不对称短路分析(新)
- 格式:ppt
- 大小:750.00 KB
- 文档页数:7
不对称短路的分析和计算Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】目录摘要电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。
在电力系统运行过程中,时常会发生故障,且大多是短路故障。
短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。
其中三相短路为对称短路,后三者为不对称短路。
电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。
求解不对称短路,首先应该计算各原件的序参数和画出等值电路。
然后制定各序网络。
根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。
关键词: 不对称短路计算、对称分量法、节点导纳矩阵1电力系统短路故障的基本概念短路故障的概述在电力系统运行过程中,时常发生故障,其中大多数是短路故障。
所谓短路:是指电力系统正常运行情况以外的相与相之间或相与地(或中性线)之间的连接。
除中性点外,相与相或相与地之间都是绝缘的。
电力系统短路可分为三相短路,单相接地短路。
两相短路和两相接地短路等。
三相短路的三相回路依旧是对称的,故称为不对称短路。
其他的几种短路的三相回路均不对称,故称为不对称短路。
电力系统运行经念表明,单相短路占大多数,上述短路均是指在同一地点短路,实际上也可能在不同地点同时发生短路,例如两相在不同地点接地短路。
依照短路发生的地点和持续时间不同,它的后果可能使用户的供电情况部分地或全部地发生故障。
当在有由多发电厂组成的电力系统发生端来了时,其后果更为严重,由于短路造成电网电压的大幅度下降,可能导致并行运行的发电机失去同步,或者导致电网枢纽点电压崩溃,所有这些可能引起电力系统瓦解而造成大面积的停电事故,这是最危险的后果。
摘要电力系统发生不对称短路故障的可能性是最大的,本课题要求通过对电力系统分析不对称短路故障进行分析与计算,为电力系统的规划设计、安全运行、设备选择和继电保护等提供重要的依据。
关键字:标么值;等值电路;不对称故障目录一、基础资料 (3)二、设计内容 (3)1.选择110kV为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数。
(3)2.化简各序等值电路并求出各序总等值电抗。
(6)3.K处发生单相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(7)4.设在K处发生两相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(9)5.讨论正序定则及其应用。
并用正序定则直接求在K处发生两相直接短路时的短路电流。
(11)三、设计小结 (12)四、参考文献 (12)附录 (12)一、基础资料1. 电力系统简单结构图如图1所示。
图1 电力系统结构图在K 点发生不对称短路,系统各元件标幺值参数如下:(为简洁,不加下标*) 发电机G1和G2:S n =120MV A ,U n =10.5kV ,次暂态电动势标幺值1.67,次暂态电抗标幺值0.9,负序电抗标幺值0.45;变压器T1:S n =60MV A ,U K %=10.5 变压器T2:S n =60MV A ,U K %=10.5线路L=105km ,单位长度电抗x 1= 0.4Ω/km ,x 0=3 x 1, 负荷L1:S n =60MV A ,X 1=1.2,X 2=0.35 负荷L2:S n =40MV A ,X 1=1.2,X 2=0.35 取S B =120MV A 和U B 为所在级平均额定电压。
二、设计内容1.选择110kV 为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数(要求列出基本公式,并加说明)在产品样本中,电力系统中各电器设备如发电机、变压器、电抗器等所给出的都是标么值,即以本身额定值为基准的标么值或百分值。
第5 章电力系统不对称短路的计算分析5.1 基本认识5.2 元件的序阻抗及系统序网络的拟制及化简5.3 不对称短路时短路点电流和电压的分析及计算前言:1. 不对称短路时短路点的电流和电压出现不对称,短路点电流和电压的计算关键是求出其中一相的各序电流、电压分量。
2. 各序电流、电压分量分量的计算方法:解析法——解方程:上述 5.1 中三序网的基本式+三个补充方程(据不同类短路型的边界条件列出。
——繁,不用有两种复合序网法——将三个序网适当连接———组成复合序网法,求各序电流、电压(该法易记,方便,故广泛用——实际上是由解析法推导出的)3. 何谓“复合序网’——将三个序网适当连接,体现 a 相各序电流、电压关系的网络图。
4. 设对短路点各序网络图以简化到最简单的形式(见下图)——且表达形式有三种正序网E jX1 I a1E jX 1Ia1(n) f ++Ua1X1Ua1__G表达1 表达2 表达3 jX jX2 2I Ia 2a2+(n)f+Ua2Ua 2X2__表达1 表达2 表达3零序网jX jXIIa0a0+(n)f+Ua0Ua 0X_—表达1 表达2 表达3一、复合序网图及相量图(一)单相接地(1)f (如下图所示)a—E+aa 相——故障相,特殊相—E b +bc 相——非故障相—E c +I I b I ca分析:边界条件:I (1)b I (1)cU (1) a 0据对称分量法, 得:I1 1(1) (1) (1) 2 (1) (1) (1)a (I aI a I ) I I I1 3a b c a a23(1)a0——即三序电流相等U (1) (1) (1)a U U Ua1 a2 (1)a0三序电流、电压可用下图5-30 体现,称为复合序网。
E jX1Ia1+Ua1_jX2Ia2+Ua 2jXIa0+Ua 0图5-30 f (1) 复合序网注:(1) 复合序网,体现了三序电流、电压的关系I (1) (1) (1)a I I1 a2a0U (1) (1) (1)a U U1 a2a0(2) 由复合序网, 可直接写出短路点 f (1) 点的各序电流、电压IE(1) (1)aa I I1 ( ) a2j X X X1 2 3(1)a0U (1) (1) (1) (1)a E jI X (U U1 a a1 a2 a01 )(1) (1) U a20 jI a X2 2(1) (1)U a00 jI a X0(3)短路点故障相电流( 31) (1) (1) (1) (1)I a I I I I ——即为正序电流a1 a 2 a0 a1(1)I 的3 倍a1(1) (1) o2. 相量图(设I a I 0 )1 a1注:(1)由相量图可见,短路点:(1) 故障相电压U 0a I (1) 3a I(1)a1非故障相电压(1) (1) 但相位差(1) (1) 0OIb IU b U , 120c c (2)作相量图方法A 先作各相各序分量B 再作各相U、I 相量(二)两相短路( 2)f (如下图所示)b,cbc 相——故障相—E a +a 相——非故障相,特殊相—E +b—E+cI I b I ca分析:边界条件:I (2) a 0I (2)b I ( 2) cU ( 2)b U ( 2)c 0据对称分量法, 得:(2) (2)I a U (无零序网)0, 0 0a0I (2) (2)a I1 a2U (2) ( 2)a U1 a2三序电流、电压可用下图5-31 体现,称为复合序网。
1.问题:如何理解电网中的短路概念及出现的各类故障?回答:所谓短路是指电力系统在运行中,相与相之间或相与地(或中性线)之间发生非正常连接时而流过非常大的电流。
其电流值远大于额定电流,并取决于短路点距电源的电气距离。
短路就是不同电位的导电部分之间的低阻性短接,相当于电源未经过负载而直接由导线接通成闭合回路。
通常这是一种严重而应该尽可能避免电路的故障,会导致电路因电流过大而烧毁并发生火灾。
值得注意的是,除中性点外,相与相或相与地之间都是绝缘的。
图2 电力系统短路的分类电力系统短路可以分为三相短路、单相接地短路、两相短路和两相接地短路等。
三相短路的三相回路依旧是对称的,故称为对称短路。
其他的几种短路的三相回路均不对称,故称为不对称短路。
根据电力系统运行经验表明,单相短路占大多数,上述短路均是指在同一地点短路,实际上也可能在不同地点同时发生短路,例如两相在不同地点接地短路。
图3 故障的分类电网中的故障可以分成两大类:简单故障和复杂故障。
复杂故障一般是指由两种或者两种以上的简单故障组合而成,简单故障又分为对称故障和不对称故障;而不对称故障又可以分为短路故障(横向故障)和断路故障(纵向故障)。
在电力系统运行过程中,时常发生故障,其中大多数是短路故障。
2.问题:产生短路的原因有哪些?回答:产生短路的原因有很多,主要有如下几个方面:(1)元件损坏。
例如绝缘材料的自然老化,设计、安装及维护不良所带来的设备缺陷发展成短路。
(2)气象条件恶化。
例如雷电造成的闪络放电或者避雷针动作,架空线路由于大风或者导线覆冰引起电杆倒塌等。
(3)违规操作。
例如运行人员带负荷拉刀闸。
(4)其他原因。
例如挖沟损伤电缆。
3.问题:短路可能造成的危害有哪些?回答:短路电流所产生的电动力能形成很大的破坏力,如果导体和它的支架不够坚固,可能遭到难以修复的破坏,短路时由于很大的短路电流流经网络阻抗,必将使网络产生很大的电压损失。
另外,短路类型如果是金属性短路,短路点电压为零,短路点以上各处的电压也要相应降低很多,一旦电压低于额定电压太多的时候就会使供电受到严重影响或者被迫中断,若在发电厂附近发生短路,还可能使全电力系统运行解列,引起严重后果。
不对称短路的分析和计算不对称短路是指电路中的短路现象不对称地分布在电路中的其中一侧。
简单来说,不对称短路是指电路中其中一侧的短路现象比另一侧更为严重,或者在电路中其中一侧出现了短路而另一侧没有出现短路的情况。
这种情况会导致电压和电流在电路中的分布不平衡,可能会破坏电路元器件,甚至引起火灾事故。
因此,对不对称短路进行分析和计算是非常重要的。
1.电路拓扑分析:首先,对电路的拓扑结构进行研究,分析电路中各个元器件的连接方式和途径,确定电路的供电路径和负载分布,找出可能导致不对称短路的因素。
2.元器件参数分析:对电路中的元器件进行参数分析,包括电阻、电容、电感等参数。
如果在电路中存在不对称短路现象,可能是一些元器件的参数偏离正常范围,导致该侧电流增加,从而引发不对称短路。
3.测试测量:通过使用合适的测试工具和仪器对不对称短路的存在与程度进行测试和测量。
常用的测试仪器包括数字万用表、示波器、短路测试仪等。
通过测试测量可以准确地了解不对称短路的情况,有助于后续的计算和处理。
1.电流计算:根据电路的拓扑结构和元器件参数,计算各个分支电路中的电流大小。
通过电路中的欧姆定律和基尔霍夫定律等电路定律,可以求解各个分支电路的电流。
2.电压计算:根据电路中的电源电压和各个分支电路的电流,计算各个节点处的电压大小。
通过电路中的基尔霍夫定律和电压分压定律等电路定律,可以求解各个节点处的电压。
3.规范检查:对计算得到的电流和电压进行规范检查。
根据电路的设计和规范要求,检查计算结果是否符合规范,包括各个元器件的额定电流、电压、功率等。
4.不对称短路分析:对计算得到的电流和电压进行分析,确定是否存在不对称短路现象。
如果其中一侧的电流明显偏高,而另一侧的电流较小或接近零,可能存在不对称短路。
5.故障诊断:根据不对称短路的分析结果,进行故障诊断,并采取合适的措施进行处理。
可能的处理方法包括更换元器件、调整电路连接方式、增加保护元器件等。
7.4 简单不对称短路故障分析在中性点接地的电力系统中,简单不对称短路故障有单相接地短路、两相短路以及两相接地短路。
无论是哪一种短路,利用对称分量法分析时,都可以制订出正、负、零序网络,并经化简后从简化序网列写出各序网络故障点的电压平衡方程式,如式(7-11)。
如果略去正常分量只计故障分量,并忽略各元件电阻,可将式(7-11)改写为(7-45)式中,即是短路发生前故障点的电压。
要求解出上式中的三个电流序分量和三个电压序分量,应根据不对称短路的边界条件补充三个方程式。
由于短路类型不同,短路点的边界条件不同,补充的方程亦不同。
下面对三种不对称短路分别进行讨论。
7.4.1 单相接地短路设在中性点接地的电力系统中相接地短路,如图7-29,由图可列出短路点的边界条件图7-29 单相接地短路示意图(7-46)将上述边界条件转化为正、负、零序分量表示由有即(7-47)由有联立求解式(7-45)和式(7-47),即可解出、、和、、,但这种解析法较繁,工程中不适用。
若按照边界条件,将正、负、零序网串联,如图7-30所示,也可求出单相接地短路时短路点电流和电压的各序分量。
这种由三个序网按不同的边界条件组合成的网络称复合序网。
在复合序网中,同时满足了序网方程和边界条件,因此复合序网中的电流和电压各序分量就是要求解的未知量。
图7-30 单相接地短路复合序网从复合序网中直接可得(7-48)则短路点的故障相电流为(7-49)在近似计算中,一般有,从式(4-129)看出,当,则单相接地短路电流大于同一地点的三相短路电流,反之则单相接地短路电流小于三相短路电流。
从序网方程式(7-45)可求出短路点电压的各序分量、、,然后利用对称分量法的合成算式即可求得短路点非故障相电压代入和,则(7-50)同理可得(7-51)从式(7-50)和式(7-51)看出:当,非故障相电压较正常运行时低,极限情况时,当,则、,故障后非故障相电压不变。
当,非故障相电压较正常运行时高,极限情况时,,相当于中性点不接地系统发生单相接地短路时,中性点电位升高至相电压,而非故障相电压升高为线电压的情况。
电力系统不对称故障的分析电力系统不对称故障是指在三相电力系统中,其中一相发生了损坏或故障,导致系统中三相电压、电流、功率等参数不再保持对称。
不对称故障会导致电力系统运行不稳定,甚至造成设备损坏和系统瘫痪。
因此,对电力系统不对称故障的分析非常重要。
首先,对电力系统不对称故障进行分析需要进行故障现象的测量和记录。
可以通过测量故障相电压和电流、功率因素等参数来了解故障的具体情况。
同时,还可以记录故障发生时的系统状态和操作情况,为后续的故障分析提供依据。
其次,根据故障现象的测量和记录,初步判断故障的类型。
电力系统不对称故障可以分为单相短路故障、单相接地故障和线路不平衡故障等。
通过分析故障相电压和电流的变化规律,可以初步判断故障的类型。
然后,根据故障类型,进行故障点的定位。
故障点的定位可以通过测量故障传播速度和故障电流的方向来实现。
根据故障点位置的确定,可以进行局部化抢修和恢复供电,减少故障对系统的影响。
最后,进行故障原因分析。
故障原因分析是解决电力系统不对称故障的关键步骤,可以通过多种方法来实现。
例如,可以通过现场勘查、设备检测和故障模拟等方法来找出故障的具体原因。
同时,还可以利用故障记录仪、故障模拟软件等辅助工具,对故障进行仿真和分析。
在进行故障原因分析时,还需要考虑故障的影响范围、时间和条件等因素。
通过对故障原因的准确分析,可以采取相应的措施来防止和排除类似故障的再次发生。
综上所述,电力系统不对称故障的分析是一个复杂而重要的过程,需要对故障现象进行测量和记录,初步判断故障类型,进行故障点的定位,并最终进行故障原因分析。
通过准确的故障分析,可以及时恢复系统运行,确保电力系统的稳定和安全。
不对称短路特点总结不对称短路是电力系统中的一种常见故障,其特点与对称短路有所不同。
本文将总结不对称短路的特点,包括故障类型、故障电流、电压变化以及保护装置动作等方面。
一、故障类型不对称短路通常包括单相接地短路、两相短路和两相接地短路。
其中,单相接地短路是最常见的类型,其特点是只有一相线路对地绝缘被破坏,导致电流通过接地体形成回路。
两相短路和两相接地短路则分别指两相线路之间或两相线路对地绝缘被破坏,导致电流通过线路形成回路。
二、故障电流不对称短路时,由于三相电压不平衡,故障电流的大小和方向也不对称。
对于单相接地短路,故障电流为接地相电流;对于两相短路和两相接地短路,故障电流为两相电流之和。
此外,由于不对称短路时电流大小和方向的不对称性,故障点附近的电压分布也会受到影响。
三、电压变化不对称短路时,三相电压会出现不平衡现象。
对于单相接地短路,接地相电压为零,其他两相电压升高;对于两相短路和两相接地短路,故障相电压降低,其他两相电压升高。
此外,由于不对称短路时电流大小和方向的不对称性,故障点附近的电压分布也会受到影响。
四、保护装置动作在不对称短路时,保护装置会根据不同的故障类型和电压变化情况做出相应的动作。
例如,在单相接地短路时,零序保护装置会动作切除故障线路;在两相短路和两相接地短路时,负序保护装置会动作切除故障线路。
此外,为了确保系统的稳定运行,保护装置还会根据实际情况进行相应的调整和优化。
不对称短路是电力系统中的一种常见故障,其特点与对称短路有所不同。
为了确保系统的稳定运行和设备的安全运行,需要加强对不对称短路的监测和分析工作,及时发现和处理故障。
同时,还需要加强对保护装置的维护和调试工作,确保其正常工作和动作的准确性。