人教版四年级数学下册 观察物体 知识点归纳
- 格式:docx
- 大小:1.38 MB
- 文档页数:1
观察物体是数学学习中非常重要的一环,它可以帮助孩子们培养良好的逻辑思维能力和观察力。
通过观察物体,孩子们可以学会用正确的方式记录观察结果、进行推理和分析,从而帮助他们更好地理解数学知识。
在人教版四年级下册数学中,观察物体是一个重要的学习内容,那么怎样学好人教版四年级下册数学的观察物体呢?接下来,我将从不同的角度来进行探讨。
一、观察物体的方法在学习观察物体时,首先要教会孩子们正确观察物体的方法,可以从以下几个方面进行引导:1. 观察物体的外形特征:让孩子们观察物体的形状、大小、颜色等外部特征,可以通过观察不同形状的卡片、颜色鲜艳的积木等进行练习,培养他们的观察力。
2. 观察物体的内部结构:引导孩子们观察物体内部的构造,例如观察立方体、球体等的内部结构,这有助于他们理解物体的立体形状。
3. 观察物体的运动轨迹:让孩子们观察物体的运动轨迹,可以通过观察滚动的球体、摆动的钟表等进行练习,帮助他们理解物体在运动过程中的规律。
通过以上的观察方法,孩子们可以逐渐培养起观察物体的能力,为后续的数学学习打下基础。
二、观察物体与数学知识的结合观察物体不仅可以培养孩子们的观察力,还可以帮助他们更好地理解数学知识。
在人教版四年级下册数学中,观察物体与以下内容有着密切的联系:1. 立体图形的认识:通过观察不同的立体图形,可以帮助孩子们更好地认识立体图形的特征和性质,例如观察立方体、棱柱等,让他们理解立体图形的特点。
2. 运动的轨迹:观察物体的运动轨迹可以帮助孩子们理解运动的规律,结合数学知识进行分析和推理,从而更好地理解运动的数学含义。
3. 数据的整理和分析:观察物体可以培养孩子们整理数据的能力,例如通过观察同学们身高、芳龄等数据,帮助他们学会用正确的方式记录观察结果,进行数据的整理和分析。
通过观察物体与数学知识的结合,可以帮助孩子们更好地理解和运用数学知识。
三、我对观察物体的理解在我看来,观察物体是数学学习中非常重要的一环,它可以培养孩子们的观察力和逻辑思维能力,帮助他们更好地理解和运用数学知识。
新人教版四年级下册数学总复习资料归类整理第一部分数与代数第一单元:四则运算【知识要点1】加减法的意义和各部分间的关系。
【重点内容】★把两个数合并成一个数的运算,叫做加法。
★相加的两个数叫做加数,加得的数叫做和。
★已知两个数的和与其中一个加数,求另一个加数的运算叫做减法。
★在减法中,已知的和叫做被减数,减得的数叫做差。
减法是加法的逆运算。
和=加数+加数加数=和-另一个加数差=被减数-减数减数=被减数-差被减数=加数+差【典型例题】根据864+325=1189直接写出下面两道题的得数。
1189-864= 1189-325=【知识要点2】乘除法的意义和各部分间的关系。
【重点内容】★求几个相同加数的和的简便运算,叫做乘法。
★相乘的两个数叫做因数,乘得的数叫做积。
★已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
★在除法中,已知的积叫做被除数,除得的数叫做商。
除法是乘法的逆运算。
积=因数×因数因数=积÷另一个因数商=被除数÷除数除数=被除数÷商被减数=商×除数有余数的除法各部分间的关系:被除数÷除数=商……余数被除数=商×除数+余数除数=(被除数-余数)÷商商=(被除数-余数)÷除数余数=被除数-除数×商【典型例题】根据36×14=504直接写出下面两道题的得数。
504÷14= 504÷36=【知识要点3】有关0的运算【重点内容】★一个数加上0,还得原数。
★被减数等于减数,差是0。
★一个数减去0,还得原数。
★一个数和0相乘,仍得0。
★0除以一个非0的数,得0。
★两个不等于0的相同数相除,商一定是1。
★0不能作除数,0可以作被除数。
【典型例题】计算0÷27+5×0+4【知识要点4】四则运算顺序【重点内容】★加、减、乘、除四种运算统称四则运算。
★在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
一、四则运算1、加、减、乘、除法的意义。
(1)把两个数合并成一个数的运算,叫做加法。
相加的两个数叫做加数。
加得的数叫做和。
已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。
减法是加法的逆运算。
(2)加法各部分间的关系:(3)减法各部分间的关系:和=加数+加数差=被减数-减数加数=和-另一个加数减数=被减数-差被减数=减数+差(4)求几个相同加数的和的简便运算,叫做乘法。
相乘的两个数叫做因数。
乘得的数叫做积。
已知两个因数的积和其中一个因数,求另一个因数的运算,叫做除法。
除法是乘法的逆运算。
(5)乘法各部分间的关系:(6)除法各部分间的关系:积=因数×因数商=被除数÷除数因数=积÷另一个因数除数=被除数÷商被除数=商×除数(7)有余数的除法:被除数=商×除数+余数2、运算顺序:①在没有括号的算式里,如果只有加、减法或只有乘、除法,都要从左往右按顺序(依次)计算。
②在没有括号的算式里,有加减法又有乘除法,要先算乘除法,后算加减法。
③在一个算式里,既有小括号,又有中括号,要先算小括号里面的,在算中括号里面的,最后算中括号外面的。
3、加法、减法、乘法和除法统称为四则运算。
4、有关0的运算:①一个数加上0得原数。
②任何一个数乘0得0。
③ 0不能做除数。
0除以一个非0的数等于0。
④ 0÷0得不到固定的商;5÷0得不到商。
5、混合运算中有中括号的,一定要把中括号里面的算式全部算完,才能去掉中括号。
6、列综合算式时,代换前后,算式的运算顺序要相同,如果运算顺序不同,要用加括号的方法来调整。
7、解决租船问题的策略,先计算哪种船的租金最便宜,就考虑先租这种船,如果这种船没有坐满,再进行调整,考虑租另一种船。
8、探究最省钱的租船策略,一是要租单价低的,二是要保证空位最少。
二、观察物体(二)1、正确辨认从上面、前面、左面观察到物体的形状。
四年级下数学《观察物体》知识点归纳总结一、知识点梳理1.观察物体的方法:观察物体时,要按照一定的顺序进行,从不同的角度观察,并描述物体的特征。
2.视图的形成:从不同的方向观察物体,会形成不同的视图。
常见的视图有主视图、左视图和俯视图。
3.立体图形的特征:不同的立体图形有不同的特征,如长方体的面是长方形,正方体的面是正方形等。
4.平面图形的特征:平面图形的边和角有一些特定的性质,如平行四边形的对边相等、三角形的内角和为180度等。
5.立体图形和平面图形的转换:一些立体图形可以由平面图形组成,反之亦然。
例如,长方体可以由6个长方形组成,也可以被看作是矩形平面的叠加。
二、公式及定理1.三视图定理:一个物体从正面看、侧面看和上面看,得到的图形分别是主视图、左视图和俯视图。
这三个视图可以重建物体的形状。
2.立体图形的平面展开:一些立体图形可以被展开成平面图形,如长方体可以展开成六个矩形。
反之,一些平面图形也可以折叠成立体图形。
3.平面图形的变换:一些平面图形可以通过平移、旋转和对称等变换得到其他图形。
这些变换的性质和应用是学习重点。
三、典型例题解析1.观察物体描述特征:给出一些立体图形的三视图,让学生描述这些图形的特征,如长方体的长、宽和高,正方体的边长等。
这些练习可以帮助学生理解视图的形成和立体图形的特征。
2.立体图形和平面图形的转换:给出一些立体图形,让学生将其展开成平面图形,或者将平面图形折叠成立体图形。
这些练习可以帮助学生理解立体图形和平面图形的转换关系。
3.平面图形的变换:给出一些平面图形,让学生通过平移、旋转和对称等变换得到其他图形。
这些练习可以帮助学生理解平面图形的变换性质和应用。
《观察物体》知识点归纳枫岭头中心小学张海泉田墩中心小学何龙【知识框架】观察物体1.不同位置观察物体的范围不同2.不同位置观察物体的形状不同【知识要点】节日礼物(不同位置观察物体的范围不同)1.随着观察位置的高低与远近变化,能判断出观察对象的画面所发生的相应变化。
2.根据观察到的画面,判断出观察者所在的位置。
天安门广场(不同位置观察物体的形状不同)1.通过观察、比较一些照片,能够识别和判断拍摄地点与照片的对应关系。
2.通过观察连续拍摄到的一组照片,能够判断照片拍摄的前后顺序。
【素材积累】1、冬天是纯洁的。
冬天一来,世界变得雪白一片,白得毫无瑕疵,白雪松软软地铺摘大地上,好似为大地铺上了一层银色的地毯。
松树上压着厚厚的白雪,宛如慈爱的妈妈温柔地抱着自己的孩子。
白雪下的松枝还露出一点绿色,为这白茫茫的世界增添了一点不一样的色彩。
2、张家界的山真美啊!影影绰绰的群山像是一个睡意未醒的仙女,披着蝉翼般的薄纱,脉脉含情,凝眸不语,摘一座碧如翡翠的山上,还点缀着几朵淡紫、金黄、艳红、清兰的小花儿,把这山装扮得婀娜多姿。
这时,这山好似一位恬静羞涩的少女,随手扯过一片白云当纱巾,遮住了她那美丽的脸庞。
【素材积累】1、黄鹂方才唱罢,摘村庄的上空,摘树林子里,摘人家的土场上,一群花喜鹊便穿戴着黑白相间的朴素裙裾而闪亮登场,然后,便一天喜气的叽叽喳喳,叽叽喳喳叫起来。
2、摘湖的周围有些像薄荷的小草,浓郁时,竟发出泥土的气息!仔细看几朵小花衬着绿绿的小草显得格外美丽。
夏天,大大的荷叶保护着那一朵朵娇粉的荷花。
摘整个湖泊中格外显眼。
如果你用手希望对您有帮助,谢谢来捧一捧这里的水,那可真是凉爽它会让你瞬间感到非常凉爽、清新。
小学四年级数学下册知识点汇总2篇一、观察物体知识技能目标晓得从高至低观测物体,体会出相同的边线看见的范围就是不一样的,由远至将近看见的范围就是越来越大,从而体会相同距离观测物体形状的变化。
知识检测挂一种物体,从相同的面去观测,看见的面就是什么图形。
摆两种物体,从不同的面去观察,看到的面又是怎样的?挂一组物体,从相同的面去观测,税金的图形就是怎样的?二、用字母表示数主要内容:用字母则表示数量关系,用字母则表示正方形的周长和面积公式,表述所含字母的式子则表示的意思,用字母则表示乘法运算定律。
教学目标:1、在具体内容情境中,能够用字母则表示数;融合直观实际情境,介绍等量关系,并会用所含字母的式子则表示数量和数量关系;能够用字母则表示长方形、正方形的周长和面积公式,以及乘法运算定律。
2、在解释含有字母的式子表示的意思、探索用字母表示公式、总结归纳运算定律的过程中,能进行有条理的思考,能表达探索问题的思考过程和结果,培养符号意识。
3、在具体内容情境中,能够表明所含字母式子的意思;认识到许多实际问题可以用所含字母的式子去则表示,并可以利用所含字母的式子展开交流,发展数感。
4、主动参与数学学习活动,感受用字母表示数、公式、运算定律的意义,初步体会数学建模思想,相信自己能够学好数学。
5、运算定律及方便快捷运算:加法运算定律:乘法交换律:两个数相乘,互换加数得边线,和维持不变。
a+b=b+a加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加再加上第一个数,和不变。
(a+b)+c=a+(b+c)加法这两个定律往往结合在一起使用。
如:165+93+35=93+(165+35)依据是什么?连减的性质:一个数已连续乘以两个数,等同于这个数乘以那两个数的和。
a-b-c=a-(b+c)三、三位数乘两位数1.能够笔算三位数乘坐两位数的乘法;积极探索并认知乘法运算定律和积的变化规律,可以应用领域乘法运算定律展开一些方便快捷运算;在化解具体内容问题的过程中,能够挑选最合适方法展开估计。
人教版小学四年级数学下册知识点归纳总结四则运算1.加法.减法.乘法和除法统称四则运算·2.在没有括号的算式里.如果只有加.减法或者只有乘.除法.都要从左往右按顺序计算·3.在没有括号的算式里.有乘.除法和加.减法.要先算乘除法.再算加减法·4.算式有括号.要先算括号里面的.再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序·5.先乘除.后加减.有括号.提前算关于“0”的运算1.“0”不能做除数;字母表示:a÷0错误2.一个数加上0还得原数;字母表示:a+0= a3.一个数减去0还得原数;字母表示:a-0= a4.被减数等于减数.差是0;字母表示:a-a = 05.一个数和0相乘.仍得0;字母表示:a×0= 06.0除以任何非0的数.还得0;字母表示:0÷a(a≠0)= 07.0÷0得不到固定的商;5÷0得不到商.(无意义)运算定律及简便运算:一.加法运算定律:1.加法交换律:两个数相加.交换加数的位置.和不变·a+b=b+a2.加法结合律:三个数相加.可以先把前两个数相加.再加上第三个数;或者先把后两个数相加.再加上第一个数.和不变·(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用·如:165+93+35=93+(165+35)依据是什么?3.连减的性质:一个数连续减去两个数.等于这个数减去那两个数的和·a-b-c=a-(b+c)二.乘法运算定律:1.乘法交换律:两个数相乘.交换因数的位置.积不变·a×b=b×a2.乘法结合律:三个数相乘.可以先把前两个数相乘.再乘以第三个数.也可以先把后两个数相乘.再乘以第一个数.积不变·( a×b )× c = a× (b×c )乘法的这两个定律往往结合起来一起使用·如:125×78×8的简算3.乘法分配律:两个数的和与一个数相乘.可以先把这两个数分别与这个数相乘.再把积相加·(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c乘法分配律的应用:①类型一:(a+b)×c (a-b)×c= a×c+b×c = a×c-b×c②类型二:a×c+b×c a×c-b×c=(a+b)×c =(a-b)×c②类型三:a×99+a a×b-a= a×(99+1) = a×(b-1)③类型四:a×99 a×102= a×(100-1) = a×(100+2)= a×100-a×1 = a×100+a×2简便计算1.连加的简便计算:①使用加法结合律(把和是整十.整百.整千.的结合在一起)②个位:1与9.2与8.3与7.4与6.5与5.结合·③十位:0与9.1与8.2与7.3与6.4与5.结合·2.连减的简便计算:①连续减去几个数就等于减去这几个数的和·如:106-26-74=106-(26+74)②减去几个数的和就等于连续减去这几个数·如: 106-(26+74)=106-26-743.加减混合的简便计算:第一个数的位置不变.其余的加数.减数可以交换位置(可以先加.也可以先减)例如:123+38-23=123-23+38 146-78+54=146+54-784.连乘的简便计算:使用乘法结合律:把常见的数结合在一起 25与4; 125与8 ;125与80等.看见25就去找4.看见125就去找8;5.连除的简便计算:①连续除以几个数就等于除以这几个数的积·②除以几个数的积就等于连续除以这几个数·6.乘.除混合的简便计算:第一个数的位置不变.其余的因数.除数可以交换位置·(可以先乘.也可以先除)例如:27×13÷9=27÷9×13四.连除的性质:一个数连续除以两个数.等于除以这两个数的积·a÷b÷c = a÷(b×c)1.常见乘法计算:25×4=100 125×8=10002.加法交换律简算例子:3.加法结合律简算例子:50+98+50 488+40+60=50+50+98 =488+(40+60)=100+98 =488+100=198 =5884.乘法交换律简算例子:5.乘法结合律简算例子:25×56×4 99×125×8=25×4×56 =99×(125×8)=100×56 =99×1000=5600 =990006.含有加法交换律与结合律的简便计算:65+28+35+72=(65+35)+(28+72)=100+100=2007.含有乘法交换律与结合律的简便计算:25×125×4×8=(25×4)×(125×8)=100×1000=100000乘法分配律简算例子:1.分解式2.合并式25×(40+4) 135×12—135×2=25×40+25×4 =135×(12—2)=1000+100 =135×10=1100 =13503.特殊14.特殊299×256+256 45×102 =99×256+256×1 =45×(100+2)=256×(99+1)=45×100+45×2=256×100 =4500+90=25600 =45905.特殊36.特殊499×26 35×8+35×6—4×35 =(100—1)×26 =35×(8+6—4)=100×26—1×26 =35×10=2600—26 =350=2574一.连续减法简便运算例子:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =250二.连续除法简便运算例子:3200÷25÷4=3200÷(25×4)=3200÷100=32三.其它简便运算例子:256—58+44 250÷8×4=256+44—58 =250×4÷8=300—58 =1000÷8=242 =125五.有关简算的拓展:102×38-38×2125×25×32125×8837×96+37×3+37易错的情况: 38×99+99小数的意义和性质:1.小数的产生:在进行测量和计算时.往往不能正好得到整数的结果.这时常用小数来表示·2.分母是10.100.1000……的分数可以用小数来表示·3.小数是十进制分数的另一种表现形式·4.小数的计数单位是十分之一.百分之一.千分之一……分别写作0.1.0.01.0.001……5.每相邻两个计数单位间的进率是10·(2)6.378中有6个一.3个十分之一(0.1).7个百分之一(0.01).8个千分之一(0.001)·(3)6.378中有(6378)个千分之一(0.001)·(4)9.426中的4表示4个十分之一(0.1)[4在十分位]8.小数的读法:先读整数部分(按照原来的读法).再读小数点.再读小数部分·读小数部分.小数部分要依次读出每个数字.而且有几个0就读几个0·9.小数的写法:先写整数部分(按照原来的写法).再写小数点.再小数部分:写小数部分.小数部分要依次写出每个数字.而且有几个0就写几个0·10.小数的性质:小数的末尾添上“0”或去掉“0”.小数的大小不变·注意:小数中间的“0”不能去掉.取近似数时有一些末尾的“0”不能去掉·作用可以化简小数等·面积单位:平方千米———公顷———平方米————平方分米———平方厘米质量单位:吨————千克————克单位换算:(1)高级单位转化成低级单位=======乘以进率.小数点向右移动·(2)低级单位转化成高级单位=======除以进率.小数点向左移动·14.小数的近似数(用“四舍五入”的方法):(1)保留整数.表示精确到个位.就是要把小数部分省略.要看十分位.如果十分位的数字大于或等于5则向前一位进一·如果小于五则舍·(2)保留一位小数.表示精确到十分位.就要把第一位小数以后的部分全部省略. 这时要看小数的第二位.如果第二位的数字比5小则全部舍·反之.要向前一位进一·(3)保留两位小数.表示精确到百分位.就要把第二位小数以后的部分全部省略.这时要看小数的第三位.如果第三位的数字比5小则全部舍·反之.要向前一位进一·(4)为了读写的方便.常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数·改写成“万”作单位的数就是小数点向左移4位.即在万位的右边点上小数点.在数的后面加上“万”字·改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点.在数的后面加上“亿”字·注意:带上单位·然后再根据小数的性质把小数末尾的零去掉即可·(5)在表示近似数时.小数末尾的“0”不能去掉·小数的加减法:1.计算法则:相同数位对齐(小数点对齐).按照整数计算方法进行计算.得数的小数点要和横线上的小数的小数点对齐·结果是小数的要依据小数的性质进行化简·2.竖式计算以及验算·注意横式上要写上答案.不要写成验算的结果·3.整数的四则运算顺序和运算定律在小数中同样适用·(简算)平均数与条形统计图1.求平均数公式:总数量=每份数相加平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数2.平均数和平均分不一样.是两个不同的概念·3.比赛时.计算平均得分时.一般要去掉一个最高分和一个最低分·平均数能较好的反映一组数据的总体情况.而不能代表其中某个个体的情况·4.条形统计图可以看出数量的多少·复式条形统计图可以更清楚地看出两组数据不同的地方·5.复式条形统计图可分为:纵向复式条形统计图和横向复式条形统计图.必须要有图例·单位长度需统一·鸡兔问题公式(1)已知总头数和总脚数.求鸡.兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数·或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数·例如.“有鸡.兔共36只.它们共有脚100只.鸡.兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡·解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔·(答略)(2)已知总头数和鸡兔脚数的差数.当鸡的总脚数比兔的总脚数多时.可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数·(例略)(3)已知总数与鸡兔脚数的差数.当兔的总脚数比鸡的总脚数多时.可用公式·(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数·或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数·(例略)(4)得失问题(鸡兔问题的推广题)的解法.可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数·或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数·例如.“灯泡厂生产灯泡的工人.按得分的多少给工资·每生产一个合格品记4分.每生产一个不合格品不仅不记分.还要扣除15分·某工人生产了1000只灯泡.共得3525分.问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二 1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”.运到完好无损者每只给运费××元.破损者不仅不给运费.还需要赔成本××元……·它的解法显然可套用上述公式·)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数.求鸡兔各多少的问题).可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数·例如.“有一些鸡和兔.共有脚44只.若将鸡数与兔数互换.则共有脚52只·鸡兔各是多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼1.鸡兔同笼属于假设问题.假设的和最后结果相反·2.“鸡兔同笼”问题的解题方法假设法:①假如都是兔②假如都是鸡③古人“抬脚法”:解答思路:假如每只鸡.每只兔各抬起一半的脚.则每只鸡就变成了“独脚鸡”.每只兔就变成了“双脚兔”·这样.鸡和兔的脚的总数就少了一半·这种思维方法叫化归法·3.公式:鸡兔总脚数÷2-鸡兔总数 = 兔的只数;鸡兔总数-兔的只数 = 鸡的只数·观察物体(二)1.正确辨认从上面.前面.左面观察到物体的形状·2.观察物体有诀窍.先数看到几个面.再看它的排列法.画图形时要注意.只分上下画数量·3.从不同位置观察同一个物体.所看到的图形有可能一样.也有可能不一样·4.从同一个位置观察不同的物体.所看到的图形有可能一样.也有可能不一样·5.从不同的位置观察.才能更全面地认识一个物体·图形的运动(二)1.把一个图形沿着某一条直线对折.如果直线两旁的部分能够完全重合.我们就说这个图形是轴对称图形.这条直线叫做这个图形的对称轴·2.轴对称的性质:对应点到对称轴的距离都相等·3.对称轴是一条直线.所以在画对称轴时.要画到图形外面.且要用虚线·4.正方形的对角线所在的直线是它的对称轴·轴对称图形可以有一条或几条对称轴·5.画对称轴时.先找到与相反方向距离对称轴相同的对应点.最后连线·6.长方形.正方形.等腰梯形.等腰三角形.等边三角形.线段.菱形都是轴对称图形·长方形有2条对称轴.正方形有4条对称轴.等腰梯形有1条对称轴.等腰三角形有一条对称轴.等边三角形有3条对称轴.线段有1条对称轴.菱形有2条对称轴.圆有无数条对称轴.半圆有一条.圆环有无数条.半圆环有一条·7.平行四边形不是轴对称图形.没有对称轴·(长方形和正方形除外)8.梯形不一定是轴对称图形·只有等腰梯形是轴对称图形·9.古今中外.许多著名的建筑就是对称的·比如:中国的赵州桥.印度泰姬陵.英国塔桥.法国埃菲尔铁塔·10.平移先找图形点.平移完点连起来.注意数点数要数十字·11.平移不改变图形的大小.形状.只改变图形的位置·12.利用平移.可以求出不规则图形的面积·三角形:1.三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合).叫三角形·2.从三角形的一个顶点到它的对边做一条垂线.顶点和垂足间的线段叫做三角形的高.这条对边叫做三角形的底·三角形只有3条高·重点:三角形高的画法·3.三角形的特性:1.物理特性:稳定性·如:自行车的三角架.电线杆上的三角架·4.边的特性:任意两边之和大于第三边·5.为了表达方便.用字母A.B.C分别表示三角形的三个顶点.三角形可表示成三角形ABC·6.三角形的分类:按照角大小来分:锐角三角形.直角三角形.钝角三角形·按照边长短来分:三边不等的△.等腰△(等边三角形或正三角形是特殊的等腰△)·等边△的三边相等.每个角是60度·(顶角.底角.腰.底的概念)7.三个角都是锐角的三角形叫做锐角三角形·8.有一个角是直角的三角形叫做直角三角形·9.有一个角是钝角的三角形叫做钝角三角形·10.每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角·11.两条边相等的三角形叫做等腰三角形·12.三条边都相等的三角形叫等边三角形.也叫正三角形·13.等边三角形是特殊的等腰三角形14.三角形的内角和等于180度·四边形的内角和是360°有关度数的计算以及格式·15.图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形·16.用2个相同的三角形可以拼成一个平行四边形·17.用2个相同的直角三角形可以拼成一个平行四边形.一个长方形.一个大三角形·18.用2个相同的等腰的直角的三角形可以拼成一个平行四边形.一个正方形·一个大的等腰的直角的三角形·19.密铺:可以进行密铺的图形有长方形.正方形.三角形以及正六边形等·20.多边形内角和计算公式:(n-2)×180°=多边形内角和(其中n表示多边形边数.n-2表示多边形可以分为对少个三角形)11 / 11。
第一单元四则运算一、加、减法的意义和各部分间的关系1、加法的意义:把两个数合并成一个数的运算,叫做加法。
相加的两个数叫做加数,加得的数叫做和。
2、加法各部分间的关系:和=加数+加数加数=和-另一个加数3、减法的意义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法。
在减法中,已知的和叫做被减数,减号后面的数叫做减数,等号后面的数叫做差。
4、减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=减数+差5、加法与减法的关系:减法是加法的逆运算。
二、乘、除法的意义和各部分间的关系1、乘法的意义:求几个相同加数的和的简便运算,叫做乘法。
相乘的两个数叫做因数,乘得的数叫做积。
2、乘法各部分间的关系:积=因数X因数因数=积÷另一个因数3、除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
已知的积叫做被除数,已知的因数叫做除数,求得的另一个因数叫做商。
4、除法各部分间的关系:①、在没有余数的除法中:商=被除数÷除数除数=被除数÷商被除数=商X除数②、在有余数的除法中:被除数=商X除数+余数商=(被除数-余数)÷除数除数=(被除数-余数)÷商三、有关0的运算①、一个数加上或减去0还得原数②、任何数减去自身都得0③、0除以任何非0的数还得0④、任何数乘0都得0⑤、0不能作除数四、四则混合运算的运算顺序1、在没有括号的算式里,只有乘除法或只有加减法,要按从左到右的顺序计算,有乘除法和加减法的,要先算乘除法,后算加减法。
2、有小括号的算式里,要先算小括号里面的,再算小括号外面的。
3、一个算式里,既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的,最后算中括号外面的。
第二单元观察物体1、从不同位置观察由小正方体拼摆的物体,辨认观察到的物体的形状的方法:在哪一位置观察物体,就从哪一面数出小正方形的数量,并确定摆出的形状。
人教版小学四年级数学下册同步复习与测试讲义第二章观察物体(二)【知识点归纳总结】1.长方体的展开图长方体展开图形如下情况:【经典例题】1.图中的展开图,能沿着虚线刚好围成一个长方体的图形是()A.B.C.D.【分析】通过对这四个展开图的分析观察,和动手实践,发现A、C、D沿着虚线都不能围成长方体,只有B可以围成长方体.【解答】解:图中的展开图,能沿着虚线刚好围成一个长方体的图形是B;故选:B.【点评】此题考查长方体的A展开图,解决此题的关键是哪些面是相对的.2.正方体的展开图正方体展开图形如下情况:【经典例题】2.图中的小正方形一样大,把它折成立方体,在这个立方体中,阴影部分相对的面的号码是3.【分析】正方体的表面展开图,相对面之间一定相隔一个正方形,据此解答即可.【解答】解:正方体的表面展开图,相对面之间一定相隔一个正方形,由此可知,在折成的立方体中,阴影部分相对的面的号码是3,故答案为:3.【点评】解决此题的关键是判断展开图属于哪种类型,用折回正方体的方法找答案.3.从不同方向观察物体和几何体视图定义:当我们从某一角度观察一个实物时,所看到的图象叫做物体的一个视图.物体的三视图特指主视图、俯视图、左视图.主视图:在正面内得到的由前向后观察物体的视图,叫做主视图.俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图.左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图.人在观察目标时,从眼睛到目标的射线叫做视线,眼睛所在的位置叫做视点,有公共视点的两条视线所称的角叫做视角.我们把视线不能到达的区域叫做盲区.【经典例题】3.如图立体图形从上面看到的分别是什么形状?请连一连.【分析】由图观察可知,由图观察可知,下面的立体图形从上面看到情形是①看到的是⑥,②看到的是⑤,图形③看到的是⑥,图形④看到的是⑦.【解答】解:【点评】此题考查了从不同方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.【同步测试】单元同步测试题一.选择题(共10小题)1.如图是一个无盖的纸盒,下面()号图是这个纸盒的展开图.A.B.C.D.2.将如图的正方体展开能得到的图形是()A.B.C.D.3.下面的图形()能折叠成长方体.A.B.C.4.把如图的展开图折成一个长方体,如果B面在底面,那么()面在上面.A.D B.C C.E D.A5.一个由五个方块搭成的图形,从正面看是,从左面看是,它是()A.B.C.6.照相地点距离建筑物最近的是()A.B.C.D.7.如图所示的三个物体中,哪两个物体从上面看的形状相同()A.①和②B.②和③C.①和③8.下面()图形沿虚线折叠后不能围成正方体.A.B.C.9.图一是一个正方体,它展开有6个面,图二给出了其中的5个面,请从图三①~④的位置中选择一个面,补成这个正方体的展开图,这个面是()A.①B.②C.③D.④10.一个长方体沿着棱剪开,得到一个展开图(如图,单位:cm).图中阴影部分的面积是多少平方厘米?下面说法正确的是()A.无法计算B.35平方厘米C.21平方厘米D.15平方厘米二.填空题(共8小题)11.如图所示这个展开图能折成一个长方形,如果F面在前面,从左面看是B面,那么面在上面,面在后面.12.如图是一个正方体的侧面展开图,如果图中“构”字在正方体的左面,那么这个正方体的右面是“”字.13.下面是一个长方体的展开图,这个长方体的长是cm,宽是cm,高是cm.14.★如图,将它折成一个正方体,相交于同一个顶点的三个面上的数之和最小是.15.下面各组都是用5个完全相同的小正方体搭成的立体图形,下面四组图中,从正面看到的形状是,从左面的看到的形状是的图是.16.在夜晚的路灯下,同样高的杆子离路灯越远,它的影子就越.17.仓库里有若干棱长都是5dm的正方体纸箱,拼成了一个几何体,从上面看到的图形是,从左面看到的图形是,这堆纸箱的占地面积是18.根据如图长方体的展开图,可以知道这个长方体的长是厘米,宽是厘米,高是厘米.三.判断题(共5小题)19.如图图形都是正方体的表面展开图.(判断对错)20.同样高的物体,在同一光源下,离光源越近,这个物体的影子越长.(判断对错)21.“欲穷千里目,更上一层楼”说的是站得越高,观察的范围也就越大.(判断对错)22.如图是长方体的表面展开图,与⑥相对的面是③.(判断对错)23.长方体的展开图折叠后不一定就能围成长方体..(判断对错)四.应用题(共3小题)24.如图,是由方块组成的图形的俯视图和左视图,组成这样的图形最多需要多少方块?最少需要多少方块?25.如图是3个棱长为30cm的正方体纸盒堆放在墙角处.露在外面的面积是多少?26.(1)小兔奇奇现在的样子能看到桌子上的萝卜吗?若能看到水果,它能看到几个苹果?看到几个梨?(2)它站在凳子上能看到桌子上所有的水果吗?五.操作题(共2小题)27.如图分别是明明、丁丁、爸爸和妈妈所看到物体的形状,请你在物体旁边标出另外三个人所在的位置.28.分别画出从正面、上面、左面看到的立体图形的形状.六.解答题(共2小题)29.下面四幅图分别是谁看到的?连一连.30.如图(1)是从上面看一些小正方体所搭几何体的平面图,方格中的数字表示该位置的小正方体的个数.请你在图(2)的方格纸中分别画出这个几何体从正面和左面看到的图形.参考答案与试题解析一.选择题(共10小题)1.【分析】根据长方体的特征:6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等.据此进行解答.【解答】解:根据题意,一个无盖的纸盒,是由5个面围成的立体图形,它的展开图是5个面,再根据立体图形的形状可以确定它的展开图是B的形状.故选:B.【点评】此题考查的目的是掌握长方体的特征,长方体的6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等.2.【分析】根据正方体展开图的特点,与箭头相邻的不能是黑色三角形,由此可以判断第2幅是这个正方体的展开图,据此解答.【解答】解:根据正方体展开图的特点,与箭头相邻的不能是黑色三角形;A、箭头与黑色三角形相邻,所以不符合;B、箭头与黑色三角形不相邻,所以符合;C、箭头与黑色三角形相邻,所以不符合;D、箭头与黑色三角形相邻,所以不符合.故选:B.【点评】此题考查了正方体展开图的特征.3.【分析】根据长方体展开图的特征,图A、B、C都是长方体展开图的“1 4 1”结构,但A、B相对的面不完全相同,不是长方体的展开图;图C是长方体的展开图.【解答】解:图A、图B不符合长方体展开图的特征,不是长方体的展开图,图C是长方体的展开图.故选:C.【点评】本题主要考查长方体的展开图,熟练掌握长方体的特征是解答本题的关键.4.【分析】根据图意,把如图的展开图折成一个长方体,则A和F相对,E和C相对,D和B相对,据此解答即可.【解答】解:如果B面在底面,那么D面在上面.故选:A.【点评】本题考查的是长方体特征的运用,准确掌握长方体的特征是解答本题的关键.5.【分析】A图从正面能看到4个正方形,分两层,下层3个,上层居中1个(不符合题意);从左面能看到3个正方形,分两层,上层1个,下层2个,左齐.B图从正面能看到4个正方形,分两层,下层3个,上层1个,左齐;从左面能看到3个正方形,分两层,上层1个,下层2个,左齐.C图从正面、左面看到的形状相同,都是一行3个正方形(不符合题意).【解答】解:一个由五个方块搭成的图形,从正面看是,从左面看是,它是.故选:B.【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.6.【分析】照相机离景物越远,拍摄以的景物越小,拍摄到画面内容越全面,反之,拍摄到景物越大,甚至不能拍摄到全景.据此即可把这四幅照片按拍摄由远到近排列,找出照相地点距离建筑物最近的一幅.【解答】解:照相地点距离建筑物由远到近:照相地点距离建筑物最近的是故选:D.【点评】关键明白:照相机离景物越远,拍摄以的景物越小,拍摄到画面内容越全面,反之,拍摄到景物越大,甚至不能拍摄到全景.7.【分析】图①从上面能看到一行2个正方形;图②从上面能看到一行3个正方形;图③从上面能看到一行2个正方形.由此可知,图①与图③从上面看到的形状相同.【解答】解:如图图①与图③从上面看到的形状相同,都是一行2个正方形.故选:C.【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.8.【分析】根据正方体展开图的11种特征,A图属于正方体展开图的“1﹣4﹣1”结构、C图属于正方体展开图的“3﹣3”结构,都能折叠成正方体;B图不属于正方体展开图,不能折叠成正方体.【解答】解:、能折叠成正方体;不能折叠成正方体.故选:B.【点评】正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.9.【分析】正方体展开图有6个面,图二是图一展开图的一部分,少一个面.在图二的下面与上行中的任一个面对齐画补上一个面,即可组成正方体体展开图的“1﹣4﹣1”结构.【解答】解:图一是一个正方体,它展开有6个面,图二给出了其中的5个面,从图三①~④的位置中选择一个面,补成这个正方体的展开图(如下图).故选:C.【点评】正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.10.【分析】通过观察长方体的展开图可知:这个长方体的长是7厘米,宽是5厘米,高是3厘米,阴影部分长方形的长是7厘米,宽是3厘米,根据长方形的面积公式:S=ab,把数据代入公式解答.【解答】解:7×3=21(平方厘米),答:阴影部分的面积是21平方厘米.故选:C.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方形面积公式的灵活运用,关键是熟记公式.二.填空题(共8小题)11.【分析】将下图长方体展开图,折成一个长方体,A面与F面相对,B面与D面相对,C面与E面相对;如果F面在前面,B面在左面,上面的应该是E面,A面在后面;据此解答.【解答】解:如图,折成一个长方体,A面与F面相对,B面与D面相对,C面与E面相对;如果F面在前面,从左面看是B面,那么C或E面在上面,A面在后面.故答案为:C或E,A.【点评】本题考查了长方体的展开图,也考查了学生的观察能力和空间想象能力.12.【分析】利用正方体及其表面展开图的特点以及题意解题,把“构”字在正方体的左面,然后把平面展开图折成正方体,然后看“构”相对面.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“构”与面“谐”相对,所以如果图中“构”字在正方体的左面,那么这个正方体的右面是“谐”字.故答案为:谐.【点评】本题考查了正方形相对两个面上的文字问题,同时考查空间想象能力.注意正方体的空间图形,从相对面入手,分析及解答问题.13.【分析】右图属于正方体展开图的“1﹣4﹣1”结构,折成长方体后,长方体的长、高可以直接看出,而宽需要计算,由图可以看出,2个长与2个宽之和是60厘米,长已知,由此可以计算出宽.【解答】解:这个长方体的长是25cm宽是:(60﹣25×2)÷2=(60﹣50)÷2=10÷2=5(cm)高是40cm答:这个长方体的长是25cm,宽是5cm,高是40cm.故答案为:25,5,40.【点评】此题主要是考查长方体展开图的认识.长、宽、高均不相等的长方体的表面展开图分“1﹣4﹣1”型,有27种;“1﹣3﹣2”型,18种;“2﹣2﹣2”型,6种;“3﹣3”型,3种,共计54种.要比正方体展开图复杂.14.【分析】根据正方体展开图的11种特征,此图属于正方体展开图的“1﹣4﹣1”结构.折成正方体后,以1下底,4为上底,相交于同一个顶点的三个面上的数分别是(1、2、5)、(1、3、5)、(1、2、6)、(1、3、6)、(4、2、5)、(4、2、6)、(4、3、5)、(4、3、6).由此可知,相交于同一个顶点的三个面上的数分别是(1、2、5)时最小.【解答】解:如图将它折成一个正方体,相交于同一个顶点的三个面上的数之和最小是:1+2+5=8.故答案为:8.【点评】解答此题最好的办法就是按如图剪一个正方体展开图,标数字,再折成正方体后,看相交于同一顶点的三个面上的数字各是哪三个数字.15.【分析】A图:从正面能看到4个正方形,分两层,上层1个,下层3个,右齐;从左面能看到3个正方形,分两层,上层1个,下层2个,左齐.B图:从正面能看到4个正方形,分两层,上层1个,下层3个,右齐;从左面能看到3个正方形,分两层,上层1个,下层2个,右齐.C图:从正面能看到4个正方形,分两层,上层1个,下层3个,右齐;从左面能看到一列2个正方形.D图:从正面能看到4个正方形,分两层,上层1个,下层3个,右齐;从左面能看到3个正方形,分两层,上层1个,下层2个,左齐.综上所述,符合题意的是B图.【解答】解:如图从正面看到的形状是,从左面的看到的形状是的图是B.故答案为:B.【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.16.【分析】以路灯光源的端点,过杆子顶端画射线与地面相交,杆子、射线、地面线段组成三角形,地面线段长为杆子影长.离杆子越近,射线与杆子组成的夹角越小,影子越知,反之,影子越长.【解答】解:如图(黑色粗条表示杆子离路灯不同距离的影子).在夜晚的路灯下,同样高的杆子离路灯越远,它的影子就越长.故答案为:长.【点评】同样高的物体,离光源越近,影子越短,反之,影子越长.17.【分析】从上面看到的形状是由4个正方形呈“田”字形,不论从其他面看如何,这些纸箱的占地面就是4个边长为5分米的正方形组成的正方形,每个正方形的边长已知,根据正方形面积计算公式“S =a2”求出一个正方形的面积再乘4就是这堆纸箱的占地面积.【解答】解:52×4=25×4=100(dm2)答:这堆纸箱的占地面积是100dm2.故答案为:100dm2.【点评】关键是明白:从上面看到的形状就是这堆纸箱占地的形状.18.【分析】通过观察长方体的展开图可知:这个长方体的长是17厘米,宽是8厘米,高是5厘米.据此解答即可.【解答】解:这个长方体的长是17厘米,宽是8厘米,高是5厘米.故答案为:17、8、5.【点评】此题考查的目的是理解掌握长方体展开图的特征及应用.三.判断题(共5小题)19.【分析】根据正方体展开图的11种特征,图1和图3都属于正方体展开图的“1﹣4﹣1”型,图2不属于正方体展开图.【解答】解:如图,根据正方体展开图的特征,图1和图3都属于正方体展开图,图2不属于正方体展开图.故答案为:×.【点评】正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.20.【分析】以光源为端点,过物体顶端作射线,射线与地的交点到物体的线段为物体的影子,离光源越远,光线与物体的夹角越大,另一直角边越长,即影子越长,反之,影子越短.【解答】解:如图样高的物体,在同一光源下,离光源越近,这个物体的影子越短,离光源越远,这个物体的影子越长原题说法错误.故答案为:×.【点评】此题不难,晚上可以到路灯下体验一下.21.【分析】俗话说:站得高方能看得远,意思是说站得越高,看得越远,看的范围越大,“欲穷千里目,更上一层楼”说的是站得越高,观察的范围也就越大.【解答】解:“欲穷千里目,更上一层楼”说的是站得越高,观察的范围也就越大原题说法正确.故答案为:√.【点评】根据生活实际,站得越高,看得越远.会当凌绝顶一览众山小,也是这个意思.22.【分析】这是长方体展开图的“1﹣4﹣1”结构,折成长方体时,①面和④面相对,③面和⑥面相对,②面和⑤面相对;据此解答.【解答】解:如图是长方体的表面展开图,与⑥相对的面是③.原题说法正确.故答案为:√.【点评】长方体展开图与正方体展开图类似,不同的是正方体展开图是由六个相同的正方形组成,而长方体展开图是六个长方形(有可能相对的两个面是正方形),只有相对面是全等的长方形.23.【分析】根据长方体的特征,6个面都是长方形(特殊情况有两个相对的面是正方形),相对面的面积相等,12条棱分为互相平行的3组,每组4条棱的长度相等.再根据长方体展开图的特征进行解答.【解答】解:长方体的展开图折叠后一定就能围成长方体;故答案为:×.【点评】此题主要考查长方体及其展开图的特征.四.应用题(共3小题)24.【分析】根据从上面、左面看到的形状,所用的小正方体分前、后两排,上、下两层.下层前、后排各两个,前排左边一个与后排右面一个对齐;上层前、后排最少各放1个,最多各放2个.【解答】解:如图组成这样的图形最少需要6个方块,最多需要8个方块(下图):【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.25.【分析】露在外面的面由7个边长是30厘米的正方形,根据正方形的面积计算公式“S=a2”先求出1个正方形的面积,再用1个正方形的面积乘7就是露在外面的面积.【解答】解:如图302×7=900×7=6300(cm2)答:露在外面的面积是6300cm2.【点评】解答此题的关键是根据从正面、上面、右面看到的形状确定露在外面的是多少个边长为30厘米的正方形.26.【分析】(1)小兔子比较矮,站在桌子下面,它不能看到桌子另一边的萝卜,若能看到水果,也只能看到靠近桌边的一个苹果一个梨,据此即可解答;(2)如果站在凳子上,则它与比桌子高出一些,所以桌子上的水果就都能看见了.【解答】解:根据题干分析可得:(1)小兔子比较矮,站在桌子下面,它不能看到桌子另一边的萝卜,若小兔子能看到水果,也只能看到靠近桌边的一个苹果一个梨.(2)如果站在凳子上,则它与比桌子高出一些,所以桌子上的水果就都能看见了.【点评】解答此题结合生活经验,注意视觉的可视范围的正确判断.五.操作题(共2小题)27.【分析】观察图形可知,妈妈看到的是侧面,球在左边;爸爸看到的是侧面,球在右边;丁丁看到的是后面,没有球;据此即可解答问题.【解答】解:根据题干分析可得:【点评】本题考查从不同方向观察物体和几何体,解决此题的关键是得到从不同方向观察立体图形的相应平面图形.28.【分析】这个立体图形由5个相同的小正方体组成.从正面能看到4个正方形,分两层,上层1个,下层3个,右齐;从上面能看到4个正方形,分两层,上层1个,下层3个,左齐;从左面能看到3个正方形,分两层,上层1个,下层2个,右齐.【解答】解:【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.六.解答题(共2小题)29.【分析】观察图形可知,小兔子看到的是壶的正面,壶嘴朝右;小狗看到的是壶的后面,壶嘴朝左;小松鼠看到的是壶的侧面,壶把在中间;小猴子看到的是壶的侧面,壶嘴在中间,据此即可解答问题.【解答】解:根据题干分析可得:【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.30.【分析】此立方体图形由8个相同的小正方体组成,根据图中所示各位置小正方体的个数,从正面能看到6个正方形,分三列,各列从左到右分别是3个、1个、2个;从左面能看到6个正方形,分三列,各列从左到右分别是3个、2个、1个.【解答】解:如图1,是从上面看一些小正方体所搭几何体的平面图,方格中的数字表示该位置的小正方体的个数在图(2)的方格纸中分别画出这个几何体从正面和左面看到的图形如下:【点评】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.。
人教版四年级数学下册知识点归纳一、四则运算1. 加法的意义和各部分间的关系- 意义:把两个数合并成一个数的运算,叫做加法。
- 各部分间的关系:和 = 加数+加数;加数 = 和 - 另一个加数。
2. 减法的意义和各部分间的关系- 意义:已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。
- 各部分间的关系:差=被减数 - 减数;减数 = 被减数 - 差;被减数 = 差+减数。
- 减法是加法的逆运算。
3. 乘法的意义和各部分间的关系- 意义:求几个相同加数的和的简便运算,叫做乘法。
- 各部分间的关系:积 = 因数×因数;因数 = 积÷另一个因数。
4. 除法的意义和各部分间的关系- 意义:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
- 各部分间的关系:商 = 被除数÷除数;除数 = 被除数÷商;被除数 = 商×除数。
- 除法是乘法的逆运算。
5. 四则混合运算的顺序- 在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
- 在没有括号的算式里,如果既有乘、除法又有加、减法,要先算乘、除法,后算加、减法。
- 一个算式里有括号,要先算括号里面的,再算括号外面的;如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的。
二、观察物体(二)1. 从不同位置观察物体- 从不同的位置观察同一物体,所看到的形状一般是不同的。
- 从同一位置观察不同的物体,所看到的形状可能相同,也可能不同。
2. 根据视图摆物体- 根据从一个方向看到的图形摆立体图形,有多种摆法。
- 根据从三个方向看到的图形摆立体图形,一般可以确定立体图形的形状。
三、运算定律1. 加法运算定律- 加法交换律:两个数相加,交换加数的位置,和不变。
用字母表示为a +b=b + a。
- 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
四年级数学下册观察物体知识点一、从不同位置观察同一物体。
1. 观察点与观察结果。
- 从不同的位置观察同一个物体,所看到的形状可能是不同的。
例如观察一个正方体,从正面看是一个正方形,从侧面看也是一个正方形,但从上面看还是一个正方形,不过这三个正方形所代表的是正方体不同面的投影。
- 对于长方体来说,从不同方向观察结果差异更明显。
如一个长方体(长、宽、高各不相同),从正面看可能是一个长方形(长是长方体的长,宽是长方体的高),从侧面看可能是另一个长方形(长是长方体的宽,宽是长方体的高),从上面看又是一个长方形(长是长方体的长,宽是长方体的宽)。
2. 视图的概念。
- 我们把从正面看到的图形叫做主视图,从左面看到的图形叫做左视图,从上面看到的图形叫做俯视图。
这三个视图能帮助我们全面地了解一个物体的形状。
例如对于一个简单的组合体(由几个正方体搭成),通过画出它的主视图、左视图和俯视图,可以准确地描述这个组合体的结构。
3. 观察物体时的注意事项。
- 在观察物体时,要注意观察的角度和方向。
眼睛要平视观察对象,确保观察的准确性。
并且要明确观察的是物体的哪一部分或者整体的形状。
- 同时,要学会想象自己站在不同的位置看到的形状,培养空间想象力。
例如在观察一个由多个小正方体组成的立体图形时,要想象自己从正面、侧面和上面看过去时,每个小正方体的位置关系以及呈现出的形状。
二、从同一位置观察不同物体。
1. 形状可能相同。
- 从同一位置观察不同的物体,有可能看到相同的形状。
例如一个正方体和一个底面是正方形且高与正方体棱长相等的长方体,从正面看它们都是正方形。
这是因为这两个物体在这个观察方向上有相同的轮廓特征。
2. 形状可能不同。
- 从同一位置观察不同物体更多情况下看到的形状是不同的。
比如一个圆柱和一个圆锥,从正面看,圆柱看到的是一个长方形,圆锥看到的是一个三角形(含底面直径的等腰三角形)。
这是由它们自身不同的几何形状决定的。
三、观察由小正方体组成的立体图形。
人教版数学四年级下册第二单元观察物体(二)知识点01:从不同位置观察到物体的形状是不同的判断从不同位置观察到的图形的方法:从哪一位置观察物体,就从哪一面数出小正方体的数量,并确定摆出的形状。
从前面观察,可以知道这个物体是由几列、几层摆成的;从上面观察,可以知道这个物体是由几列、几排摆成的;从左、右面观察,可以知道这个物体是由几层、几排摆成的。
从左面和右面观察同一个物体,看到的形状不一定相同。
知识点02:从同一位置观察不同形状的物体,所看到的形状可能相同,也可能不同。
正确辨认从上面、前面、左面观察到物体的形状。
从不同的位置观察,才能更全面地认识一个物体。
考点01:从不同方向观察物体和几何体【典例分析01】如图,再添一个同样大小的小正方体,小严就把小彤搭的积木变成了图中的六种不同的物体。
(1)从左面看,小严搭的积木中,①号和④号的图形和小彤搭的是相同的。
(2)小严搭的积木中,从前面看到的图形相同的是①号和⑤号,或者是④号和⑥号。
【分析】(1)根据题意,从左面看,小严搭的积木中,①号和④号的图形和小彤搭的是相同的,都是一行2个小正方形。
(2)小严搭的积木中,从前面看到的图形相同的是①号和⑤号,都是一行3个小正方形,或者是④号和⑥号,都是两行,下行2个小正方形,上行1个小正方形居左。
【解答】解:(1)小严搭的积木中,①号和④号的图形和小彤搭的是相同的。
(2)小严搭的积木中,从前面看到的图形相同的是①号和⑤号,或者是④号和⑥号。
故答案为:(1)①,④;(2)①,⑤,④,⑥。
【点评】本题是考查从不同方向观察物体和几何图形,关键是培养学生的观察能力。
【变式训练01】如图2所示的三幅图分别是在图1的哪个位置看到的?把相应的编号填在下面的括号里。
【变式训练02】右边的图形是从面看到的?【变式训练03】他们分别看到哪幅图?在里打“√”。
(1)(2)(3)一.选择题(共8小题)1.从右侧面观察看到的是()A.B.C.2.从正面和右面看到的图都是的图形是()A.B.C.D.3.观察如图,从上面看到的图形是()A.B.C.4.如果从前面看到的是,从右面看到的是,至少需要()个小正方体才能搭成A.5B.6C.7D.85.分别用5个同样大的正方体摆成右边的两个物体,从()看到的图形完全相同。
四年级下册数学全册知识点第一单元四则运算1、加、减的意义和各部分间的关系(1)把两个数合并成一个数的运算,叫做加法。
(2)相加的两个数叫做加数。
加得的数叫做和。
(3)已知两个数的积与其中的一个加数,求另一个加数的运算,叫做减法。
(4)在减法中,已知的和叫做被就减数……。
减法是加法的逆运算。
(5)加法各部分间的关系:和=加数+加数加数=和-另一个加数(6)减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=减数+差2、乘、除法的意义和各部分间的关系(1)求几个相同加数的和和的简便运算,叫做乘法。
(2)相乘的两个数叫做因数。
乘得的数叫做积。
(3)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
(4)在除法中,已知的积叫做被除数……。
除法是乘法的逆运算。
(5)乘法各部分间的关系:积=因数×因数因数=积÷另一个因数(6)除法各部分间的关系:商=被除数÷除数除数=被除数×商被除数=商×除数(7)有余数的除法,被除数=商×除数+余数2、加法、减法、乘法、除法统称为四则运算3、四则混和运算的顺序(1)在没有括号的算式里,如果只有加、减法,或者只有乘、除法,都要按(从左往右)的顺序计算;(2)在没有括号的算式里,如果既有乘、除法,又有加、减法,要先算(乘、除法),后算(加、减法);(先乘除,后加减)(3)在有括号的算式里,要先算括号里面的,后算括号外面的。
4、有关0的计算①一个数和0相加,结果还得原数:a + 0 =a 0 + a = a②一个数减去0,结果还得这个数:a - 0 = a③一个数减去它自己,结果得零:a - a = 0④一个数和0相乘,结果得0:a × 0 = 0 ; 0 × a = 0⑤0除以一个非0的数,结果得0:0 ÷ a = 0 ;⑥ 0不能做除数:a÷0 = (无意义)5、租船问题。
【人教版】小学数学四年级下册知识点总结第一单元、四则运算1、整数加法(1)把两个数合并成一个数的运算叫做加法。
(2)在加法里,相加的数叫做加数,加得的数叫做和。
(3)关系式:加数+加数=和;加数=和-另一个加数2、整数减法(1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
(2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。
(3)关系式:被减数-减数=差;减数=被减数-差;被减数=减数+差总结:加法和减法互为逆运算。
3、整数乘法(1)求几个相同加数的和的简便运算叫做乘法。
(2)在乘法里,相同的加数和相同加数的个数都叫做因数。
相同加数的和叫做积。
(3)在乘法里,0和任何数相乘都得0。
(4)1和任何数相乘都得任何数。
(5)关系式:因数×因数=积;一个因数=积÷另一个因数4、整数除法(1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
(2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
(3)在除法里,0不能做除数。
因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
(4)关系式:被除数÷除数=商;除数=被除数÷商;被除数=商×除数。
(5)有余数的关系式:被除数=商×除数+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数总结:乘法和除法互为逆运算。
5、关于“0”的运算。
一个数加上0还得原数;字母表示:a+0= a一个数减去0还得原数;字母表示:a-0= a被减数等于减数,差是0;或任何数减去它自己,都得0;字母表示:a-a =0被除数等于除数,商是1;或任何不是0的数除以它自己,都得0 字母表示:a÷a =1一个数和0相乘,仍得0;字母表示:a×0= 00除以一个非0的数,还得0;字母表示:0÷a(a≠0)= 0 注意:“0”不能做除数;字母表示:a÷0(错误)6、运算顺序1、没有括号的混合运算。
四年级数学下册知识点重点难点考点汇总复习建议第一单元:四则运算1. 重点知识点-四则运算的意义和各部分间的关系:加法是把两个数合并成一个数的运算,减法是已知两个数的和与其中一个加数,求另一个加数的运算,乘法是求几个相同加数和的简便运算,除法是已知两个因数的积与其中一个因数,求另一个因数的运算。
如加法中,和=加数+ 加数,加数= 和-另一个加数;乘法中,积= 因数×因数,因数= 积÷另一个因数。
-四则混合运算的顺序:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算;如果既有乘、除法又有加、减法,要先算乘、除法,后算加、减法。
有括号的算式,要先算括号里面的,再算括号外面的。
2. 难点-理解减法是加法的逆运算、除法是乘法的逆运算的含义,尤其是在解决复杂问题中运用这种关系。
-正确处理含有括号的四则混合运算,特别是多层括号的情况,容易出现运算顺序错误。
3. 考点-根据四则运算各部分间的关系填空或解决简单问题,如已知和与一个加数求另一个加数。
-四则混合运算的计算,常以脱式计算的形式考查,要求准确遵循运算顺序。
第二单元:观察物体(二)1. 重点知识点-从不同方向观察物体:能正确辨认从前面、上面、左面观察到的简单物体或由几个正方体组成的几何体的形状。
例如,通过观察一个由多个正方体搭建的立体图形,描述从不同方向看到的平面图形。
-根据视图还原物体:根据从不同方向观察到的图形,想象和还原出物体的形状,培养空间观念。
2. 难点-从斜方向观察物体的视图判断,以及根据给出的三个方向视图准确还原立体图形,需要较强的空间想象能力。
-对于复杂的组合几何体,准确分析从各个方向看到的形状,尤其是有遮挡情况的判断。
3. 考点-给出立体图形,选择从不同方向看到的视图,以选择题或判断题形式出现。
-根据给定的几个方向视图,画出或选择正确的立体图形,多为操作题或选择题。
第三单元:运算定律1. 重点知识点-加法运算定律:加法交换律(a + b = b + a)和加法结合律((a + b)+ c = a +(b + c)),能运用这些定律进行简便计算,如计算25 + 36 + 75,可以利用加法交换律和结合律得到(25 + 75)+ 36 = 136。
《观察物体(二)》知识点归纳
1、观察物体时,可以分别从前面看、从上面看、从左面看来确定一个物体的形状。
2、通过从前面看、从上面看、从左面看来观察物体时,视线应垂直于所观察的平面。
3、画出从一个位置观察到的小正方体的形状的方法:
①先确定有几个小正方体的面
②再确定这几个面的排列方式。
4、根据几个位置观察到的形状,来确定一堆小正方体的摆法:
①先从前面看,确定有几层。
②再从上面看,确定每一层最多有几个小正方体
③最后从左面看,拆掉多余的小正方体。
5、从同一个位置看不同的物体,看到的形状有可能是相同的。
6、从不同位置看同一个物体,看到的形状有可能是不同的。
7、要全面地认识一个物体的形状,只从一个位置观察是不行的,应该从多个不同的位置观察。