”要辩证地看待,“特殊元素”、“特殊位置”可直接优先安排,也可间接处理.6、解排列组合综合问题注意先选后排的原则,复杂的排列、组合问题利用分类思想转化为简单问题求解.7、常见的解题策略有以下几种:(1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略;(7)定序问题除法处理的策略;(8)分排问题直排处理的策略;(9)“小集团”排列问题中先整体后局部的策略;(10)构造模型的策略.二、二项式定理1、二项式定理(a +b)n =C 0n an +C1n an-1b+…+Crn an-rbr +…+Cnn bn,其中各项系数就是组合数Crn,展开式共有n+1项,第r+1项是Tr+1 =C rn an-rbr.2、二项展开式的通项公式二项展开式的第r+1项Tr+1=C rn an-rbr(r=0,1,…n)叫做二项展开式的通项公式。
排列组合二项式定理知识点题型总结二、排列、组合三、二项式定理内容典型题定义①二项式定理:(a+b)n=C 0n a n+C 1n a n-1b1+…+C r n a n-r b r+…+C n n b n=∑=nrrnCa n-rb r(n∈N+)②二项式展开式第r+1项通项公式:Tr-1=C r n a n-r b r其中C r n(r=0,1,2,…,n)叫做二项式系数.8.二项式8)1(-x的展开式中的第5项是( )A. 70x4B. 70x2C. 56x3D. -5623x9.二项式(x-2)12展开式中第3项的系数是( )A.264B.-264C.66D.-176010.(x-2)8 的展开式中, x6的系数是( )A. 56B. -56C. 28D. 22411.(x2+)5展开式中的10x是( )A.第2项B.第3项C.第4项D.第5项12.二项式x-1x6的展开式中常数项是( )A. 1B. 6C. 15D. 2013.设(3-x)n=nnxaxaxaa+⋅⋅⋅+++221,已知naaaa+⋅⋅⋅+++21=64,则n=.14.设二项式(3x+5)10=188991010axaxaxaxa++⋅⋅⋅+++,则18910aaaaa+-⋅⋅⋅-+-=.15.二项式2x-1x6的展开式中二项式系数最大的项是.性质①在二项展开式中,与首末两端“等距离”的两项的二项式系数相等.②如果二项式的幂指数是偶数,则中间一项的二项系数最大;如果二项式的幂指数是奇数,则中间两项的二项式系数相等并且最大.③二项式系数的和为n2,即nC+1nC+…+rnC+…+nnC=n2④奇数项的二项式系数的和等于偶数项的二项式系数的和,即nC+2nC+…=1nC+3nC+…=12-n四、常见的计数方法(1).特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.(2).相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.(3).不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?(4).定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法(5).重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法(6).环排问题线排策略例6. 8人围桌而坐,共有多少种坐法?(7).多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为nm 种 一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1mn A n(8).排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.(9).小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?(10).元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?(11).正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?(12).平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?练习题:1.’ 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?2.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______(13). 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法(14).构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗? 将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为11m n C -- 有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰. 平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以nn A (n 为均分的组数)避免重复计数。
二项式定理与排列组合的应用知识点总结在数学中,二项式定理与排列组合是两个重要的概念。
二项式定理是代数中的一项基本定理,而排列组合是组合数学中的重要概念。
本文将对二项式定理和排列组合的应用进行知识点总结。
一、二项式定理二项式定理是数学中的一个重要定理,它是关于二项式与幂的展开公式。
二项式定理的公式表达如下:(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + ... + C(n, n) * a^0 * b^n其中,C(n, k)表示组合数,即从n个元素中选择k个元素的组合数。
组合数的计算公式为:C(n, k) = n! / (k! * (n-k)!)二项式定理给出了二项式的展开公式,使我们可以快速求解幂指数较大的二项式。
其应用广泛,包括代数、概率统计等领域。
二、排列组合排列组合是组合数学中的一个分支,研究的是从给定的元素集合中选取出若干元素,按照一定规则进行排列或组合的方法。
排列和组合的计算公式如下:排列:P(n, k) = n! / (n-k)!组合:C(n, k) = n! / (k! * (n-k)!)其中,n表示元素的总个数,k表示选取的元素个数。
排列组合在实际问题中有着广泛的应用。
例如,在概率统计中,排列组合可用于计算事件发生的可能数;在密码学中,排列组合可用于计算密码的破解难度;在传统的魔方游戏中,排列组合可用于计算还原魔方的步骤等。
三、应用举例1. 掷硬币问题:将一枚硬币连续投掷3次,求出正反面出现的不同可能性。
解:根据排列组合的知识,将硬币的正反面看作两个元素,共有2个元素,从中选择3个元素排列,即为排列问题。
根据排列问题的计算公式,可得 P(2, 3) = 2! / (2-3)! = 2。
故,正反面出现的不同可能性为2种。
2. 发牌问题:从一副扑克牌中,随机抽出5张牌,在这5张牌中有几种同花色的可能性?解:根据排列组合的知识,将扑克牌的花色看作4个元素,从4个元素中选取1个元素,即为组合问题。
数学概念、方法、题型、易误点技巧总结——排列、组合和二项式定理
1.排列数中、组合数中。
(1)排列数公式
;。
如(1)1!+2!+3!+…+n!()的个位数字为(答:3);(2)满足的=(答:8)
(2)组合数公式
;规定,。
如已知,求 n,m的值(答:m=n=2)
(3)排列数、组合数的性质:
①;②;③;④;
⑤;⑥。
2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合。
比如:
(1)将5封信投入3个邮筒,不同的投法共有种(答:);
(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有种(答:70);
(3)从集合和中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是___(答:23);
(4)72的正约数(包括1和72)共有个(答:12);
(5)的一边AB上有4个点,另一边AC上有5个点,连同的顶点共10个点,以这些点为顶点,可以构成_____个三角形(答:90);
(6)用六种不同颜色把右图中A、B、C、D四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有种不同涂法(答:480);
(7)同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有种(答:9);
(8)是集合到集合的映射,且,则不同的映射共有个(答:7)
(9)满足的集合A、B、C共有组(答:)
3.解排列组合问题的方法有:
(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。
比如
①某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼的外墙,现有编号为1到6的6种不同花色的石材可选择,其中1号石材有微量的放射性,不可用于办公室内,则不同的装饰效果有_____种(答:300);
②某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字选0. 千位、百位上都能取0. 这样设计出来的密码共有_______种(答:100);
③用0,1,2,3,4,5这六个数字,可以组成无重复数字的四位偶数_______个(答:156);
④某班上午要上语、数、外和体育4门课,如体育不排在第一、四节;语文不排在第一、二节,则不同排课方案种数为_____(答:6);
⑤四个不同的小球全部放入编号为1、2、3、4的四个盒中。
①恰有两个空盒的放法有__________种;②甲球只能放入第2或3号盒,而乙球不能放入第4号盒的不同放法有_________种(答:84;96);
⑥设有编号为1、2、3、4、5的五个茶杯和编号为1、2、3、4、5的5个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有_________种(答:31)
(2)间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉))。
如在平面直角坐标系中,由六个点(0,0),(1,2),(2,4),(6,3),(-1,-2),(-2,-1)可以确定三角形的个数为_____(答:15)。
(3)相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列)。
比如:
①把4名男生和4名女生排成一排,女生要排在一起,不同的排法种数为_____(答:2880);
②某人射击8枪,命中4枪,4枪命中中恰好有3枪连在一起的情况的不同种数为_____(答:20);
③把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是_____(答:144)
(4)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间)。
比如:
①3人坐在一排八个座位上,若每人的左右两边都有空位,则不同的坐法种数有_______种(答:24);
②某班新年联欢晚会原定的5个节目已排成节目单,开演前又增加了两个新节目。
如果将这两个节目插入原节目单中,那么不同的插法种数为_____(答:42)。
(5)多排问题单排法。
如若2n个学生排成一排的排法数为x,这2 n个学生排成前后两排,每排各n个学生的排法数为y,则x,y的大小关系为_____(答:相等);
(6)多元问题分类法。
比如:
①某化工厂实验生产中需依次投入2种化工原料,现有5种原料可用,但甲、乙两种原料不能同时使用,且依次投料时,若使用甲原料,则甲必须先投放. 那么不同的实验方案共有_______种(答:15);
②某公司新招聘进8名员工,平均分给下属的甲、乙两个部门.其中两名英语翻译人员不能同给一个部门;另三名电脑编程人员也不能同给一个部门,则不同的分配方案有______种(答:36);
③9名翻译中,6个懂英语,4个懂日语,从中选拨5人参加外事活动,要求其中3人担任英语翻译,选拨的方法有____________种(答:90);
(7)有序问题组合法。
比如:
①书架上有3本不同的书,如果保持这些书的相对顺序不便,再放上2本不同的书,有种不同的放法(答:20);
②百米决赛有6名运动A、B、C、D、E、F参赛,每个运动员的速度都不同,则运动员A比运动员F先到终点的比赛结果共有_____种(答:360);
③学号为1,2,3,4的四名学生的考试成绩且满足,则这四位同学考试成绩的所有可能情况有_____种(答:15);
④设集合,对任意,有,则映射
的个数是_____(答:);
⑤如果一个三位正整数形如“”满足,则称这样的三位数为凸数(如120、363、374等),那么所有凸数个数为_____(答:240);
⑥离心率等于(其中且)的不同形状的的双曲线的个数为_____(答:26)。
(8)选取问题先选后排法。
如某种产品有4只次品和6只正品,每只产品均不相同且可区分,今每次取出一只测试,直到4只次品全测出为止,则最后一只次品恰好在第五次测试时,被发现的不同情况种数是_____(答:576)。
(9)至多至少问题间接法。
如从7名男同学和5名女同学中选出5人,至少有2名女同学当选的选法有_______种(答:596)
(10)相同元素分组可采用隔板法。
比如:
①10个相同的球各分给3个人,每人至少一个,有多少种分发?每人至少两个呢?(答:36;15);
②某运输公司有7个车队,每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同的抽法有多少种?(答:84)
4、分组问题:要注意区分是平均分组还是非平均分组,平均分成n组问题别忘除以n!。
如4名医生和6名护士组成一个医疗小组,若把他们分配到4所学校去为学生体检,每所学校需要一名医生和至少一名护士的不同选派方法有_______种(答:37440);
5.二项式定理:,其中组合数
叫做第r+1项的二项式系数;展开式共有n+1项,其中第r+l项
称为二项展开式的通项,二项展开式通项的主要用途是求指定的项.特别提醒:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1时,系数就是二项式系数。
如在的展开式中,第r+1项的二项式系数为,
第r+1项的系数为;而的展开式中的系数就是二项式系数;
(2)当n的数值不大时往往借助杨辉三角直接写出各项的二项式系数;
(3)审题时要注意区分所求的是项还是第几项?求的是系数还是二项式系数?比如:
①的展开式中常数项是____(答:14);
②的展开式中的的系数为______ (答:330);
③数的末尾连续出现零的个数是____(答:3);
④展开后所得的的多项式中,系数为有理数的项共有____项(答:7);
⑤若的值能被5整除,则
的可取值的个数有____个(答:5);
⑥若二项式按降幂展开后,其第二项不大于第三项,则的取值范围是(答:);
⑦函数的最大值是_______(答:1024)。
6、二项式系数的性质:
(1)对称性:与首末两端“等距离”的两个二项式系数相等,即;
(2)增减性与最大值:当时,二项式系数C的值逐渐增大,当
时,C的值逐渐减小,且在中间取得最大值。
当n为偶数时,中间一项(第+1项)的二项式系数取得最大值。
当n为奇数时,中间两项(第和+1项)的二项式系数相等并同时取最大值。
比如:
①在二项式的展开式中,系数最小的项的系数为______(答:-426);
②在的展开式中,第十项是二项式系数最大的项,则=____(答:17,18或19)。
(3)二项式系数的和:;。
比如:
①如果,则(答:128);
②化简(答:)
7、赋值法:应用“赋值法”可求得二项展开式中各项系数和为、“奇数(偶
次)项”系数和为,以及“偶数(奇次)项”系数和为。
比如:
①已知,则等于
_____(答:);
②,则+
=_____(答:2004);
③设,则_____(答:)。